Announcements

- HW5 due today
- HW6 coming up tonight
- Paper presentation guidelines are up
- Papers coming up
- No class on Monday March 25th

Simple Type Inference

Outline

- Simple type inference
 - Equality constraints
 - Unification
 - Strategy 1: Constraint-based typing
 - Strategy 2: On-the-fly typing: Algorithm W, almost
- Parametric polymorphism (next time…)
- Hindley Milner type inference. Algorithm W

Last Class

- Introduction to types and type systems
- Simply typed lambda calculus, as known as System F_1
 - Language syntax, type expression syntax
 - Static semantics
 - Dynamic semantics
 - Type soundness: Safety = Progress + Preservation
 - Proved for the simply typed lambda calculus

Reading

- “Types and Programming Languages”, by Benjamin Pierce, Chapter 22, 23
- Lecture notes based partially on MIT 2015 Program Analysis OCW

Static Semantics

- $\Gamma \vdash x : \tau$ (Variable)
- $\Gamma \vdash E_1 : \sigma \rightarrow \tau$, $\Gamma \vdash E_2 : \sigma \rightarrow \tau$
 - $\Gamma \vdash (E_1 E_2) : \tau$ (Application)
- $\Gamma, x : \tau \vdash E_1 : \tau$
 - $\Gamma, (\lambda x : \sigma E_1) : \sigma \rightarrow \tau$ (Abstraction)
Deducing Types

1. Abs $\Gamma = []$
 $t_1 = \text{int}$
 $t_2 = \text{int}$
 $t_3 = \text{int}$

2. Abs $\Gamma = [x:\text{int}]$
 $t_2 = \text{int}$
 $t_3 = \text{int}$
 $t_4 = \text{int}$

3. Var x $\Gamma = [x:\text{int}, y:\text{bool}]$
 $t_3 = \text{int}$

1,2,3 denote the subcomponents of the term. We will be deducing types for each of these components.

Type Inference, Strategy 1

- We can figure out all types even without explicit types for variables
 - $(\lambda f. f) (\lambda x. x+1) : ?$
- Type inference

Type inference, Strategy 1

- Use typing rules to define type constraints
- Solve type constraints
- Aka constraint-based typing (e.g., Pierce)

We Can Infer All Types!

- $(\lambda f. f) (\lambda x. x+1) : ?$

Type Constraints

- We constructed a system of type constraints
- Let’s solve the system of constraints

We inferred all t's:

$\begin{align*}
 t_2 &= t_4 \\
 t_2 &= t_7 \\
 t_3 &= t_7 \\
 t_4 &= t_7 \\
 t_7 &= t_7 \\
 t_3 &= t_1 \\
 t_5 &= t_1
\end{align*}$

$(\lambda f. \text{int} \to \text{int}) f 5) (\lambda x. \text{int} \cdot x+1) : \text{int} (t_1)$

Another Example

- twice $f x = f (f x)$
- What is the type of twice?
 - It is $t_1 \rightarrow t_5 \rightarrow t_1$ (t_1 is the type of $f (f x)$)
 - Based on the syntax tree of $f (f x)$ we have:

 $\begin{align*}
 t_2 &= t_3 \\
 t_3 &= t_4 \\
 t_4 &= t_1 \\
 t_5 &= t_1
 \end{align*}$

 Thus, $t_2 = t_1 = t_2$. $t_1 = t_5$. $t_7 = t_1$. and type of twice is $(t_1 \to t_3) \to t_5 \to t_1$.

Note: t_5 is a free type variable! Polymorphism!
Type Constraints from Typing Rules, as Attribute Grammar

- **Syntax:**

 \[E ::= x \mid c \mid \lambda x. E \mid E_1 \cdot E_2 \mid E_1 + E_2 \]

- **Grammar rule:**

 \[C_E = \{ t_E = \Gamma_E(x) \} \]

