Simply Typed Lambda Calculus, cont. Simple Type Inference
Announcements

- HW5?
- HW6 is posted
Evaluation of Recursive Function, Revisit

\[Y = \lambda f. (\lambda x. f (x \times)) (\lambda x. f (x \times)) \]

\[M = \lambda f. \lambda x. \lambda y. \text{if} \ (\text{iszero } x) \ \text{then} \ (f (x-1) (y+1)) \]

\[\text{plus} = Y M \]

\[\text{plus } 2 \ 3 = (Y M) \ 2 \ 3 \]

\[(\lambda x. M (x \times)) (\lambda x. M (x \times)) \]

\[M \ 2 \ 3 \rightarrow \]

\[M ((\lambda x. M (x \times)) (\lambda x. M (x \times))) \]

\[\text{if} (\text{iszero } 2) \ 3 \ ((Y M) (2-1) (3+1)) \]

\[\text{if} \ \text{false} \ 3 \ ((Y M) (2-1) (3+1)) \]

\[(Y M) (2-1) (3+1) \quad \rightarrow \quad \text{Succ } 5 \ 0 \]
Evaluation of Recursive Function, Revisit

\[\text{interpret} (\text{plus}) = \lambda x. \lambda y. \text{if} (\text{iszero} \ x) y \ (\text{plus} \ (x-1) \ (y+1)) \]

\[\frac{E_1 E_2}{\text{WHNF}} \]

\((\lambda x. \lambda y. \ \text{if} (\text{iszero} \ x) y \ (\text{plus} \ (x-1) \ (y+1))) \ 2 \ E_2 \rightarrow \)

\((\lambda y. \ \text{if} (\text{iszero} \ 2) y \ (\text{plus} \ (2-1) \ (y+1))) \ 3 \rightarrow \)

\(\text{if} (\text{iszero} \ 2) \ 3 \ (\text{plus} \ (2-1) \ (3+1)) \rightarrow \)

\((\text{false} \ 3 \ (\text{plus} \ (-) \ -)) \rightarrow \)

\(\text{plus} \ (2-1) \ (3+1) \rightarrow 5 \)
The simply typed lambda calculus
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Stuck states
 - Type safety = progress + preservation

Introduction to simple type inference
Putting It All Together, Formally

- Simply typed lambda calculus (System F_1)
 - Syntax
 - The type system: type expressions, environment, and type judgments
- The dynamic semantics
 - Stuck states
- Progress and preservation theorem
Type Expressions

- **Introducing type expressions**
 \[\tau ::= b \mid \tau \to \tau \]

 A type is a basic type \(b \) (we will only consider \(\text{int} \), for simplicity), or a function type

- **Examples**
 \[
 \text{int} \\
 \text{int} \to (\text{int} \to \text{int}) \quad // \quad \text{is right-associative}, \text{ thus can write just } \text{int} \to \text{int}
 \]

- **Syntax of simply typed lambda calculus:**
 \[
 E ::= x \mid (\lambda x : \tau. \ E_1) \mid (\ E_1 \ E_2) \mid c
 \]
A term in the simply typed lambda calculus is
- Type correct i.e., well-typed, or
- Type incorrect

The rules that judge type correctness are given in the form of type judgments in an environment

Environment $\Gamma \vdash E : \tau$ (\(\vdash\) is the turnstile)

Read: environment Γ entails that E has type τ

Type judgment

$\Gamma \vdash E_1 : \sigma \rightarrow \tau$ \quad \Gamma \vdash E_2 : \sigma$

$\Gamma \vdash (E_1 E_2) : \tau$
Semantics

- **(Variable)**: Looks up the type of x in environment Γ.
- **(Application)**: $\Gamma \vdash (E_1 E_2) : \tau$
- **(Abstraction)**: Binding augments environment Γ with binding of x to type σ.

