Simple Type Inference, Polymorphism, Hindley Milner Type Inference

Outline

- Simple type inference
 - Equality constraints
 - Unification
 - Strategy 1: Constraint-based typing
 - Strategy 2: On-the-fly typing: Algorithm W, almost
- Parametric polymorphism
- Hindley Milner type inference. Algorithm W

Type Inference, Strategy 2

- Strategy 1 collects all constraints, then solves them offline
- Strategy 2 solves constraints on the fly
 - Builds the substitution map incrementally
 - Key reason: infers types as parser parses program!

Example: \((\lambda x. f) (\lambda x. x)\)

1. unify \((\text{int} \to \text{int})\) \(\to\) \(\text{int}\)
2. \(\text{Abs} \gamma\) \(\text{Abs} \gamma\)
3. \(\text{App} \lambda x. t\) \(\text{Var} x\)
4. \(\text{Var} f\) \(\text{Const} S\) \(\text{Var} x\)

Add a New Attribute, Substitution Map \(S\)

<table>
<thead>
<tr>
<th>Grammar rule</th>
<th>Attribute rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E ::= x)</td>
<td>(T_E = \Gamma_E(x)) (S_E = {})</td>
</tr>
<tr>
<td>(E ::= c)</td>
<td>(T_E = \text{int}) (S_E = {})</td>
</tr>
<tr>
<td>(E ::= \lambda x.E_i)</td>
<td>(\Gamma_{E_i} = \Gamma_{E_i}) (\Gamma_E = S_{E_i}(\Gamma_{E_i}))</td>
</tr>
<tr>
<td>(E ::= E_1 E_2)</td>
<td>(T_E = S_{E_1}(T_{E_1}) \to T_{E_2} \to T_{E_2} = S_{E_2} = S_{E_2} S_{E_1})</td>
</tr>
</tbody>
</table>

Announcements

- HW6 up
- Quiz 5
- Paper presentation guidelines coming up
- Papers coming up
- HW6 up tomorrow

Example term from MIT 2015 Program Analysis OCW
Example: \(\lambda f. \lambda x. (f \circ x) \)

The let Construct

- **Typing rule**
 \[
 \Gamma |- E_1 : \sigma \\
 \Gamma |- \text{let } x = E_1 \text{ in } E_2 : \tau
 \]

- **Attribute grammar rule**
 \[
 E ::= \text{let } x = E_1 \text{ in } E_2 \\
 \Gamma |- E_1 : \sigma \\
 \Gamma |- E_2 : \tau
 \]

 - \(\Gamma |- \text{let } x = E_1 \text{ in } E_2 : \tau \)
 - \(\Gamma |- E_1 : \sigma \)
 - \(\Gamma |- E_2 : \tau \)

The letrec Construct

- **letrec** \(x = E_1 \text{ in } E_2 \)

Attribute grammar rule

- **letrec** \(x = E_1 \text{ in } E_2 \)

 - \(\Gamma |- E_1 : \tau \)
 - \(\Gamma |- E_2 : \tau \)
 - \(\Gamma |- \text{letrec } x = E_1 \text{ in } E_2 : \tau \)

let/letrec Examples

- **letrec** \(x = E_1 \text{ in } E_2 \)

Attribute grammar rule

- **letrec** \(x = E_1 \text{ in } E_2 \)

 - \(\Gamma |- E_1 : \tau \)
 - \(\Gamma |- E_2 : \tau \)
 - \(\Gamma |- \text{letrec } x = E_1 \text{ in } E_2 : \tau \)

let/letrec Examples

- **letrec** \(x = E_1 \text{ in } E_2 \)

Attribute grammar rule

- **letrec** \(x = E_1 \text{ in } E_2 \)

 - \(\Gamma |- E_1 : \tau \)
 - \(\Gamma |- E_2 : \tau \)
 - \(\Gamma |- \text{letrec } x = E_1 \text{ in } E_2 : \tau \)

Haskell

- **let** \(x = E_1 \text{ in } E_2 \)

