Announcements

- HW6 on Submitty
- Presentation guidelines up on Schedule page
 1. Select available paper/slot from list (first-come-first-serve)
 2. If available, I’ll assign and update, otherwise goto 1

Quiz 5

Outline

- Hindley Milner type inference
- Algorithm W
- Hindley Milner observations

Towards Hindley Milner

let f = \(\lambda x.x \) in
if (f true) then (f 1) else 1

Constraints
- \(t_f = t_f_1 \rightarrow t_1 \)
- \(t_f = \text{bool} \rightarrow t_2 \) // at call (f true)
- \(t_f = \text{int} \rightarrow t_3 \) // at call (f 1)

Doesn’t unify!

Towards Hindley Milner

- Extends simple type inference with let polymorphism
- let \(f = \lambda x.x \) // Infer polymorphic type for f: \(\forall T. T \rightarrow T \)
in if (f true) then (f 1) else 1

- At call (f true), \(t_f \) instantiates to \(u_1 \rightarrow u_1 \) and \(u_1 \rightarrow u_1 \) unifies with \(\text{bool} \rightarrow t_2 \)
- At call (f 1), \(t_f \) instantiates to \(u_2 \rightarrow u_2 \) and \(u_2 \rightarrow u_2 \) unifies with \(\text{int} \rightarrow u_3 \)

Importantly, \(u_1 \) and \(u_2 \) are fresh variables

Towards Hindley Milner

- Solution:
 - Generalize the type variable in type of f
 - \(t_f : t_f_1 \rightarrow t_1 \) becomes \(t_f : \forall T. T \rightarrow T \)
 - Different uses of generalized type variables are instantiated differently
 - E.g., (f true) instantiates \(t_f \) into \(\text{bool} \rightarrow \text{bool} \)
 - E.g., (f 1) instantiates \(t_f \) into \(\text{int} \rightarrow \text{int} \)
 - When can we generalize?
Expression Syntax
(to study Hindley Milner)
- Expressions:
 \[E ::= c \mid x \mid \lambda x.E_1 \mid E_1 E_2 \mid \text{let } x = E_1 \text{ in } E_2 \]
- There are no types in the syntax
- The type of each sub-expression is derived by the Hindley Milner type inference algorithm

Type Syntax
(to study Hindley Milner)
- Types (aka monotypes):
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t \]
 \(t \) is a type variable
- E.g., int, bool, int\rightarrow bool, t_1\rightarrow int, t_1t_2, etc.
- Type schemes (aka polymorphic types):
 \[\sigma ::= \tau \mid \forall \tau \sigma \]
 E.g., \(\forall \tau \), \(\forall \tau \)(\(\text{int}\rightarrow \tau_1\rightarrow \tau_2\rightarrow \tau_3\))
 \(\sigma \) is a "free" type variable as it isn't bound under \(\forall \)
- Note: all quantifiers appear in the beginning, \(\tau \) cannot contain schemes
- Type environment Gamma now

Generalization (aka Closing)
- We can generalize a type \(\tau \) as follows
 \[\text{Gen}(\Gamma, \tau) = \forall t_1 \ldots t_n \tau \]
 where \(\{t_1 \ldots t_n\} = \text{FV}(\tau) \setminus \text{FV}(\Gamma) \)
- Generalization introduces polymorphism!
- Quantify type variables that are free in \(\tau \) but are not free in the type environment \(\Gamma \)
 - E.g., \(\text{Gen}(\Gamma, t_1\rightarrow t_2) \) yields \(\forall t_1 \rightarrow t_2 \)
 - E.g., \(\text{Gen}(\Gamma, x:t) \) yields \(\forall t \)

Instantiations
- Type scheme \(\sigma = \forall t_1 \ldots t_n \tau \) can be instantiated into a type \(\tau' \) by substituting types for the bound variables (BV) under the universal quantifier \(\forall \)
 \(\tau' = S \tau \) \(S \) is a substitution s.t. \(\text{Domain}(S) \supseteq \text{BV}(\sigma) \)
 \(\tau' \) is said to be an instance of \(\sigma \) (\(\sigma \succ \tau' \))
 \(\tau' \) is said to be a generic instance when \(S \) maps some type variables to new type variables
- E.g., \(\sigma = \forall t_1, t_2 \rightarrow t_3 \)
 \[[t_2/t_1] t_1 \rightarrow t_2 = t_2 \rightarrow t_3 \] is a generic instance of \(\sigma \)
 \[[\text{int/t_1}] t_1 \rightarrow t_3 = \text{int} \rightarrow t_3 \] is a non-generic instance of \(\sigma \)

Generalization, Examples
- let \(f = \lambda x.x \) in if (f true) then (f 1) else 1
 - We'll infer type for \(\lambda x.x \) using simple type inference: \(t_1 \rightarrow t_1 \)
 - Then we'll generalize that type, \(\text{Gen}([], t_1 \rightarrow t_1) \):
 \(\forall t_1, t_1 \rightarrow t_1 \)
 - Then we'll pass the polymorphic type into if (f true) then (f 1) else 1 and instantiate for each \(f \) in if (f true) then (f 1) else 1
 - E.g., \([u_2/t_1] t_1 \rightarrow t_1 \) where \(u_2 \) is fresh type variable at (f 1)

