Announcements
- HW6 on Submitt
- Presentation guidelines up on Schedule page
 - 1. Select available paper/slot from list (first-come-first-serve)
 - 2. If available, I'll assign and update, otherwise goto 1
- Sorry, I’m a bit behind with paper selection
- No class on Monday

Outline
- Polymorphism
- Hindley Milner type inference. Algorithm W
- Monads

Motivating Example
- A sound type system rejects some programs that don’t get stuck
- Canonical example:

 \[
 \text{let } f = \lambda x . x \\
 \text{in} \\
 \text{if } (f \text{ true}) \text{ then } (f \text{ 1}) \text{ else 1}
 \]

 - Term does not get “stuck”
 - Term is NOT TYPABLE in System F₁. But it is typable in Hindley Milner!

Different Styles of (Parametric) Polymorphism
- Impredicative polymorphism (System F)
 \[
 \begin{align*}
 \tau &::= b \mid \tau_1 \to \tau_2 \mid T \mid \forall \tau.\tau \\
 E &::= x \mid \lambda x : \tau . E \mid E_1 E_2 \mid \Lambda T . E \mid E [\tau]
 \end{align*}
 \]

 - Can instantiate with polimorphic type!

 - Very powerful
 - Can type self application \(\lambda x . x \)
 - Still cannot type \(\text{fix} \)

 - Type inference is undecidable!

- Predicative polymorphism
 \[
 \begin{align*}
 \sigma &::= \tau \mid \forall \tau.\sigma \mid \sigma_1 \to \sigma_2 \\
 E &::= x \mid \lambda x : \sigma . E \mid E_1 E_2 \mid \Lambda T . E \mid E [\tau]
 \end{align*}
 \]

 - Still very powerful
 - Restricts System F by disallowing instantiation of
 with a polymorphic type: \(E [\tau] \) but not \(E [\sigma] \)

 - Type inference is still undecidable!
Different Styles of Polymorphism

- Prenex polymorphism
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \]
 \[\sigma ::= \tau \mid \forall \tau. \sigma \]
 \[E ::= x \mid \lambda \cdot \tau. E \mid E_1 E_2 \mid \Lambda T. E \mid E[\tau] \]

 - Now type inference is decidable
 - But polymorphism is limited
 - We cannot pass polymorphic functions
 - E.g., we cannot pass a sort function as argument

Towards Hindley Milner

Solution:

- Generalize the type variable in type of \(f \)
 \[t_f : t_1 \rightarrow t_1 \] becomes \[t_f : \forall \tau. T \rightarrow T \]

 - Different uses of generalized type variables are instantiated differently
 - E.g., (\(f \ true \)) instantiates \(t_f \) into \(bool \rightarrow bool \)
 - E.g., (\(f \ 1 \)) instantiates \(t_f \) into \(int \rightarrow int \)

 - When can we generalize?

Expression Syntax (to study Hindley Milner)

- Expressions:
 \[E ::= c \mid x \mid \lambda x. E_1 \mid E_1 E_2 \mid \text{let} x = E_1 \text{ in } E_2 \]

 - There are no types in the syntax
 - The type of each sub-expression is derived by the Hindley Milner type inference algorithm
Type Syntax
(to study Hindley Milner)

- Types (aka monotypes):
 - \(\tau ::= b \mid \tau \rightarrow \tau \mid \tau \) is a type variable
 - E.g., \(\text{int, bool, int}\rightarrow\text{bool, int}\rightarrow\text{int, etc.} \)

- Type schemes (aka polymorphic types):
 - \(\sigma ::= \tau \mid \forall \tau. \sigma \)
 - E.g., \(\forall \tau. \tau\rightarrow\tau \rightarrow\tau \rightarrow\tau \)
 - Note: all quantifiers appear in the beginning, \(\tau \) cannot contain schemes