Attribute grammar rule

- **let** \(x = E_1 \text{ in } E_2 \)

 - \(\Gamma |- E_1 : \tau \)
 - \(\Gamma |- E_2 : \tau \)
 - \(\Gamma |- \text{let } x = E_1 \text{ in } E_2 : \tau \)

Haskell

- **let** \(x = E_1 \text{ in } E_2 \)

Attribute grammar rule

- **let** \(x = E_1 \text{ in } E_2 \)

 - \(\Gamma |- E_1 : \tau \)
 - \(\Gamma |- E_2 : \tau \)
 - \(\Gamma |- \text{let } x = E_1 \text{ in } E_2 : \tau \)

Haskell

- **let** \(x = E_1 \text{ in } E_2 \)

Attribute grammar rule

- **let** \(x = E_1 \text{ in } E_2 \)

 - \(\Gamma |- E_1 : \tau \)
 - \(\Gamma |- E_2 : \tau \)
 - \(\Gamma |- \text{let } x = E_1 \text{ in } E_2 : \tau \)
Algorithm W, Almost There!

\[
\text{def } W(\Gamma, E) = \text{case } E \text{ of }
\]
\[
c \rightarrow (\text{TypeOf}(c))
\]
\[
x \rightarrow \begin{cases}
\text{if } (x \text{ NOT in Domain}(\Gamma)) \text{ then fail} \\
\text{else let } T_x = \Gamma(x) ; \\
in (\Gamma, T_x) \\
\end{cases}
\]
\[
\lambda x.E_1 \rightarrow \begin{cases}
\text{let } (S_1, T_{x1}) = W(\Gamma, E_1) \\
(S_1, T_{x1}) = W(S_1, T_{1}) \\
S = \text{Unify}(S_1, T_{x1}) \\
in (S, S_1) \text{ if } S_1 \text{ is } S11
\end{cases}
\]
\[
\text{let } x = E_1 \text{ in } E_2 \rightarrow \begin{cases}
\text{let } (S_x, T_{x2}) = W(\Gamma, E_2) \\
(S_{x}, T_{x2}) = W(S_{x}, T_{2}) \\
S = \text{Unify}(S_{x}, T_{x2}) \\
in (S, S_{x}) = S_{x2}
\end{cases}
\]
\[
\lambda x. E \rightarrow \begin{cases}
\text{let } (S_x, T_{x1}) = W(\Gamma, E) \\
(S_{x}, T_{x1}) = W(S_{x}, T_{1}) \\
S = \text{Unify}(S_{x}, T_{x1}) \\
in (S, S_{x}) = S_{x2}
\end{cases}
\]
\[
s1 = W(\Gamma, E_1) \\
s2 = W(\Gamma, E_2) \\
s = g(\Gamma, s1, \Gamma, s2)
\]

Algorithm W, Almost There! (merges let and letrec)

Motivating Example

- A sound type system rejects some programs that don’t get stuck.

- Canonical example:

 let f = \lambda x. x

 in

 if (f true) then (f 1) else 1

 Term does not get “stuck”

 Term is not typable in the simply typed lambda calculus. But it is typable in Hindley Milner

Explicit Parametric Polymorphism

Java generics

C++ templates

Formalization in the Lambda calculus

\[
\Gamma, \top \vdash E : \tau \quad \text{(Tab)}
\]
\[
\Gamma \vdash E : \forall \tau. \tau' \quad \text{(TApp)}
\]
The Polymorphic Lambda Calculus (System F)

- Adds two rules to System F₁
 - Dynamic semantics
 \[E₁ \rightarrow E₂ \]
 \[(\Lambda T. E) [r] \rightarrow E_2 [r] \]
 - E.g., \((\Lambda T. \lambda x:T. x \, [\text{int}]) \, 1 \rightarrow (\lambda x:\text{int}. x) \, 1 \rightarrow 1 \)

- Static semantics
 \[\Gamma, T \vdash E : \tau \]

Different Styles of Polymorphism

- Impredicative polymorphism (System F)
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \mid \forall T. \tau \]
 \[E ::= x \mid \lambda x: \tau. E \mid E_1, E_2 \mid AT.E \mid E [r] \]
 - Can instantiate with polymorphic type!
 - Very powerful
 - Although, still cannot type \textbf{fix}!
 - Type inference is undecidable!

