Announcements

- HW6 due today, HW7 coming up
- Presentation guidelines and papers up on Schedule page
 1. Select available paper/slot from list (first-come-first-serve)
 2. If available, I’ll assign and update, otherwise goto 1

Outline

- SAT/SMT solvers
- Axiomatic semantics
 - IMP
 - Semantics
 - Verification condition generation
 - Similar to what we called “rules for backwards reasoning” in Principles
- SMT-LIB

Logical Reasoning

- A lot of recent PLSE research uses some form of automated logical reasoning
 - Non-standard type inference (SAT, MaxSAT)
 - Software verification (e.g., Dafny using SMT)
 - Symbolic execution (SMT)
 - Program synthesis

Reading

- If you are interested in the field
 - “The Calculus of Computation: Decision Procedures with Application to Verification” by Aaron Bradley and Zohar Manna, Spring 2007
SAT Solvers

- Decide whether a propositional logic formula is satisfiable (sat) or unsatisfiable (unsat)
 - E.g., \((p \lor q) \rightarrow lp\) is sat or unsat?
 - E.g., \((p \rightarrow q) \rightarrow (p \land q)\) is sat or unsat?

- A lot of work on SAT solvers
 - Boolean satisfiability is a fundamental NP-complete problem
 - A good SAT solver can "solve" many problems

Variations of SAT

- MaxSAT: Given a formula in Conjunctive Normal Form (CNF), find an assignment that maximizes number of satisfied clauses
 - E.g., \((p \lor q) \land lp \land lq\)
- Partial MaxSAT
 - Hard clauses: clauses that must be satisfied
 - Soft clauses: clauses that may remain unsatisfied
 - Partial MaxSAT: find an assignment that satisfies all hard clauses and maximizes number of satisfied soft clauses

Variations of SAT

- Weighted Partial MaxSAT
 - Hard clauses: clauses that must be satisfied
 - Soft clauses: clauses that may remain unsatisfied
 - Weights: soft clauses have weights
 - Weighted Partial MaxSAT: find an assignment that satisfies all hard clauses and maximizes the weight of satisfied soft clauses
 - E.g., suppose \((p \lor q)\) is a hard clause, \(lp\) is a soft clause with weight 2, and \(lq\) is soft with weight 1
 - What assignment maximizes \((p \lor q)\) \& \((lp \land lq)\)

SMT Solvers

- Satisfiability Modulo Theories extends assertions/satisfiability beyond propositional logic and even beyond first-order logic
- Extends with background theories
 - Theory of equality: \(x \neq y \land f(x) = f(y)\)
 - Theory of arithmetic: \(x < y \land (x < y + 0)\)
 - Theory of select/store (arrays): Hoare triple \(\{b.f = 5\} \ a.f = 5 \{a.f + b.f = 10\}\) leads to formula \(select(f1,b) = 5 \land store(f1,a,5) \Rightarrow select(f2,b) + select(f2,a) = 10\)

SMT Solvers

- Examples
 - \((z>5 \land x>0) \lor (z<5 \land x\leq0)\)
 - \((x>5 \land x+5>5) \lor (x\leq5 \land (x=0 \Rightarrow x+5+x=5))\)

- Lots of SMT solvers, e.g., Z3
 - My goal: become somewhat competent users of SMT and/or MaxSAT solvers; be able to encode problems
 - Axiomatic Semantics --- key motivation for work on SMT!

Axiomatic Semantics

- Consider program fragment
 - \(t = x - y;\)
 - while \((t > 0)\) {
 - \(x = x - 1;\)
 - \(y = y + 1;\)
 - \(t = t - 1;\)
 }
- We are interested in proving these claims:
 - When \(x > y\), program terminates
 - When \(x > y\), values of \(x\) and \(y\) are swapped
Axiomatic Semantics

- Not easy to prove using theories we studied so far
 - Dataflow
 - Abstract interpretation
 - Types
- E.g., neither gives a convenient way of encoding the assumption \(x > y \) into reasoning and semantics

You Already Know This 😊

- Hoare triples \(\{ P \} \ \text{stmt} \ \{ Q \} \)
 - \(P \) is the precondition, \(Q \) is the postcondition
 - Triple is a logical formula: if \(P \) holds before \(\text{stmt} \) execution and \(\text{stmt} \) terminates, then \(Q \) holds afterwards
 - E.g., \(\{ x > -1/2 \} x = x + 3 \ \{ x > 5/2 \} \)
- \(\{ P \} \ \text{stmt} \ \{ Q \} \): partial correctness assertion
- \(\{ P \} \ \text{stmt} \ \{ Q \} \): total correctness assertion
- We will concern with partial correctness only

