Simple Type Inference
Announcements

- Quiz 5, pushed back to Thursday
An aside… Monads

- The Monad quote:
 - “A monad is just a monoid in the category of endofunctors, what's the problem?”

- Monad type class and the monad laws
- Maybe monad
- List monad
- IO monad
- State monad
Monads

- A way to cleanly compose computations
 - E.g., \(f \) may return a value of type \(\texttt{a} \) or Nothing

 Composing computations becomes tedious:

  ```
  case (f s) of
      Nothing  \rightarrow Nothing
      Just m  \rightarrow \text{case } (f \cdot m) \ldots
  ```

- In Haskell, monads model IO and other **imperative** features
An Example: Cloned Sheep

type Sheep = ...

father :: Sheep \rightarrow Maybe Sheep
father = ...

mother :: Sheep \rightarrow Maybe Sheep
mother = ...

(Note: a sheep has both parents; a cloned sheep has one)

maternalGrandfather :: Sheep \rightarrow Maybe Sheep
maternalGrandfather s = case (mother s) of
 Nothing \rightarrow Nothing
 Just m \rightarrow father m
An Example

mothersPaternalGrandfather :: Sheep \rightarrow\ Maybe Sheep

mothersPaternalGrandfather s = \text{case } (\text{mother } s) \text{ of}
 Nothing \rightarrow\ Nothing

 Just m \rightarrow\ \text{case } (\text{father } m) \text{ of}
 Nothing \rightarrow\ Nothing

 Just gf \rightarrow\ \text{father } gf

- Tedious, unreadable, difficult to maintain
- Monads help!
The Monad Class

- Haskell’s Monad `type class` requires 2 operations, `>>= (bind)` and `return`

class Monad m where

 // `>>=` (the bind operation) takes a monad `m a`, and a function that takes `a` and turns it into a monad `m b`, and returns `m b`
 `>>=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b`

 // `return` encapsulates a value into the monad
 `return :: a \rightarrow m a`
The **Maybe Monad**

```haskell
instance Monad Maybe where
  Nothing >>= f = Nothing
  (Just x) >>= f = f x
  return n = Just n
```

- Back to our example:

  ```haskell
  mothersPaternalGrandfather s =
    (return s) >>= mother >>= father >>= father
  ```

 (Note: if at any point, some function returns Nothing, it gets cleanly propagated.)
The List Monad

- The List type constructor is a monad

\[
\text{li >>=} f = \text{concat} (\text{map} f \text{ li})
\]

\[
\text{return } x = [x]
\]

Note: \(\text{concat}::[[a]] \to [a]\)

e.g., \(\text{concat} [[1,2],[3,4],[5,6]]\) yields \([1,2,3,4,5,6]\)

- Use \textbf{any} \(f\) s.t. \(f::a \to [b]\). \(f\) may return a list of 0,1,2,… elements of type \(b\), e.g.,

\[
\begin{align*}
> f x &= [x+1] \\
> [1,2,3] &>>= f \quad // \text{returns } [2,3,4]
\end{align*}
\]
The List Monad

parents :: Sheep \rightarrow [Sheep]
parents \(s \) = MaybeToList (mother \(s \)) ++
\hspace{2cm} MaybeToList (father \(s \))

grandParents :: Sheep \rightarrow [Sheep]
grandParents \(s \) = (parents \(s \)) >>= parents
Last Week

- Introduction to types and type systems
- Simply typed lambda calculus (System F₁)
 - Language syntax, type expression syntax
 - Static semantics
 - Dynamic semantics
 - Type soundness: Safety = Progress + Preservation
 - Proved for the simply typed lambda calculus
- Intro to simple type inference
Outline

- Simple type inference
 - Equality constraints
 - Unification
 - Substitution
 - Strategy 1: Constraint-based typing
 - Strategy 2: On-the-fly typing: Algorithm W, almost
- Parametric polymorphism (next time…)
- Hindley Milner type inference. Algorithm W
Reading

- “Types and Programming Languages”, by Benjamin Pierce, Chapter 22, 23

- Lecture notes based partially on MIT 2015 Program Analysis OCW
Core Typing Rules

\[\Gamma |- c : \text{int} \]

\[x : \tau \in \Gamma \]

\[\Gamma |- x : \tau \]

\[\Gamma, x : \sigma |- E_1 : \tau \]

\[\Gamma |- (\lambda x : \sigma. E_1) : \sigma \rightarrow \tau \]

\[\Gamma |- E_1 : \sigma \rightarrow \tau \quad \Gamma |- E_2 : \sigma \]

\[\Gamma |- (E_1 E_2) : \tau \]