- Type environment now

Gamma ::= Identifiers \(\rightarrow \) Type schemes

Instantiations

- Type scheme \(\sigma = \forall \tau_1...\tau_n.\tau \) can be instantiated into a type \(\tau' \) by substituting types for the bound variables (BV) under the universal quantifier \(\forall \)
 - \(\tau' = S \tau \)
 - \(S \) is a substitution s.t. Domain(\(S \)) \(\supseteq \) BV(\(\sigma \))
 - \(\tau' \) is said to be an instance of \(\sigma (\sigma > \tau') \)
 - \(\tau' \) is said to be a generic instance when \(S \) maps some type variables to new type variables
 - E.g., \(\sigma = \forall \tau_1.\tau_1\rightarrow\tau_2 \)
 - \([\tau_1/\tau_1] : t_1\rightarrow t_2 = t_1\rightarrow t_2 \) is a generic instance of \(\sigma \)
 - \([\text{int/}\tau_1] : t_1\rightarrow t_2 = \text{int}\rightarrow t_2 \) is a non-generic instance of \(\sigma \)

Generalization (aka Closing)

- We can generalize a type \(\tau \) as follows
 - \(\text{Gen(} \Gamma, \tau \text{)} = \forall \tau_1...\tau_n.\tau \)
 - where \((\tau_1...\tau_n) = \text{FV}(\tau) \rightarrow \text{FV}(\Gamma) \)
 - Generalization introduces polymorphism!
 - Quantify type variables that are free in \(\tau \) but are not free in the type environment \(\Gamma \)
 - E.g., \(\text{Gen}([],\tau_1\rightarrow\tau_2) \) yields \(\forall \tau_1.\tau_1\rightarrow\tau_2 \)
 - E.g., \(\text{Gen}([x:\tau_1],[x:\tau_2]) \) yields \(\forall \tau_1.\forall \tau_2.\tau_1\rightarrow\tau_2 \)

Generalization, Examples

- let \(f = \lambda x. x \) in if \((f \text{ true})\) then \((f \text{ 1})\) else \(1\)
 - We’ll infer type for \(\lambda x. x \) using simple type inference: \(\tau_1 \rightarrow \tau_1 \)
 - Then we’ll generalize that type, \(\text{Gen}(\Gamma,\tau_1\rightarrow\tau_1) \):
 - \(\forall \tau_1.\tau_1\rightarrow\tau_1 \)
 - Then we’ll pass the polymorphic type into \(\text{let} \: x = \text{E} \: \text{in} \: \text{E} \) and instantiate for each \(f \) in \(\text{if} (f \text{ true}) \) then \((f \text{ 1})\) else \(1\)
 - E.g., \([u_2/\tau_1] (\tau_1\rightarrow\tau_1) \) where \(u_2 \) is fresh type variable at \((f 1)\)

Generalization, Examples

- \(\text{let} \: f = \lambda t.g \: \text{let} \: g = f \: \text{in} \: g \: x \)
 - \(\text{Gen}(\Gamma,\text{x}:\tau,\text{t}:\tau) \)
 - Why can’t we generalize \(\tau_1 \)?
 - Suppose we can generalize to \(\forall \tau_1 \)
 - Then \(\forall \tau_1 = \tau_1 \) will instantiate at \(\text{g} \: \text{x} \) to some fresh \(u \)
 - Then \(u \) becomes \(\tau_1 = \tau_1 \) thus losing the important connection between \(\tau_1 \) and \(t_1 \)
 - Thus \(\text{let} \: f = \lambda t.g \: \text{let} \: g = f \: \text{in} \: g \: x \) (\(\text{y.y+1} \)) true will type-check (unsound!!!)
 - DO NOT generalize variables that are mentioned in type environment \(\Gamma \)!
Hindley Milner Type Inference, Rough Sketch

let x = E₂ in E₂
1. Calculate type \(T_{E₂} \) for \(E₂ \) in \(\Gamma ; x: t_x \) using simple type inference
2. Generalize free type variables in \(T_{E₂} \) to get the type scheme for \(T_{E₂} \) (be mindful of caveat!)
3. Extend environment with \(x: \text{Gen}(f, T_{E₂}) \) and start typing \(E₂ \)
4. Every time we encounter \(x \) in \(E₂ \), instantiate its type scheme using fresh type variables

E.g., id’s type scheme is \(\forall t_1, t_2 \rightarrow t_1 \) so id is instantiated to \(u_k \rightarrow u_k \) at (id 1)

Hindley Milner Type Inference

- Two ways:
 - Extend Strategy 1 (constraint-based typing)
 - Extend Strategy 2 (Algorithm W)

Example

\(\lambda x. \text{let } f = \lambda y. x \text{ in } (f \text{ true, f 1}) \)

Strategy 1

let \(f = \lambda x. \text{ in if } (f \text{ true}) \text{ else } (f 1) \) end 1