Operational Semantics

\[
\begin{align*}
(e, \sigma) & \rightarrow n & (c_1, \sigma) & \rightarrow \sigma' & (c_2, \sigma') & \rightarrow \sigma'' \\
(x := e, \sigma) & \rightarrow \sigma[x := e] & (c_1; c_2, \sigma) & \rightarrow \sigma'' \\
(e, \sigma) & \rightarrow \text{True} & (c_1, \sigma) & \rightarrow \sigma' & (e, \sigma) & \rightarrow \text{False} & (c_2, \sigma) & \rightarrow \sigma'' \\
\text{(if \(e \)) then \(c_1 \) else \(c_2 \), \sigma) & \rightarrow \sigma' & \text{(if \(e \)) then \(c_1 \) else \(c_2, \sigma \) \rightarrow \sigma''} \\
(e, \sigma) & \rightarrow \text{True} & (c, \sigma) & \rightarrow \sigma' & (e, \sigma) & \rightarrow \text{False} & (c, \sigma') & \rightarrow \sigma'' \\
\text{(while \(e \)) do \(c, \sigma \) \rightarrow \sigma''} \\
(e, \sigma) & \rightarrow \text{False} & (\text{while \(e \)) do \(c, \sigma \) \rightarrow \sigma''}
\end{align*}
\]
Meaning of Assertions

\(\{ P \} \ c \ \{ Q \} \)

- Let \(P \) be a logical assertion
 - E.g. \(x < y \) or \(x + y = 5 \)
 - \(P \) “references” mappings in state \(\sigma \)
- \(\sigma \ |- \ P \) (read: \(\sigma \) entails \(P \)) means that assertion \(P \) holds on state \(\sigma \)
 - E.g., \(\sigma = [x\rightarrow5,y\rightarrow10,z\rightarrow0] \ |- \ x < y \)
 - Does \(\sigma' = [x\rightarrow10,y\rightarrow10,z\rightarrow0] \ |- \ x < y \) ?
- Partial correctness \(\{ P \} \ c \ \{ Q \} \) therefore is
 - \(\forall \sigma,\forall \sigma' \). \(\sigma |- P \wedge (c,\sigma) \rightarrow \sigma' \) \(\Rightarrow \) \(\sigma' |- Q \)

Soundness

- For each Hoare triple \(\{ P \} \ c \ \{ Q \} \) deduced by the static semantics
 - \(\forall \sigma,\forall \sigma' \). \(\sigma |- P \wedge (c,\sigma) \rightarrow \sigma' \) \(\Rightarrow \) \(\sigma' |- Q \)
- Notice how in each one of our theories, AI, types, AS we have
 - Dynamic semantics
 - Static semantics
 - Soundness (connecting the two)

Static Semantics

\[
\begin{align*}
\{ P[e/x] \} x:=e \{ P \} \\
\{ \{ P \} c \{ Q \} \} c \{ R \} \\
\{ P \wedge e \} c \{ Q \} \\
\{ P \wedge \neg e \} c \{ Q \} \\
\{ P \} \text{ if (e) then } c \{ Q \} \\
\{ P \} \text{ while (e) do } c \{ Q \} \\
\{ P \wedge e \} c \{ P \} \\
\{ P \wedge \neg e \} c \{ Q \} \\
\{ P \} \text{ } c \{ Q \} \\
\{ P \} \text{ if (e) then } c \{ Q \} \\
\{ P \} \wedge e \text{ do } c \{ P \} \wedge !e \\
\{ \{ P \} \} c \{ Q \} \\
\end{align*}
\]

Example

\[
\begin{align*}
\{ x>y \text{ and } x=x_0 \text{ and } y=y_0 \} \\
\text{while } (t > 0) \ { } \{ x \text{ = } x - 1; \\
y \text{ = } y + 1; \\
t \text{ = } t - 1; \\
\} \\
\{ x = y_0 + t \text{ and } y = x_0 + t \} \!
\end{align*}
\]
Example

\(\{ x>y \text{ and } x=x_0 \text{ and } y=y_0 \} \)
\(t = x - y; \)
while (\(t > 0 \)) {
\(\{ x=y_0+t-1 \text{ and } y=x_0-t+1 \text{ and } t-1 \geq 0 \} \)
\(s = \{ x=y_0+t \text{ and } y=x_0-t \text{ and } t-1 \geq 0 \} \)
\(x = x - 1; \)
\(\{ x=y_0+t-1 \text{ and } y=x_0-t+1 \text{ and } t-1 \geq 0 \} \)
\(y = y + 1; \)
\(\{ x=y_0+t-1 \text{ and } y=x_0-t+1 \text{ and } t-1 \geq 0 \} \)
\(t = t - 1; \)
\(\{ x=y_0+t \text{ and } y=x_0-t \text{ and } t \geq 0 \} \)
}\]
\(\{ x=y_0+t \text{ and } y=x_0-t \text{ and } t \geq 0 \text{ and } !(t>0) \} \Rightarrow \{ x=y_0 \text{ and } y=x_0 \} \)