Type expressions:
\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

Environment:
\[\Gamma ::= \text{Nil} \mid \Gamma, x : \tau \]
Extensions to Core Typing Rules

\[\begin{align*}
\Gamma |- c : \text{int} & \quad \Gamma |- E_1 : \text{int} \\
\Gamma |- E_1 + E_2 : \text{int} & \quad \Gamma |- E_2 : \text{int}
\end{align*} \]

\[\begin{align*}
\Gamma |- E_1 : \text{int} & \quad \Gamma |- E_2 : \text{int} \\
\Gamma |- E_1 = E_2 : \text{bool}
\end{align*} \]

\[\begin{align*}
\Gamma |- b : \text{bool} & \quad \Gamma |- E_1 : \tau & \quad \Gamma |- E_2 : \tau \\
\Gamma |- \text{if } b \text{ then } E_1 \text{ else } E_2 : \tau
\end{align*} \]
Type Inference, Strategy 1

- We can figure out all types even without explicit types for variables
 - $((\lambda f. f\ 5)\ (\lambda x. x+1)) : ?$
 - Type inference

Type inference, Strategy 1

- Use typing rules to define type constraints
- Solve type constraints
- Aka constraint-based typing (e.g., Pierce)
We Can Infer All Types!

\((\lambda f. \; f \; 5) \; (\lambda x. \; x+1) : \; ?\)

1. **App**
 \[\Gamma = [] \]
 \[t_2 = t_4 \rightarrow t_1 \]

2. **Abs**
 \[\Gamma = [] \]
 \[t_2 = t_f \rightarrow t_3 \]
 \[\lambda f: \; t_f \]
 \[\Gamma = [f: t_f] \]
 \[\text{Var } f \]

3. **App**
 \[\Gamma = [f: t_f] \]
 \[t_f = \text{int} \rightarrow t_3 \]
 \[\lambda x: \; t_x \]
 \[\text{Const } 5 \]

4. **Abs**
 \[\Gamma = [] \]
 \[t_4 = t_x \rightarrow t_5 \]
 \[\lambda x: \; t_x \]
 \[\text{Var } x \]

5. **+**
 \[\Gamma = [x: t_x] \]
 \[t_5 = \text{int} \]
 \[t_x = \text{int} \]

\(\frac{\Gamma \mid E_1 : \text{int} \quad \Gamma \mid E_2 : \text{int}}{\Gamma \mid E_1 + E_2 : \text{int}} \)

\(\frac{\Gamma \mid E_1 : \sigma \rightarrow \tau \quad \Gamma \mid E_2 : \sigma}{\Gamma \mid (E_1 \; E_2) : \tau} \)
Type Constraints

- We constructed a system of type constraints
- Let’s solve the system of constraints

\[t_2 = t_4 \rightarrow t_1 \quad t_f = \text{int} \rightarrow t_3 = t_4 = \text{int} \rightarrow \text{int} \]
\[t_2 = t_f \rightarrow t_3 \quad t_3 = \text{int} \quad t_1 = t_3 = \text{int} \]
\[t_4 = t_x \rightarrow t_5 \quad t_4 = \text{int} \rightarrow \text{int} \]
\[t_f = \text{int} \rightarrow t_3 \]
\[t_5 = \text{int}, \ t_x = \text{int} \]

- \((\lambda f:\text{int} \rightarrow \text{int}. \ f \ 5) \ (\lambda x:\text{int}. \ x+1) : \text{int} \ (t_1)\)

We inferred all t’s!
\[t_1 = \text{int} \]
\[t_2 = (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \]
\[t_3 = \text{int} \]
\[t_4 = \text{int} \rightarrow \text{int} \]
\[t_f = \text{int} \rightarrow \text{int} \]
Another Example

- \texttt{twice \, f \, x = f \, (f \, x)}
- What is the type of \texttt{twice}?

\begin{itemize}
 \item \texttt{Abs} \\
 \texttt{t}_1 = \texttt{tf} \rightarrow \texttt{t}_2 \\
 \Gamma = [f : \texttt{tf}] \\
 \texttt{t}_2 = \texttt{tx} \rightarrow \texttt{t}_3 \\
 \lambda x : \texttt{tx} \\
 \texttt{App} \\
 \texttt{tf} = \texttt{t}_4 \rightarrow \texttt{t}_3 \\
 \Gamma = [x : \texttt{tx}, f : \texttt{tf}] \\
 \texttt{tf} = \texttt{t}_x \rightarrow \texttt{t}_4 \\
 \texttt{f} \\
 \texttt{App} \\
 \texttt{tf} = \texttt{t}_x \rightarrow \texttt{t}_4 \\
 \Gamma = [x : \texttt{tx}, f : \texttt{tf}] \\
 \texttt{t}_1 = (\texttt{tx} \rightarrow \texttt{tx}) \rightarrow \texttt{tx} \rightarrow \texttt{tx}
\end{itemize}
Another Example

- \(\text{twice } f \ x = f (f \ x) \)
- What is the type of \texttt{twice}?
 - It is \(t_f \rightarrow t_x \rightarrow t_1 \) (\(t_1 \) is the type of \(f (f \ x) \))
- Based on the syntax tree of \(f (f \ x) \) we have:
 \[
 t_f = \left(t_2 \rightarrow t_1 \right)
 \]
 \[
 t_f = \left(t_x \rightarrow t_2 \right)
 \]
 Thus, \(t_x = t_1 = t_2 \), \(t_f = t_x \rightarrow t_x \) and type of \texttt{twice} is \((t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x \)