Different Styles of Polymorphism

- Predicative polymorphism
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \]
 \[\sigma ::= \tau \mid \forall T. \sigma \mid \sigma_1 \rightarrow \sigma_2 \]
 \[E ::= x \mid \lambda x: \tau. E \mid E_1, E_2 \mid AT.E \mid E [r] \]
 - Still very powerful
 - But cannot instantiate with a polymorphic type
 - Type inference is still undecidable!

Different Styles of Polymorphism

- Prenex polymorphism
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \]
 \[\sigma ::= \tau \mid \forall T. \sigma \]
 \[E ::= x \mid \lambda x: \tau. E \mid E_1, E_2 \mid AT.E \mid E [r] \]
 - Now type inference is decidable
 - But polymorphism is limited
 - You cannot pass polymorphic functions
 - E.g., we cannot pass a sort function as argument

Different Styles of Polymorphism

- Let polymorphism
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \]
 \[\sigma ::= \tau \mid \forall T. \sigma \]
 \[E ::= x \mid \lambda x: \tau. E \mid E_1, E_2 \mid AT.E \mid E [\tau] \mid \text{let } x = E_1 \text{ in } E_2 \]
 - Like \((\lambda x: \tau. E_2) \, E_1 \) but \(x \) can be polymorphic!
 - Good engineering compromise
 - Enhance expressiveness
 - Preserve decidability
 - This is the Hindley Milner type system

Outline

- Simple type inference
 - Equality constraints
 - Unification
 - Simple type inference on-the-fly
 - Algorithm W, almost
- Parametric polymorphism
- Hindley Milner type inference
Towards Hindley Milner

let \(f = \lambda x . x \) in
if (f true) then (f 1) else 1

Constraints
\(t_f = t_1 \rightarrow t_1 \)
\(t_f = \text{bool} \rightarrow t_2 \) // at call (f true)
\(t_f = \text{int} \rightarrow t_3 \) // at call (f 1)

 Doesn’t unify!

Expression Syntax
(to study Hindley Milner)

Expressions:
\[E ::= c \mid x \mid \lambda x . E_1 \mid E_1 E_2 \mid \text{let } x = E_1 \text{ in } E_2 \]

There are no types in the syntax

The type of each sub-expression is derived by the Hindley Milner type inference algorithm

Type Syntax
(to study Hindley Milner)

Types (aka monotypes):
- \(\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t \)
- \(t \) is a type variable
- E.g., \(\text{int}, \text{bool}, \text{int} \rightarrow \text{bool}, t_1 \rightarrow t_2, t_1 = t_2, \text{etc.} \)

Type schemes (aka polymorphic types):
- \(\sigma ::= \tau \mid \forall \tau_1 S \sigma \)
- E.g., \(\forall \tau_1. \forall \tau_2. (\text{int} \rightarrow t_1) \rightarrow t_2 \rightarrow t_3 \)
- \(\sigma \) is a “free” type variable as it isn’t bound under \(\forall \)
- Note: all quantifiers appear in the beginning, \(\tau \) cannot contain schemes

Gammas ::= Identifiers \(\rightarrow \) Type schemes

Instantiations

Type scheme \(\sigma = \forall \tau_1 \ldots \tau_n \tau \) can be instantiated into a type \(\tau' \) by substituting types for the bound variables (BV) under the universal quantifier \(\forall \)

- \(\tau' = S \tau \quad S \) is a substitution s.t. \(\text{Domain}(S) \subseteq \text{BV}(\sigma) \)
- \(\tau' \) is said to be an instance of \(\tau \ (\sigma > \tau') \)
- \(\tau \) is said to be a generic instance when \(S \) maps some type variables to new type variables