Example

\(P \Rightarrow P' \)
\(h \{ P' \} \iling \{ Q' \} \)
\(Q' \Rightarrow Q \)
\(h \{ P \} \curring \{ Q \} \)
\(h \{ P \} \while (e) \dow h \{ P \wedge \neg e \} \{}
\(\{ x>y \text{ and } x=x_0 \text{ and } y=y_0 \} \Rightarrow \{ x=y_0+x-y \text{ and } y=x0-x+y \text{ and } x-y \geq 0 \} \)
\(t = x - y; \)
while (\(t > 0 \)) {
\(\{ x=y0+t-1 \text{ and } y=x0-t+1 \text{ and } t>0 \} \Rightarrow \{ x=y0+t \text{ and } y=x0-t \text{ and } t \geq 0 \} \)
\(x = x - 1; \)
\(\{ x=y0+t-1 \text{ and } y=x0-t+1 \text{ and } t \geq 0 \} \)
\(y = y + 1; \)
\(\{ x=y0+t-1 \text{ and } y=x0-t+1 \text{ and } t \geq 0 \} \)
\(t = t - 1; \)
\(\{ x=y0+t \text{ and } y=x0-t \text{ and } t \geq 0 \} \)
}\]
\(\{ x=y0+t \text{ and } y=x0-t \text{ and } t \geq 0 \text{ and } !(t>0) \} \Rightarrow \{ x=y0 \text{ and } y=x0 \} \)

Outline

- SAT/SMT solvers
- Axiomatic semantics
 - IMP
 - Semantics
 - Verification condition generation
 - Similar to what we called “rules for backwards reasoning” in Principles
- SMT-LIB

Weakest Precondition

\(wp(x:=e,Q) = Q[e/x] \)
\(wp(c_1;c_2,Q) = wp(c_1,wp(c_2,Q)) \)
\(wp(if (e) \then c_1 \else c_2, Q) = \)
\(e \land wp(c_1,Q) \lor !e \land wp(c_2,Q) \)
\(wp(while (e) \do c, Q) = \)
\(W = e \Rightarrow wp(c,W) \land !e \Rightarrow Q \)
Verification Condition

Instead of weakest precondition we compute verification condition (vc). Stronger

\[
vc(\text{while } (e) \text{ do } c, Q) = \operatorname{Inv} \land \operatorname{Inv} \Rightarrow (e \Rightarrow vc(c,\operatorname{Inv}) \land \neg e \Rightarrow Q)
\]
or

\[
vc(\text{while } (e) \text{ do } c, Q) = \operatorname{Inv} \land \text{// Must hold before loop!}
\]

\[(\operatorname{Inv} \land e) \Rightarrow vc(c,\operatorname{Inv}) \text{// Must hold locally for loop}
\]

\[(\operatorname{Inv} \land \neg e) \Rightarrow Q
\]

Example

\[
i = 5;
while (i > 0) {
v(while (i>0) \{ i = i-1; \};, (i=0))
\}
\]

\[
vc = \{ i \geq 0 \}
\]

\[
i = i - 1;
\]

\[
\text{check-sat}
\]

Another Example

\[
\{ x \geq 0 \}
\]

\[
i = x;
\]

\[
z = 0;
while (i != 0) {
\]

\[
z = z+1;
\]

\[
i = i-1;
\]

\[
}\{ x = z \}
\]

SMT-LIB

- SMT-LIB is a language for specifying input to SMT solvers (e.g., Z3)

\[
(\text{declare-const } x \text{ Int}) \quad \text{declare an integer constant } x
\]

\[
(\text{assert } (> x 0)) \quad \text{add } x>0 \text{ to known facts}
\]

\[
(\text{check-sat}) \quad \text{checks if there exist an assignment}
\]

\[
(\text{get-model}) \quad \text{that makes all known facts true; returns}
\]

\[
\text{print this assignment}
\]

\[
\text{https://rise4fun.com/z3/tutorial}
\]

Your homework is to write a Tiny Dafny

- Given a program \{ P \} c { Q } generate verification conditions in SMT-LIB
- Verify conditions with Z3

Yet another programming language, OCaml
Suppose we need to verify \(\{ P \} c \{ Q \} \).

Generate \(\text{wp}(c, Q) \).

Program verifies when \(P \Rightarrow \text{wp}(c, Q) \) is valid.

- A logical formula is valid when true for all inputs.

Encoding
- Duality of satisfiability and validity:
 - \(F \) is valid iff \(\neg F \) is unsatisfiable
- Ask: is \(\{ P \Rightarrow \text{wp}(c, Q) \} \) satisfiable
- If (unsat) program is verified
- If (sat) get model

Example

Requires: \(x \equiv 1 \lor x \equiv -2 \)

Ensures \(y \equiv 0 \)

\[
\begin{align*}
y &:= x + 4; \\
\text{if} &\quad (x > 0) \\
&\quad y := x \times x - 1; \\
\text{else} &\quad y := y + x;
\end{align*}
\]

SMT-LIB code:

```
(declare-const x Int)
(assert (and (or (= x 1) (= x -2))
         (not (or (and (<= x 0) (= (+ (+ x 4) x) 0))
                 (and (> x 0) (= (- (* x x) 1) 0))))))
(check-sat)
(get-model)
```

Another Example

Is this formula valid?

\((x > 0 \land x + 5 > 5) \lor (x \leq 0 \land (x = 0 \Rightarrow x + x + 5 = 5)) \)

SMT-LIB code:

```
(declare-const x Int)
(assert (not (and (> x 0) (> (+ x 5) 5)))
(assert (not (and (<= x 0) (or (not (= x 0)) (= (+ (+ x x) 5) 5))))
(check-sat)
```