Announcements

- Welcome back!
- Grades in Rainbow Grades
 - Quizzes 1-4
 - Homework 1-3
- HW5 is due Thursday
- HW6, Simple type inference, coming up Thu
- Quiz 4: I apologize!

Outline

- The simply typed lambda calculus
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Stuck states
 - Type safety = progress + preservation
 - Introduction to simple type inference

Reading

- "Types and Programming Languages" by Benjamin Pierce, Chapters 8 and 9
- Lecture notes based on Pierce and notes by Dan Grossman, UW

Type System

- Syntax
- Dynamic semantics (aka concrete semantics!). In type theory, it is
 - A sequence of reductions
- Static semantics (aka abstract semantics!). In type theory, it is defined in terms of
 - Type environment
 - Typing rules, also called type judgments
 - This is typically referred to as the type system

Example, The Static Semantics. More On This Later!

\[
g \vdash x : \tau \\
g \vdash \text{Variable}
\]

\[
g \vdash E_1 : \sigma \rightarrow \tau \quad g \vdash E_2 : \sigma \\
g \vdash (E_1 \ E_2) : \tau \\
\text{Application}
\]

\[
g \vdash E_1 : \sigma \\
\vdash \text{binding: augments environment } g \\
\vdash \text{with binding of } x \text{ to type } \sigma \\
g \vdash \lambda x : \sigma . E_1 : \sigma \rightarrow \tau \\
\vdash \text{Abstraction}
\]
Type System
- A type system either accepts a term (i.e., term is "well-typed"), or rejects it
- **Type soundness**, also called **type safety**
 - Well-typed terms never "go wrong"
 - Program never executes an operation on arguments of the wrong type (i.e., not supported)
 - More concretely: well-typed terms never reach a "stuck state" (a "bad" term) during evaluation
 - We must give a definition of "stuck state"
 - A programming language defines its "stuck states"

Stuck States
- "Stuck states" characterize runtime errors
- In real programming languages "stuck states" are called forbidden errors. (Forbidden error is the application of an operation on arguments not supported by the operation.)
 - "Stuck states"/forbidden errors defined for language
- We will define "stuck states" formally for the simply typed lambda calculus, in just awhile
 - Informally, a term is "stuck" if it is not a value, and it cannot be further reduced
 - E.g. 0 x

Stuck States Examples
- E.g., c (λx.x), where c is an int constant, is a "stuck state", i.e., a meaningless state
- E.g., if c E₁ E₂ where c is an int constant, is a "stuck state"
 - Clearly not a value and clearly no rule applies!
 - Because the evaluation rules for if-then-else are
 - if true E₁ E₂ → E₁
 - if false E₁ E₂ → E₂

Type Soundness
- Remember, a type system accepts or rejects terms
 - A **sound type system** never accepts a term that can get stuck
 - A **complete type system** never rejects a term that cannot get stuck
 - Typically, whether a term gets stuck is undecidable
 - Type systems choose **type soundness**

Safety = Progress + Preservation
- **Progress**: A well-typed term is not stuck (i.e., either it is a value, or there is an evaluation step that applies)
- **Preservation**: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed
- **Soundness** follows:
 - Each state reached by program is well-typed (by Preservation)
 - A well-typed state is not stuck (by Progress)
 - Thus, each state reached by the program is not stuck

Putting It All Together, Formally
- Simply typed lambda calculus (**System F₁**)
 - Syntax of the simply typed lambda calculus
 - The type system (i.e., static semantics): type expressions, environment, and type judgments
 - The dynamic semantics
 - Stuck states
 - Progress and preservation, safety theorem
Type Expressions

- **Introducing type expressions**
 - \(\tau ::= b \mid \tau \rightarrow \tau \)
 - A type is a basic type \(b \) (we will only consider `int` and `bool` for simplicity), or a function type

- **Examples**
 - \((\text{int} \rightarrow \text{bool}) \rightarrow \text{int}\)
 - `int` \(\rightarrow \) `(\text{int} \rightarrow \text{int})` // is right-associative, thus can write just `int \rightarrow int \rightarrow int`

Syntax of simply typed lambda calculus:

- \(E ::= x \mid (\lambda x: \tau. E_1) \mid (E_1 E_2) \)

Type Environment and Type Judgments

- A term in the simply typed lambda calculus is
 - Type correct i.e., well-typed, or
 - Type incorrect