Symbols:
- \in (membership)
- \vdash (derivation)
- \rightarrow (function type)
- \mathfrak{V} (truth value)
- \mathfrak{F} (false value)
- \forall (for all)
- \exists (there exists)
- \mathfrak{N} (natural numbers)
- \mathfrak{M} (integers)
- \mathfrak{B} (booleans)

Examples:
- $\text{nil} \vdash x : \text{int}$
- $\text{nil} \not\vdash \lambda x : \text{int}. x$
Examples

Deduce the type for

\(\lambda x : \text{int} . \lambda y : \text{bool} . x \) in the \textbf{nil} environment

\[\text{int} \rightarrow \text{bool} \rightarrow \text{int} \]
Extensions (to Static Semantics)

\[\Gamma \vdash E_1 : \text{int} \quad \Gamma \vdash E_2 : \text{int} \]

\[\Gamma \vdash E_1 + E_2 : \text{int} \]

(Comparison)

\[\Gamma \vdash \text{true} : \text{bool} \]

\[\Gamma \vdash E_1 = E_2 : \text{bool} \]

\[\Gamma \vdash b : \text{bool} \quad \Gamma \vdash E_1 : \tau \quad \Gamma \vdash E_2 : \tau \]

\[\Gamma \vdash \text{if } b \text{ then } E_1 \text{ else } E_2 : \tau \]
Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Nil} \vdash \lambda x: \text{int}. \lambda y: \text{bool}. x+y : \text{int} \rightarrow \text{bool} \rightarrow \text{int}$</td>
<td>❌</td>
</tr>
<tr>
<td>$\text{Nil} \vdash \lambda x: \text{bool}. \lambda y: \text{int}. \text{if } x \text{ then } y \text{ else } y+1 : \text{bool} \rightarrow \text{int} \rightarrow \text{int}$</td>
<td>✓</td>
</tr>
</tbody>
</table>
Can we deduce the type of this term?

\(\lambda f. \lambda x. \text{if } x=1 \text{ then } x \text{ else } (f (f (x-1))) : ?\)

\[
\begin{align*}
\Gamma |\vdash & E_1 : \text{int} & \Gamma |\vdash & E_2 : \text{int} \\
\hline
\Gamma |\vdash & E_1 = E_2 : \text{bool} \\
\hline
\Gamma |\vdash & E_1 : \text{int} & \Gamma |\vdash & E_2 : \text{int} \\
\hline
\Gamma |\vdash & E_1 + E_2 : \text{int} \\
\hline
\Gamma |\vdash & b : \text{bool} & \Gamma |\vdash & E_1 : \tau & \Gamma |\vdash & E_2 : \tau \\
\hline
\Gamma |\vdash & \text{if } b \text{ then } E_1 \text{ else } E_2 : \tau
\end{align*}
\]
Examples

- How about this
 \((\lambda x. x (\lambda y. y) (x \, 1)) \, (\lambda z. z) : ?\)

 \[x : \text{int} \rightarrow ? \]
 \[x : \text{int} \rightarrow ? \]

- \(x\) cannot have two “different” types
 - \((x \, 1)\) demands \text{int} \rightarrow ?
 - \((x \, (\lambda y. y))\) demands \((\tau \rightarrow \tau) \rightarrow ?\)

- Program does not reach a “stuck state” but is nevertheless rejected. A sound type system typically rejects some correct programs
Putting It All Together, Formally

- Simply typed lambda calculus (**System F₁**)
 - Syntax of the simply typed lambda calculus
 - The type system: type expressions, environment, and type judgments

- The dynamic semantics
 - Stuck states

- Progress and preservation theorem
Core Dynamic Semantics

- Syntax: \(E ::= c \ | \ x \ | \ (\lambda x. \ E_1) \ | \ (\ E_1 \ E_2) \)
 - \(c \) is integer constant
- Values: \(V ::= \lambda x. \ E_1 \ | \ c \)
- A “call by value” semantics:

- Stuck states: terms that are syntactically valid but aren’t values and cannot be reduced
 - E.g., \(x, c \ c, \ c (\lambda x. \ E_1) \), etc.
Extensions

\[E_1 \rightarrow E_4 \]

\[\text{if } E_1 \text{ then } E_2 \text{ else } E_3 \rightarrow \text{if } E_4 \text{ then } E_2 \text{ else } E_3 \]

\[\text{if True then } E_2 \text{ else } E_3 \rightarrow E_2 \]

\[\text{if False then } E_2 \text{ else } E_3 \rightarrow E_3 \]
Core Typing Rules (Again…)

Type expressions:
\[\tau ::= \text{int} | \tau \rightarrow \tau \]