- **Attribute rule:**

 \[\Gamma_E = \Gamma_E(x) ; x : t_E \]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Type</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[E ::= \lambda x. E_1]</td>
<td>[\Gamma_E = \Gamma_E(x) ; x : t_E]</td>
<td>[\Gamma_E = \Gamma_E(x) \cup C_{E_1} \cup { t_{E_1} = t_{E_2} }]</td>
<td></td>
</tr>
<tr>
<td>[E ::= E_1, E_2]</td>
<td>[\Gamma_E = \Gamma_E(x) \cup C_{E_1} \cup C_{E_2} \cup { t_{E_1} = t_{E_2} }]</td>
<td>[\Gamma_E = \Gamma_E(x) \cup C_{E_1} \cup C_{E_2} \cup { t_{E_1} = t_{E_2} }]</td>
<td></td>
</tr>
<tr>
<td>[E ::= E_1 + E_2]</td>
<td>[\Gamma_E = \Gamma_E(x) \cup C_{E_1} \cup C_{E_2} \cup { t_{E_1} = int, t_{E_2} = int, t_E = int }]</td>
<td>[\Gamma_E = \Gamma_E(x) \cup C_{E_1} \cup C_{E_2} \cup { t_{E_1} = t_{E_2} }]</td>
<td></td>
</tr>
</tbody>
</table>

Example

\[\lambda f. \lambda x. f(fx) \]

Standard Way of Writing This...

- Semantic rules over syntax, generate constraints, i.e., attribute grammar!
- E.g., rule for abstraction \(A \)

\[\begin{align*}
| \Gamma |- \lambda x. E_1 : t & \iff \exists t_{E_1} : a \cdot ((| \Gamma ; x : t \Gamma |- E_1 : a |) \\
& \land t = t_{E_2} \Rightarrow a)
\end{align*} \]

This reads: Constraints for abstraction term \(A \) given environment \(\Gamma \) include all constraints generated for term \(E_1 \) given augmented environment \(\Gamma ; x : t \) and constraint \(t = t_{E_2} \Rightarrow a \), for term \(A \) itself. \(t_{E_1} \) and \(a \) are fresh type variables created along derivation.

Solving Constraints

- Two key concepts
- **Equality**
 - What does it mean for two types to be equal?
 - Structural equality (aka structural equivalence)
- **Unification**
 - Can two types be made equal by choosing appropriate substitutions for their type variables?
 - Robinson's unification algorithm (which you already know from Prolog!)

Equality and Unification

- What does it mean for two types \(\tau_a \) and \(\tau_b \) to be equal?
 - **Structural equality**
 - Suppose \(\tau_a = t_1 \Rightarrow t_2 \)
 - \(\tau_b = t_3 \Rightarrow t_4 \)
 - Structural equality entails \(\tau_a = \tau_b \) means \(t_1 \Rightarrow t_2 \land t_3 \Rightarrow t_4 \) iff \(t_1 = t_3 \) and \(t_2 = t_4 \)

Spring 19 CSCI 4450/6450, A Milanova
Equality and Unification

- Can two types be made equal by choosing appropriate substitutions for their type variables?
- Robinson’s unification algorithm
 - Suppose \(\tau_a = \text{int} \rightarrow t_1 \)
 - Can we unify \(\tau_a \) and \(\tau_b \)? Yes, if \(\text{bool} / t_1 \) and \(\text{int} / t_2 \)
 - Suppose \(\tau_b = \text{int} \rightarrow t_2 \), \(t_3 = \text{bool} \rightarrow \text{bool} \)
 - Can we unify \(\tau_a \) and \(\tau_b \)? No.

Simple Type Substitution (essential to define Unification)

- Language of types
 - \(\tau ::= b \quad / \quad \text{primitive type, e.g., int, bool} \)
 - \(t \quad / \quad \text{type variable} \)
 - \(\tau \rightarrow \tau \quad / \quad \text{function type} \)
- A substitution is a map
 - \(S: \text{Type Variable} \rightarrow \text{Type} \)
 - \(S = [\tau_1/t_1, \ldots, \tau_n/t_n] \quad / \quad \text{substitute type } \tau_i \text{ for type } t_i \)
- A substitution instance \(\tau' = S \tau \)
 - \(S = [t_0/\text{bool} / t_1] \quad / \quad \text{then} \)
 - \(S(\tau) = S(t_0/\text{bool}) \rightarrow (t_0/\text{bool}) \)

Examples

- Substitutions can be composed
 - \(S_1 = [t_0/\text{bool} / t_1] \)
 - \(S_2 = [\text{int} / t_2] \)
 - \(\tau = t_1 \rightarrow t_2 \)
 - \(S_2 S_1(\tau) = ? \)