- The rules that judge type correctness are given in the form of type judgments in an environment

\[
\Gamma |- E : \tau \quad (\text{-} \text{is the turnstile})
\]

- Read: environment \(\Gamma \) entails that \(E \) has type \(\tau \)

Examples

- Deduce the type for \(\lambda x: \text{int}. \lambda y: \text{bool}. x+y \) in the nil environment

Examples

- Is this a valid type?
 - \(\text{Nil} |- \lambda x: \text{int}. \lambda y: \text{bool}. x+y : \text{int} \rightarrow \text{bool} \rightarrow \text{int} \)

 No. It gets rightfully rejected. Term reaches a “stuck state” as it applies + on a value of the wrong type (\(y \) is `bool`, + is defined on `ints`)

- Is this a valid type?
 - \(\text{Nil} |- \lambda x: \text{bool}. \lambda y: \text{int}. \text{if } x \text{ then } y \text{ else } y+1 : \text{bool} \rightarrow \text{int} \rightarrow \text{int} \)
Examples

Can we deduce the type of this term?
\[\lambda x. \text{if } x=1 \text{ then } x \text{ else } (f \ (f \ (x-1))) : ? \]

Spring 19 CSCI 4450/6450, A. Milanova (example from MIT 2015 Program Analysis OCW)

\(\Gamma |- E_1 : \text{int} \quad \Gamma |- E_2 : \text{int} \)

\(\Gamma |- E_1; E_2 : \text{bool} \)

\(\Gamma |- E_1 : \text{int} \quad \Gamma |- E_2 : \text{int} \)

\(\Gamma |- \text{if } b \text{ then } E_1 \text{ else } E_2 : \text{int} \)

\(\Gamma |- b : \text{int} \)

Outline

- The simply typed lambda calculus
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Stuck states
 - Type safety = progress + preservation
 - Introduction to simple type inference

Core Dynamic Semantics

- Syntax: \(E ::= c \mid x \mid (\lambda x. E_1) \mid (E_1 E_2) \)
 - \(c \) is integer constant
- Values: \(V ::= \lambda x. E_1 \mid c \)
- A “call-by-value” semantics:
 - \(\lambda x. E \to E[V/x] \)
 - \(E_1 \to E_2 \)
 - \(V \to V \)
- Stuck states: terms that are syntactically valid but are not values and cannot be reduced
 - E.g., \(\cdot \), \(c \cdot c \), \(c \ (\lambda x. E_1) \), etc.

Core Typing Rules

\(\Gamma	- c : \text{int} \)	Type expressions: \(\tau ::= \text{int} \mid \tau \to \tau \)		
\(x : \tau \in \Gamma \)	Environment: \(\Gamma ::= \text{Nil} \mid \Gamma, x : \tau \)			
\(\Gamma	- x : \tau \)	\(\Gamma	- (\lambda x. E_1) : \sigma \to \tau \)	
\(\Gamma	- (E_1 E_2) : \tau \)	\(\Gamma	- E_1 : \sigma \to \tau \) \quad \(\Gamma	- E_2 : \sigma \)

Soundness Theorem, Formally

- Definition: \(E \) can get stuck if there exist an \(E' \) such that \(E \to^{*} E' \) and \(E' \) is stuck

- Theorem (Soundness): If \(\text{Nil} |- E : \tau \) and \(E \to^{*} E' \), then \(E' \) is a value, or \(E' \to E'' \)
 - Lemma (Preservation): If \(\text{Nil} |- E : \tau \) and \(E \to E' \) then \(\text{Nil} |- E' : \tau' \)
 - Lemma (Progress): If \(\text{Nil} |- E : \tau \) then \(E \) is a value or there exist \(E' \) such that \(E \to E' \)
Progress, Proof Sketch

- Induction on the structure of the term E (as usual).
 Assuming Progress holds for component terms, prove that it holds for composite term E.
 1. **Var**: $\text{Nil} \vdash x : \tau$ --- impossible because $\text{Nil} \vdash E : \tau$
 2. **Constant**: $\text{Nil} \vdash c : \text{int} --- E$ is a value
 3. **Abs**: $\text{Nil} \vdash (\lambda x. E_i) : \tau$ --- again, E is a value
 4. **App**: $\text{Nil} \vdash (E_1 E_2) : \tau$