Environment:
\[\Gamma ::= \text{Nil} | \Gamma, x : \tau \]

\[\Gamma |- c : \text{int} \]

\[\text{x : } \tau \in \Gamma \]

\[\Gamma |- x : \tau \]

\[\Gamma, x : \sigma |- E_1 : \tau \]

\[\Gamma |- (\lambda x. E_1) : \sigma \rightarrow \tau \]

\[\Gamma |- E_1 : \sigma \rightarrow \tau \quad \Gamma |- E_2 : \sigma \]

\[\Gamma |- (E_1 E_2) : \tau \]
Soundness Theorem, Formally

- **Definition**: E can get stuck if there exist an E' such that $E \xrightarrow{*} E'$ and E' is stuck

 \[E \Rightarrow E_1 \Rightarrow E_2 \Rightarrow \cdots \Rightarrow E' \]

- **Theorem (Soundness)**: If $\text{Nil} \vdash E : \tau$ and $E \xrightarrow{n} E'$, then E' is a value, or $E' \xrightarrow{} E''$

- **Lemma (Preservation)**: If $\text{Nil} \vdash E : \tau$ and $E \Rightarrow E'$ then $\text{Nil} \vdash E' : \tau$

- **Lemma (Progress)**: If $\text{Nil} \vdash E : \tau$ then E is a value or there exist E' such that $E \Rightarrow E'$

Program Analysis CSCI 4450/6450, A Milanova
Progress, Proof Sketch

- Induction on the structure of the term E (as usual). Assuming Progress holds for component terms, prove that it holds for composite term E

1. **Var**: $\text{Nil} \vdash x : \tau$ --- impossible because $\text{Nil} \vdash E : \tau$

2. **Constant**: $\text{Nil} \vdash c : \text{int}$ --- E is a value

3. **Abs**: $\text{Nil} \vdash (\lambda x. E_1) : \tau$ --- again, E is a value

4. **App**: $\text{Nil} \vdash (E_1 E_2) : \tau$

We have $\text{Nil} \vdash E_1 : \sigma \rightarrow \tau$ and $\text{Nil} \vdash E_2 : \sigma$ or otherwise E wouldn’t have been well-typed. Continued…
4. App: \textbf{Nil} \vdash E_1 \ E_2 : \tau. We have \textbf{Nil} \vdash E_1 : \sigma \rightarrow \tau \text{ and } \textbf{Nil} \vdash E_2 : \sigma \text{ or otherwise } E \text{ wouldn’t have been well-typed}

1. If \(E_1 \) is not a value, then \(E_1 \rightarrow E_3 \). (Progress holds for \(E_1 \) by inductive hypothesis.) Thus, \(E_1 \ E_2 \rightarrow E_3 \ E_2 \)

2. If \(E_1 \) is a value but \(E_2 \) is not a value, then \(E_2 \rightarrow E_3 \). (Again, Progress holds for \(E_2 \) by the inductive hypothesis.) Thus, \(V \ E_2 \rightarrow V \ E_3 \)

3. Finally, if \(E_1 \) and \(E_2 \) are both values, then \(E_1 \) must be \(\lambda x. E_3 \) (this is actually by a lemma, the Canonical Forms lemma). Thus, evaluation rule \((\lambda x. E_3) \ V \rightarrow E_3[V/x]\) applies. Done!
Preservation, Proof Sketch

- Similarly, by induction on the structure of term E. Assuming Preservation holds for component terms, prove that it holds for term E.

1. **Var**: x --- ...

2. **Constant**: $\text{Nil} \vdash c : \text{int}$ --- ...

3. **Abs**: $\text{Nil} \vdash (\lambda x. E_1) : \tau$ --- ...

4. **App**: $\text{Nil} \vdash (E_1 E_2) : \tau$ --- ... Trickier because need to properly account for substitution!
Soundness

Soundness, worth restating

For every state (i.e., term E) the program reaches, E is well-typed (by Preservation)

Since E is well-typed, then it is either a value, or it can be further reduced (by Progress)

Therefore, no state the program ever reaches is a “stuck” state
Extensions

- Dynamic semantics and static semantics for
 - Arithmetic,
 - Booleans,
 - Records,
 - Unions,
 - Recursive types,
 - Imperative features,
 - etc., etc.