E.g., \(\sigma = \forall \tau_1 t_1 \rightarrow t_2 \)
\[[t_2 / t_1] \Rightarrow t_1 \rightarrow t_2 = \text{a generic instance of } \sigma \]
\[[\text{int} / t_1] \Rightarrow t_1 \rightarrow t_2 = \text{int} \rightarrow t_2 = \text{a non-generic instance of } \sigma \]

Generalization (aka Closing)

We can generalize a type \(\tau \) as follows
\[\text{Gen}(\Gamma, \tau) = \forall \tau_1 \ldots \tau_n \tau \]
where \(\{ \tau_1, \ldots, \tau_n \} = \text{FV}(\tau) – \text{FV}(\Gamma) \)

- Generalization introduces polymorphism
- Quantify type variables that are free in \(\tau \) but are not free in the type environment \(\Gamma \)
 - E.g., \(\text{Gen}[[t_1], t_1 \rightarrow t_2] \) yields \(\forall \tau_1 t_1 \rightarrow t_2 \)
 - E.g., \(\text{Gen}[[x, t_1], t_1 \rightarrow t_2] \) yields \(\forall \tau_1 t_1 \rightarrow t_2 \)
Generalization, Examples

let \(f = \lambda x. x \) in \((f \text{ true}) \) then \((f \text{ } 1)\) else \(1\)

- We'll infer type for \(\lambda x. x \) using simple type inference: \(t_1 \rightarrow t_1 \)
- Then we’ll generalize that type, \(\text{Gen}([], t_1 \rightarrow t_1) \):
 \[
 \forall t_1, t_1 \rightarrow t_1
 \]
- Then we’ll pass the polymorphic type into
 \(\text{if} (f \text{ true}) \) then \((f \text{ } 1)\) else \(1\)
- E.g., \([t_0 t_1] \) \((t_1 \rightarrow t_1)\) where \(t_0\) is fresh type variable at \((f \text{ } 1)\)

Extend Strategy 2 (Algorithm W)

Two ways:

1. let \(f = \lambda x. x \) in \((f \text{ true}) \) then \((f \text{ } 1)\) else \(1\)
2. \(\text{Gen}([], t_1 \rightarrow t_1) \) yields?
3. Why can’t we generalize \(t_1 \)?
4. Suppose we can generalize to \(\forall t_1 \)
 - Then \(\forall t_1 = t_1 \) will instantiate at \(g \) to some fresh \(t_2 \)
 - Then \(t_0 \) becomes \(t_0 \rightarrow t_0 \) thus losing the important connection between \(t_0 \) and \(t_1 \)
 - Thus \((f:t_0, \lambda x.t_0, \text{let } g = f \text{ in } g \ x) \) \((\forall y.y+1) \text{ true} \) will type-check (unsound!!)
5. DO NOT generalize variables that are mentioned in type environment \(\Gamma \)!

Hindley Milner Typing Rules

\[
\Gamma \vdash x : \tau \quad \text{E}\quad \Gamma ; x : \text{Gen}(\Gamma, \tau) \vdash E_2 : \tau'
\]

(Let)

- Type of \(x \) as inferred for \(E_1 \) is \(\tau \). Type of \(x \) in \(E_2 \) is the generalized type scheme \(\sigma = \text{Gen}(\Gamma, \tau) \)

\[
\frac{x : \sigma \subseteq \Gamma \quad \tau \sigma}{\Gamma \vdash x : \tau}
\]

(Var)

- \(x \) in \(E_2 \) of \(\Gamma \) \(x \) considered type \(\tau \) if it’s type \(\sigma \) in the environment can be instantiated to \(\tau \)

(Note: remaining rules, c, App, Abs are as in \(F_\tau \))

Hindley Milner Type Inference, Sketch

let \(x = E_1 \) in \(E_2 \)