1. let \(\Gamma = [f: t_f] \)
\(t_f = t_f \) now becomes \(t_f \rightarrow t_f \)
Next, generalize \(t_f \) \(\forall t_1, t_2 \rightarrow t_1 \)
\(t_1 = t_2 \) \(\forall t_1, t_2 \rightarrow t_1 \)

\(\lambda x : \Gamma \)
\(t_f \)
\(x \)
\(f \)
\(t_1 \)
\(t_2 \)
\(f \)
true
1

\(\text{Solve } (f) \) constraint \(t_f \rightarrow t_f \rightarrow t_f \)
\(t_1 = t_2 \) now becomes \(t_f \rightarrow t_f \)
Next, generalize \(t_f \) \(\forall t_1, t_2 \rightarrow t_1 \)
\(t_1 = t_2 \) \(\forall t_1, t_2 \rightarrow t_1 \)

\(\lambda x : \Gamma \)
\(t_f \)
\(x \)
\(f \)
true
1

Strategy 2: Algorithm W

\(\text{def } W(\Gamma, E) = \text{ case } E \text{ of } \)
\(\text{if continues from previous slide} \)
\(c \rightarrow (\text{SortOf}(c)) \)
\(x \rightarrow \text{if } (x \text{ NOT in Domain}(\Gamma)) \text{ then fail} \)
else let \(T_x = \Gamma(x) \)
in case \(T_x \) of
\(\forall \Gamma \rightarrow ([], [u_1, u_2, \ldots u_n] \Gamma) \)
\(\rightarrow ([], T_x, \Gamma) \)
\(\lambda x . E_x \rightarrow \text{let } T_{E_x} = \text{TypeOf}(x, T_x) E_x \)
in \((S_{E_x}, T_x) \rightarrow T_{E_x} \)

\(\text{if } \ldots \)
\(\text{if continues on next slide!} \)

Strategy 2: Algorithm W

\(\text{def } W(\Gamma, E) = \text{ case } E \text{ of } \)
\(\text{if continues from previous slide} \)
\(c \rightarrow (\text{SortOf}(c)) \)
\(x \rightarrow \text{if } (x \text{ NOT in Domain}(\Gamma)) \text{ then fail} \)
else let \(T_x = \Gamma(x) \)
in case \(T_x \) of
\(\forall \Gamma \rightarrow ([], [u_1, u_2, \ldots u_n] \Gamma) \)
\(\rightarrow ([], T_x, \Gamma) \)
\(\lambda x . E_x \rightarrow \text{let } T_{E_x} = \text{TypeOf}(x, T_x) E_x \)
in \((S_{E_x}, T_x) \rightarrow T_{E_x} \)

\(\text{if } \ldots \)
\(\text{if continues on next slide!} \)
Strategy 2 Example

Let $f = \lambda x. x$ in if (f true) then (f 1) else 1

1. let $f = \lambda x. x$ in if (f true) then (f 1) else 1

2. Abs

3. if-then-else

4. App

5. App

No constraint, types Abs immediately: $T_f = \langle t \rangle \rightarrow \langle t \rangle$, $S_f = \emptyset$

Hindley Milner Observations

- Do not generalize over type variables mentioned in type environment (they are used elsewhere)
- `let` is the only way of defining polymorphic constructs
- Generalize the types of `let`-bound identifiers only after processing their definitions

Hindley Milner Limitations

- Quiz example:

$(\lambda x. x (\lambda y. y) (x \ 1)) (\lambda z. z)$

vs.

let $x = (\lambda z. z)$ in $x (\lambda y. y) (x \ 1)$

Example

$\lambda x. let f = \lambda y. x in (f true, f 1)$

Spring 19 CSCI 4450/6450, A Milanova
Monads

A way to cleanly compose computations
- E.g., \(f \) may return a value of type \(a \) or Nothing
- Composing computations becomes tedious:
 - case \((f \, s) \) of
 - Nothing \(\rightarrow \) Nothing
 - Just \(m \) \(\rightarrow \) case (\(f \, m \)) ...