Example

- \(t_1 \rightarrow \text{bool} = (\text{int} \rightarrow t_2) \rightarrow t_3 \)
- Yes, if \(\text{int}/ t_2 \) and \(\text{bool}/ t_3 \)

Simple Type Substitution (essential to define unification)

- Substitutions can be composed
 - \(S_1 = [t_0/\text{bool} / t_1] \)
 - \(S_2 = [\text{int} / t_2] \)
 - \(\tau = t_1 \rightarrow t_2 \)
 - \(S_2 S_1(\tau) = S_2 [S_1(t_0/\text{bool})] = (\text{int}/\text{bool}) \rightarrow (\text{int}/\text{bool}) \)

Examples

- Substitutions can be composed
 - \(S_1 = [t_1 / t_2] \)
 - \(S_2 = [t_0 / t_2] \)
 - \(S_3 = [t_0/\text{int} / t_1] \)
 - \(\tau = t_1 \rightarrow t_0 \)
 - \(S_2 S_1(\tau) = ? \)
Some Terminology...

- A substitution \(S_1 \) is less specific (i.e., more general) than substitution \(S_2 \) if \(S_2 = S \ S_1 \) for some substitution \(S \)
- E.g., \(S_1 = [t_1 \rightarrow t_1 / t_2] \) is more general than \(S_2 = [\text{int} \rightarrow \text{int} / t_2] \) because \(S_2 = S \ S_1 \) for \(S = [\text{int} / t_1] \)
- A principal unifier of a constraint set \(C \) is a substitution \(S_1 \) that satisfies \(C \), and \(S_1 \) is more general than any \(S_2 \) satisfying \(C \)

Unification (essential for type inference!)

- \text{Unify}: tries to unify \(\tau_1 \) and \(\tau_2 \) and returns a principal unifier for \(\tau_1 = \tau_2 \) if unification is successful
 def \text{Unify}(\tau_1,\tau_2) =
 case (\tau_1,\tau_2)
 (\tau_1,\tau_2) = [\tau_1,\tau_2] \text{ provided } t_2 \text{ does not occur in } \tau_1
 (\tau_1,\tau_2) = [\tau_2,\tau_1] \text{ provided } t_1 \text{ does not occur in } \tau_2
 \text{if (eq? b_1 b_2) then } [] \text{ else fail}
 (\tau_1 \rightarrow t_{31}, \tau_2 \rightarrow t_{32}) = \text{let } S_1 = \text{Unify}(\tau_1,\tau_2)
 S_2 = \text{Unify}(S_1(\tau_{31}),S_1(\tau_{32}))
 \text{in } S_2 S_1 \text{// compose substitutions}
 otherwise = \text{fail}

Unify Set of Constraints \(C \)

- \text{UnifySet}: tries to unify \(C \) and returns a principal unifier for \(C \) if unification is successful
 def \text{UnifySet}(C) =
 if \(C \) is Empty Set then []
 else let
 \(C = \{ \tau_1 = t_2 \} \cup C' \)
 \(S = \text{Unify}(\tau_1,\tau_2) \)
 in
 \text{UnifySet}(S(C')) * S
 // Composition of substitutions
Outline

- Simple type inference
 - Equality constraints
 - Unification
 - Strategy 1: Constraint-based typing
 - Strategy 2: On-the-fly typing: Algorithm W, almost
- Parametric polymorphism
- Hindley Milner type inference. Algorithm W

Add a New Attribute, Substitution Map

Grammar rule:

E ::=	x	T_E = Γ_E(x) S_E = []
E ::= c	T_E = int S_E = []	
E ::= λx.E1	T_E1 = Γ_E(x) S_E1 = S_E1	
E ::= E1 E2	Γ_E1 = Γ_E Γ_E2 = S_E1(Γ_E)	
S = Unify(S_E1(T_E1), T_E2 T_E1)		
T_E = S(t_E2) S_E = S S_E2 S_E1		

Type Inference, Strategy 2

- Strategy 1 collects all constraints, then solves them offline
- Strategy 2 solves constraints on the fly
 - Builds the substitution map incrementally
 - Key reason: infers types as parser parses program!