1. Calculate type \(T_{E_1} \) for \(E_1 \) in \(\Gamma ; x : t_1 \) using simple type inference
2. Generalize free type variables in \(T_{E_1} \) to get the type scheme for \(T_{E_1} \) (be mindful of caveat!)
3. Extend environment with \(x : \text{Gen}(\Gamma, T_{E_1}) \) and start typing \(E_2 \)
4. Every time we encounter \(x \) in \(E_2 \), instantiate its type scheme using fresh type variables
 E.g., \(\text{id} \)'s type scheme is \(\forall y.t_1 \rightarrow t_1 \), so \(\text{id} \) is instantiated to \(t_1 \rightarrow t_0 \) at \((\text{id } 1)\)

Hindley Milner Type Inference

Two ways:

- Extend Strategy 1 (constraint-based typing)
- Extend Strategy 2 (Algorithm W)

Strategy 1

let \(f = \lambda x. x \) in \((f \text{ true}) \) then \((f \text{ } 1)\) else \(1\)

1. let \(\Gamma = [] \)
2. \(t_2 = \lambda x. t_1 \)
3. \(t_1 = t_1 \rightarrow t_2 \)
4. \(t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow \text{int } t_5 \)

Solve (!) constraint \(t_1 = t_1 \rightarrow t_2 \) \((t_0 \rightarrow t_5)\)
Next, generalize \(t_0 \) \((t_0 \rightarrow t_5)\)

\(t_1 \) and \(t_2 \) are fresh type vars generated at instantiation of polymorphic type.
Example

\[\lambda x. \text{let } f = \lambda y.x \text{ in } (f \text{ true}, f \text{ 1}) \]

Strategy 2: Algorithm W

```
def W(\Gamma, E) = case E of
  c -> ([], TypeOf(c))
  x -> if (x \text{ NOT in Domain(}\Gamma)) \text{ then fail }
      else let \Gamma_x = \Gamma(x)
        \text{ in case } \Gamma_x \text{ of }
        \forall t_1 \ldots t_n -> ([\{u_1/t_1, \ldots, u_n/t_n\} \Gamma], \)
        \text{ in case } \Gamma_2 \text{ of }
        \lambda x. E_1 -> let \Gamma_{x_1} = \Gamma(x) + \{x: t_1\}
        \text{ in } (\Gamma_{x_1}, E_1)
        \text{ in } (\Gamma_2, \Gamma_{x_2}, \Gamma_{x_3} = \Gamma(x) + \{x: t_1\})

// ...
// continues on next slide!
```

Example

\[\lambda x. \text{let } f = \lambda y.x \text{ in } (f \text{ true}, f \text{ 1}) \]

Strategy 2 Example

```
let f = \lambda x.\text{\textbf{in}} if (f \text{ true}) then (f \text{ 1}) \text{ else 1}

1. let \Gamma = [] \text{ T_s = int S_s = [ ]}
2. Abs \text{ T_s = } t_x \text{ S_s = [ ]}
3. if-then-else \text{ T_s = int S_s = [ ]}
4. App \text{ f = } \lambda x.\text{\textbf{in}} \text{ if (f true) then (f 1) else 1}
5. App \text{ f = true}

\text{E} \text{\textit{Escapes constraint, types 2. Abs immediately:}}
\text{\textit{T_s = t_x}} \text{\textit{immediately:}}
```

Hindley Milner Observations

- Do not generalize over type variables mentioned in type environment (they are used elsewhere)

- Let is the only way of defining polymorphic constructs

- Generalize the types of let-bound identifiers only after processing their definitions
Hindley Milner Observations

- Generates the most general type (principal type) for each term/subterm
- Type system is sound. Inferred types are verifiable
- Complexity of Algorithm W
 - PSPACE-Hard
 - Because of nested let blocks

Hindley Milner Limitations

- Only let-bound constructs can be polymorphic and instantiated differently

  ```
  let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism
  ```

- lambda-bound

  ```
  let twice f x = f (f x)
  foo g = g g succ 4 // lambda-bound
  in foo twice
  ```