 We have $\text{Nil} \vdash E_1 : \sigma \rightarrow \tau$ and $\text{Nil} \vdash E_2 : \sigma$ or otherwise E wouldn't have been well-typed. Continued…

Preservation, Proof Sketch

- Similarly, by induction on the structure of term E.
 Assuming Preservation holds for component terms, prove that it holds for term E.
 1. **Var**: $x --- \ldots$
 2. **Constant**: $\text{Nil} \vdash c : \text{int} --- \ldots$
 3. **Abs**: $\text{Nil} \vdash (\lambda x. E_i) : \tau$ --- \ldots
 4. **App**: $\text{Nil} \vdash (E_1 E_2) : \tau$ --- \ldots Trickier because need to properly account for substitution!

Soundness

- Soundness, worth restating
 - For every state (i.e., term E) the program reaches, E is well-typed (by Preservation)
 - Since E is well-typed, then it is either a value, or it can be further reduced (by Progress)
 - Therefore, no state the program ever reaches is a “stuck” state

Extensions

- Dynamic semantics and static semantics for
 - Arithmetic,
 - Booleans,
 - Records,
 - Unions,
 - Recursive types,
 - Reference types,
 - etc., etc.
- Safety = Progress + Preservation

Outline

- The simply typed lambda calculus
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Stuck states
 - Type safety = progress + preservation
- Introduction to simple type inference
Deducing Types

- λx: int. λy: bool. x

1. Abs $\Gamma = []$
 - $t_1 = \text{int} \rightarrow \text{bool} \rightarrow \text{int}$
 - $\lambda x: \text{int}$
 - $t_2 = \text{bool} \rightarrow \text{int}$
 - $\lambda y: \text{bool}$
 - $t_3 = \text{int}$
 - Var $x \Gamma = [x:]$ int
 - $t_4 = \text{int}$

1, 2, 3 denote the subcomponents of the term. We will be deducing types for each of these components.

Type Inference, Strategy 1

- We can figure out all types even without explicit types for variables
- $(\lambda f. f) \ (\lambda x. x+1) : ?$
- Type inference

Type inference, Strategy 1

- Use typing rules to define type constraints
- Solve type constraints (offline)
- Aka constraint-based typing (e.g., Pierce)

Deducing Types

$(\lambda f. f) \ (\lambda x. x+1) : ?$

We Can Infer All Types!

We inferred all types!

Another Example

- twice $f \ x = f \ (f \ x)$
- What is the type of twice?
 - It is $t_1 \rightarrow t_2 \rightarrow t_3$ (t_1 is the type of $f \ (f \ x)$)
 - Based on the syntax tree of $f \ (f \ x)$ we have:
 - $t_1 = t_2 \rightarrow t_3$
 - $t_2 = t_4 \rightarrow t_5$
 - $t_3 = t_6 \rightarrow t_7$
 - Thus, $t_2 = t_1 = t_2$, $t_3 = t_9 \rightarrow t_8$ and
 - type of twice is $t_9 \rightarrow t_8 \rightarrow t_7$
 - Note: t_5 is a free type variable! Polymorphism!
Type Constraints from Typing Rules, as Attribute Grammar

- **Syntax:**
 \[E ::= x \mid c \mid \lambda x. E \mid E_1 \cdot E_2 \mid E_1 + E_2 \]

- **Grammar rule:**
 \[C_E = \{ t_E = \Gamma_E(x) \} \]

- **Attribute rule:**
 \[C_E = \{ t_E = \text{int} \} \]

- **Example:**
 \[\lambda f. \lambda x. f (f x) \]

Type Constraints from Typing Rules, as Attribute Grammar

- **Grammar rule:**
 \[\Gamma_E = \Gamma_{E_1} \cdot \Gamma_{E_2} \]

- **Attribute rule:**
 \[C_E = C_{E_1} \cup C_{E_2} \cup \{ t_{E_1} = t_{E_2} \} \]

- **Example:**
 \[\Gamma_f = \Gamma_{E_1} \cdot \Gamma_{E_2} \]

- **Next Class**
 - Simple type inference
 - Equality constraints
 - Unification
 - Polymorphic types
 - Hindley-Milner type inference
 - Algorithm W

Spring 19 CSCI 4450/6450, A. Milanova

39

Spring 19 CSCI 4450/6450, A. Milanova

40