Generalization, Examples
- \(\lambda x.x \) : \(\tau \). let \(g = f \) in \(g \ x \)
 - \(\text{Gen}([f; t_n; x]; t_1 \rightarrow t_1) \) yields?
 - Why can't we generalize \(t_1 \)?: \(\forall \text{Gen} \)
 - Suppose we can generalize to \(\forall t_n t_1 \)
 - Then \(\forall t_1, t_n = t_1 \) will instantiate at \(g \ x \) to some fresh \(u \)
 - Then \(u \) unifies with \(t_1 \rightarrow u' \) thus losing the important connection between \(t_1 \) and \(t_n \). \(t_1 \rightarrow t_n \rightarrow \ldots \)
 - Thus \((f t_n; \lambda x.x); \text{let } g=f\text{ in } g \ x \) \((y y+1)\) true will type-check (unsound!!!)
 - DO NOT generalize variables that are mentioned in type environment \(\Gamma \)!
Hindley Milner Typing Rules

\[\frac{\Gamma; \tau \vdash E_1 : \tau \quad \Gamma; \text{Gen}(\Gamma; \tau) \vdash E_2 : \tau}{\Gamma \vdash \text{let } x = E_2 \in E_1 : \tau} \]
(Left)

- Type of \(x \) as inferred for \(E_1 \) is \(\tau \). Type of \(x \) in \(E_2 \) is the generalized type scheme \(\sigma = \text{Gen}(\Gamma; \tau) \)

\[\frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma} \]
(var)

- \(x \) in \(E_2 \) of let: \(x \) is of type \(\tau \) if its type \(\sigma \) in the environment can be instantiated to \(\tau \)

(Note: remaining rules, c, App, Abs are as in \(F_\tau \))

Hindley Milner Type Inference, Rough Sketch

let \(x \) = \(E_1 \) in \(E_2 \)

1. Calculate type \(T_{E_1} \) for \(E_1 \) in \(\Gamma; x : \tau \)
2. Generalize free type variables in \(T_{E_1} \) to get the type scheme for \(T_{E_1} \) (be mindful of caveats!)
3. Extend environment with \(x : \text{Gen}(\Gamma; T_{E_1}) \) and start typing \(E_2 \)
4. Every time we encounter \(x \) in \(E_2 \), instantiate its type scheme using fresh type variables

E.g., \(id \)'s type scheme is \(\forall t_1 . t_2 \rightarrow t_3 \) so \(id \) is instantiated to \(u_k \rightarrow u_k \) at (id 1)

Strategy 2: Algorithm W

def \(W(\Gamma; E) = \text{case } E \) of

\[c \rightarrow ([\], \text{TypeOf}(c)) \]
\[x \rightarrow \text{if } (x \text{ NOT IN Domain}(\Gamma)) \text{ then fail } \]
\[\text{else let } T_x = \Gamma(x) \text{ in case } T_x \text{ of } \]
\[\forall t_1 \ldots t_k \rightarrow ([u_1 . \ldots . u_n . \tau] \tau) \]
\[\rightarrow ([\], \tau) \]
\[\lambda x . E_1 \rightarrow \text{let } (S_{E_1}, T_{E_1}) = W(\Gamma; (x : \tau), E_1) \]
\[\text{in } (S_{E_1}, S_{E_1}, T_{E_1}) \]

if ...
// continues on next slide!

Strategy 2 Example

let \(f = \lambda x . x \) in

if \((f \text{ true}) \) then \((f 1) \) else 1

1. let \(f = \lambda x . x \) in if \((f \text{ true}) \) then \((f 1) \) else 1

2. Abs

\[\Gamma = [t_1 . t_2 \rightarrow t_3] \]
\[T_1 = \text{int} \]
\[S_1 = [\] \]
\[T_2 = t_1 . t_2 \rightarrow t_3 \]
\[S_2 = [\] \]
\[T_3 = \text{int} \]
\[S_3 = [\] \]
\[\lambda x : t_2 . x \]
\[T_x = t_2 \rightarrow t_3 \]
\[S_x = [\] \]

No constraint, types 2. Abs immediately: \(T_1 = t_1 . t_2 \rightarrow t_3 \)
\(\Rightarrow \)
\(\gamma = \text{Gen}([t_1 . t_2 . t_3] = [\gamma] \)

\[\Gamma = [t_1 . t_2 . t_3] \]
\[T_1 = \text{int} \]
\[S_1 = [\] \]
\[T_2 = t_1 . t_2 \rightarrow t_3 \]
\[S_2 = [\] \]
\[T_3 = \text{int} \]
\[S_3 = [\] \]

4. App

\[f \]
\[T_f = \text{bool} \]
\[S_f = [\text{bool}, \text{int}, \text{int}, \text{int}] \]

5. App

\[f \]
\[T_f = \text{bool} \]
\[S_f = [\text{bool}, \text{int}, \text{int}, \text{int}] \]

From \(\text{Unify}(u_k, u_k, \text{bool}, t_3) \)
Example

\[\lambda x. \text{let } f = \lambda y. x \text{ in } (f \text{ true}, f \text{ 1}) \]

Hindley Milner Observations

- Do not generalize over type variables mentioned in type environment (they are used elsewhere)
- \textit{let} is the only way of defining polymorphic constructs
- Generalize the types of let-bound identifiers \textbf{only after} processing their definitions

Hindley Milner Observations

- Generates the \textbf{most general type (principal type)} for each term/subterm
- Type system is sound
- Complexity of Algorithm W
 - \textit{PSPACE-Hard}
 - Because of nested let blocks

Hindley Milner Limitations

- Quiz example:
 \[(\lambda x. (\lambda y. (x \text{ 1}))) (\lambda z. z) \]
 vs.
 \[\text{let } x = (\lambda z. z) \text{ in } x (\lambda y. (x \text{ 1})) \]

Hindley Milner Limitations

- Only let-bound constructs can be polymorphic and instantiated differently
 \texttt{let twice f x = f (f x) in twice twice succ 4 // let-bound polymorphism}

- \texttt{let twice f x = f (f x)}
 - foo g = g g succ 4 // lambda-bound
 - in foo twice

The End
\[S = \lambda x. \lambda y. \lambda z. \ x \ z \ (y \ z) \]