Safety = Progress + Preservation
Outline

- The simply typed lambda calculus
 - Syntax
 - Static semantics
 - Stuck states
 - Dynamic semantics
 - Type safety = progress + preservation

Introduction to simple type inference
Deducing Types

\[\lambda x: \text{int.} \lambda y: \text{bool. } x \]

1. Abs

\[\Gamma = [] \]

\[t_1 = \text{int} \rightarrow \text{bool} \rightarrow \text{int} \]

\[\Gamma = [x: \text{int}] \]

\[t_2 = \text{bool} \rightarrow \text{int} \]

\[\Gamma = [x: \text{int}, y: \text{bool}] \]

\[t_3 = \text{int} \]

1, 2, 3 denote the subcomponents of the term. We will be deducing types for each of these components.
Deducing Types

\[(\lambda f: \text{int} \rightarrow \text{int}. \ f \ 5) \ (\lambda x: \text{int}. \ x+1) : ?\]
Type Inference, Strategy 1

- We can figure out all types even without explicit types for variables
 - \((\lambda f. f \ 5)\ (\lambda x. x+1) : ?\)
 - Type inference

- Type inference, Strategy 1
 - Use typing rules to derive type constraints
 - Solve type constraints (offline)
 - Aka constraint-based typing (e.g., Pierce)
We Can Infer All Types!

\((\lambda f. \ f \ 5) \ (\lambda x. \ x+1) : ?\)

1. **App**
 \(\Gamma = []\)
 \(t_2 = t_4 \rightarrow t_1\)

\(\Gamma = [f:t_f]\)

2. **Abs**

\(\lambda f: t_f\)

\(\Gamma = [f:t_f]\)

\(\text{Const } 5\)

3. **App**

\(t_f = \text{int} \rightarrow t_3\)

\(\lambda x: t_x\)

\(\Gamma = [x:t_x]\)

4. **Abs**

\(\Gamma = [x:t_x]\)

\(\text{Var } x\)

\(\text{Const } 1\)

5. **Abs**

\(t_5 = \text{int}\)

\(t_4 = t_x \rightarrow t_5\)

\(\Gamma = \{\}\)

\(\Gamma \vdash E_1 : \text{int}\)

\(\Gamma \vdash E_2 : \text{int}\)

\(\Gamma \vdash E_1 + E_2 : \text{int}\)

\(\Gamma \vdash E_1 : \sigma \rightarrow \tau\)

\(\Gamma \vdash E_2 : \sigma\)

\(\Gamma \vdash (E_1 \ E_2) : \tau\)
Type Constraints

- We constructed a system of type constraints
- Let’s solve the system of constraints

\[
\begin{align*}
 t_2 & = t_4 \rightarrow t_1 \\
 t_2 & = t_f \rightarrow t_3 \\
 t_4 & = t_x \rightarrow t_5 \\
 t_f & = \text{int} \rightarrow t_3 \\
 t_5 & = \text{int}, t_x = \text{int}
\end{align*}
\]

\[(\lambda f : \text{int} \rightarrow \text{int}. f \ 5) \ (\lambda x : \text{int}. x+1) : \text{int} (t_1)\]

We inferred all \(t \)'s!
\[
\begin{align*}
 t_1 & = \text{int} \\
 t_2 & = (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \\
 t_3 & = \text{int} \\
 t_4 & = \text{int} \rightarrow \text{int} \\
 t_f & = \text{int} \rightarrow \text{int}
\end{align*}
\]
Another Example

- \(\text{twice } f \ x = f \ (f \ x) \)
- What is the type of `twice`?
Another Example

- `twice f x = f (f x)`
- What is the type of `twice`?
 - It is `t_f \rightarrow t_x \rightarrow t_1` (`t_1` is the type of `f (f x)`)
- Based on the syntax tree of `f (f x)` we have:

 \[t_f = t_2 \rightarrow t_1 \]
 \[t_f = t_x \rightarrow t_2 \]

Thus, `t_x = t_1 = t_2`, `t_f = t_x \rightarrow t_x` and type of `twice` is `(t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x`.

Note: `t_x` is a free type variable! Polymorphism!