Example: \((\lambda f \ f \ 5) \ (\lambda x \ x)\)

Steps at 1. Finally:
1. \(\Gamma_1 = [[\text{int}\to\text{int}]\to\text{int}]\)
2. \(\Gamma_1 = [\text{int}\to\text{int}]\) returns \(\Gamma = [\text{int}\to\text{int}]\)
3. \(\text{Var} = x\)
4. \(\text{Var}\) is inferred/checked before the type of function body \(E_2\)

The Let Construct

- In dynamic semantics, \(\text{let } x = E_1 \text{ in } E_2\) is equivalent to \((\lambda x.E_2) E_1\)
- Typing rule
 \[
 \frac{
 \Gamma \vdash E_1 : \sigma \quad \Gamma ; x : \tau \vdash E_2 : \tau
 }{
 \Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : \tau
 }
 \]
- In static semantics \(\text{let } x = E_1 \text{ in } E_2\) is not equivalent to \((\lambda x.E_2) E_1\)
- In let, the type of “argument” \(E_1\) is inferred/checked before the type of function body \(E_2\)
- let construct enables Hindley Milner style polymorphism!
The Let Construct

Typing rule

\[\Gamma \vdash E_1 : \sigma \quad \Gamma \vdash x : \rho \]
\[\Gamma \vdash \text{let } x = E_1 \in E_2 : \tau \]

Attribute grammar rule

\[E ::= \lambda x. E \]
\[E ::= \text{let } x = E_1 \in E_2 \]
\[E ::= \text{letrec } \Gamma \]

Algorithm W, Almost There!

def \(W(E) \) = case \(E \) of
 c -> (\(c \), TypeOf\(c \))
 x -> if (\(x \) NOT in \(\text{Dom}(\bar{\Gamma}) \)) then fail
 else let \(T_x = \bar{\Gamma}(x) \);
 in (\(\bar{\Gamma}, T_x \))

\(\lambda x. E \) \(\rightarrow \) let \(\Gamma \backslash x = T \in \Gamma \) \(\rightarrow \)
\(E \in \Gamma \)
\(\text{letrec } \Gamma \vdash E_1 \in E_2 \)

letrec plus \(x = E_1 \) in \(E_2 \)

Example:

letrec plus \(x = E_1 \) in \(E_2 \)

Unify\((\text{plus}, \bar{\Gamma}(x)) = W(\text{plus}(x)) \)

Spring 19 CSCI 4450/6450, A. Milanova 39

The Letrec Construct

letrec \(x = E_1 \) in \(E_2 \)

Ax::= letrec \(x = E_1 \) in \(E_2 \)

Attribute grammar rule

\[\Gamma = \bar{\Gamma}(x) \]
\[\Gamma_1 = \bar{\Gamma}(x) \]
\[\Gamma_2 = \bar{\Gamma}(x) \]
\[\Gamma_3 = \bar{\Gamma}(x) \]
\[\Gamma_4 = \bar{\Gamma}(x) \]

Unify\((\text{plus}, \bar{\Gamma}(x)) = W(\text{plus}(x)) \)

Algorithm W, Almost There!

def \(W(E) \) = case \(E \) of
 c -> (\(c \), TypeOf\(c \))
 x -> if (\(x \) NOT in \(\text{Dom}(\bar{\Gamma}) \)) then fail
 else let \(T_x = \bar{\Gamma}(x) \);
 in (\(\bar{\Gamma}, T_x \))

\(\lambda x. E \) \(\rightarrow \) let \(\Gamma \backslash x = T \in \Gamma \) \(\rightarrow \)
\(E \in \Gamma \)
\(\text{letrec } \Gamma \vdash E_1 \in E_2 \)

letrec plus \(x = E_1 \) in \(E_2 \)

Example:

letrec plus \(x = E_1 \) in \(E_2 \)

Unify\((\text{plus}, \bar{\Gamma}(x)) = W(\text{plus}(x)) \)

Spring 19 CSCI 4450/6450, A. Milanova 40
W is Standard Recursive Descend

\[W(i, E) = \begin{cases}
\text{case } E \text{ of} & \\
\text{App } E_1 E_2 \to \text{ let} & \\
& s_1 = W(i, E_1) \\
& \ldots \\
& s_2 = W(i_2, E_2) \\
& \text{ in} \\
& s = g(i, s_1, i_2, s_2) \\
\end{cases} \]

Outline

- Simple type inference
- Equality constraints
- Unification
- Strategy 1: Constraint-based typing
- Strategy 2: On-the-fly typing: Algorithm W, almost
- Parametric polymorphism (next time)
- Hindley Milner type inference. Algorithm W