In Haskell, monads cleanly encapsulate IO and other imperative features

An Example: Cloned Sheep

type Sheep = ...
father :: Sheep \(\rightarrow \) Maybe Sheep
father = ...
mother :: Sheep \(\rightarrow \) Maybe Sheep
mother = ...
(Note: a sheep may have both parents, or just one)
maternalGrandfather :: Sheep \(\rightarrow \) Maybe Sheep
maternalGrandfather \(s \) = case (mother \(s \)) of
 - Nothing \(\rightarrow \) Nothing
 - Just \(m \) \(\rightarrow \) father \(m \)

An Example

mothersPaternalGrandfather :: Sheep \(\rightarrow \) Maybe Sheep
mothersPaternalGrandfather \(s \) = case (mother \(s \)) of
 - Nothing \(\rightarrow \) Nothing
 - Just \(m \) \(\rightarrow \) case (father \(m \)) of
 - Nothing \(\rightarrow \) Nothing
 - Just \(gf \) \(\rightarrow \) father \(gf \)

- Tedious, unreadable, difficult to maintain
- Monads help!

The Monad Type Class

- Haskell’s Monad class requires 2 operations, \(\gg\gg \) (bind) and \texttt{return}

\begin{verbatim}
class Monad m where
 // (the bind operation) takes a monad
 // it into a monad \(m \, b \), and returns \(m \, b \)
 (\(\gg\gg \)) :: m a \(\rightarrow \) (a \(\rightarrow \) m b) \(\rightarrow \) m b
 // return encapsulates a value into the monad
 return :: a \(\rightarrow \) m a
\end{verbatim}
The List Monad

- The List type constructor is a monad
 - `lis >>= f = concat (map f lis)

 - `return x = [x]

 Note: `concat :: [[a]] -> [a]

 e.g., `concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]

- Use any f s.t. `f :: a -> [b]. f may return a list of 0,1,2,... elements of type b, e.g.,
 - `f x = [x+1]
 - `[1,2,3] >>= f // yields ?

do Notation (Syntactic Sugar)

- `f x = x+1

 - `g x = x*5

 - `do { x <- [1,2,3]; y <- (return . f) x; (return . g) y }

 is syntactic sugar for

 - `[1,2,3] >>= (return . f) >>= (return . g)

List Comprehensions

- `[2*i | i <- [1..]] yields ?

 - `[(i,j) | i <- [1,2], j <- [1..4]] yields ?

- `[(i,j) | i <- [1,2], j <- [1..4]] is syntactic sugar for

 - `do { i <- [1,2]; j <- [1..4]; return (i,j) }

 which in turn is syntactic sugar for?

 - `[1,2] >>= (lx -> [1..4] >>= (y -> return (x,y)))

Monad Laws

1. `(return x) >>= f <<= f x

2. `m >>= return <<= m

3. `m >>= f >>= g <<= m >>= (lx -> f x >>= g)

- Adherence to monad laws is a responsibility of the programmer who wrote the Monad instance

- Ensure correctness of do notation!
So What is the Point of the Monad…

- Conveniently chains computation
- Encapsulates “mutable” state. E.g., IO:
 - `openFile :: FilePath -> IOMode -> Handle`
 - `hClose :: Handle -> () -- void`
 - `hIsEOF :: Handle -> Bool`
 - `hGetChar :: Handle -> Char`

These operations break “referentially transparency”. For example, `hGetChar` returns different value when called twice in a row.

The IO Monad

- IO a: Computation that does some IO producing a value of type a. E.g., (IO Char), (IO String)
- Unlike other monads (e.g., Maybe) there is no way to make IO a into an a
- The monad encapsulates “mutable” IO state
- … and, there is no “rep exposure” of this state!
- Access to state is only through well-defined monadic operations (e.g., `hGetChar`)

The IO Monad

- `getFileContents :: String -> IO String`
 - `getFileContents filename = do
 h <- openFile filename
 putStrLn filename
 reversed_cs <- readFileContents h []
 hClose h
 return (reverse reversed_cs)`
- `readFileContents :: Handle -> String -> IO String`
 - `readFileContents h rcs = do
 b <- hIsEOF
 if (b) then return rcs`
 - `else do { c <- hGetChar h; readFileContents h (c:rcs) }`

Other useful functions

- // reads entire file into one string:
 - `readFile :: FilePath -> IO String`
- // writes entire string into a file:
 - `writeFile :: FilePath -> String -> IO ()`
- E.g. `main = do`
 - `[f,g] <- getArgs`
 - `s <- readFile f`
 - `writeFile g s`