Note: \(t_x \) is a free type variable! Polymorphism!
Type Constraints from Typing Rules, as Attribute Grammar

Syntax: \[E ::= x \mid c \mid \lambda x.E \mid E_1 E_2 \mid E_1 + E_2 \]

Grammar rule:
- \(E ::= x \)
- \(E ::= c \)
- \(E ::= \lambda x.E_1 \)
- \(E ::= E_1 E_2 \)
- \(E ::= E_1 + E_2 \)

Attribute rule:
- \(C_E = \{ t_E = \Gamma_E(x) \} \)
- \(C_E = \{ t_E = \text{int} \} \)
- \(\Gamma_{E1} = \Gamma_E; x: t_x \)
- \(C_E = C_{E1} \cup \{ t_E = t_x \rightarrow t_{E1} \} \)
- \(\Gamma_{E1} = \Gamma_E \quad \Gamma_{E2} = \Gamma_E \)
- \(C_E = C_{E1} \cup C_{E2} \cup \{ t_{E1} = t_{E2} \rightarrow t_E \} \)
- \(\Gamma_{E1} = \Gamma_E \quad \Gamma_{E2} = \Gamma_E \)
- \(C_E = C_{E1} \cup C_{E2} \cup \{ t_{E1} = \text{int}, t_{E2} = \text{int}, t_E = \text{int} \} \)
Type Constraints from Typing Rules, as Attribute Grammar

\[(t_E, C_E) \leftarrow \text{interpret}(E, \Gamma) \]

\[\Gamma \text{ is inherited. Propagates top-down the tree.} \]

\[E ::= \lambda x. E_1 \]

\[\Gamma_{E_1} = \Gamma_{E}; x: t_x \]

\[C_E = C_{E_1} U \{ t_E = t_x \rightarrow t_{E_1} \} \]

\[t_E \text{ is “fresh” type variable for term represented by } E \text{’s subtree.} \]

\[E ::= E_1 E_2 \]

\[\Gamma_{E_1} = \Gamma_E \quad \Gamma_{E_2} = \Gamma_E \]

\[C_E = C_{E_1} U C_{E_2} U \{ t_{E_1} = t_{E_2} \rightarrow t_E \} \ldots \]

\[C \text{ collects constraints. It is synthesized. Propagates bottom-up the tree.} \]
Solving Constraints

- Two key concepts
- Equality
 - What does it mean for two types to be equal?
 - Structural equality (aka structural equivalence)
- Unification
 - Can two types be made equal by choosing appropriate substitutions for their type variables?
 - Robinson’s unification algorithm (which you already know from Prolog!)
Equality and Unification

- What does it mean for two types τ_a and τ_b to be equal?

- Structural equality
 - Suppose $\tau_a = t_1 \rightarrow t_2$
 - $\tau_b = t_3 \rightarrow t_4$
 - Structural equality entails
 $\tau_a = \tau_b$ means $t_1 \rightarrow t_2 = t_3 \rightarrow t_4$ iff $t_1 = t_3$ and $t_2 = t_4$
Equality and Unification

Can two types be made equal by choosing appropriate substitutions for their type variables?

Robinson’s unification algorithm

- Suppose $\tau_a = \text{int} \rightarrow t_1$
 $\tau_b = t_2 \rightarrow \text{bool}$
 - Can we unify τ_a and τ_b? Yes, if bool/t_1 and int/t_2

- Suppose $\tau_a = \text{int} \rightarrow t_1$
 $\tau_b = \text{bool} \rightarrow \text{bool}$
 - Can we unify τ_a and τ_b? No.
Example

Yes, if \texttt{int} \rightarrow t_2/t_1 \text{ and } \texttt{bool} \rightarrow t_3
Simple Type Substitution
(essential to define unification)

- Language of types
 \[\tau ::= b \quad // \text{primitive type, e.g., int, bool} \]
 \[| t \quad // \text{type variable} \]
 \[| \tau \rightarrow \tau \quad // \text{function type} \]

- A substitution is a map
 - \[S : \text{Type Variable} \rightarrow \text{Type} \]
 - \[S = [\tau_1/t_1, \ldots, \tau_n/t_n] \quad // \text{substitute type } \tau_i \text{ for type var } t_i \]

- A substitution instance \[\tau' = S \tau \]
 - \[S = [t_0 \rightarrow \text{bool} / t_1] \quad \tau = t_1 \rightarrow t_1 \quad \text{then} \]
 - \[S(\tau) = S(t_1 \rightarrow t_1) = (t_0 \rightarrow \text{bool}) \rightarrow (t_0 \rightarrow \text{bool}) \]
Simple Type Substitution
(essential to define unification)

- Substitutions can be composed
 - \(S_1 = [t_0 \rightarrow \text{bool} / t_1] \)
 - \(S_2 = [\text{int} / t_0] \)
 - \(\tau = t_1 \rightarrow t_1 \)
 - \(S_2 S_1(\tau) = S_2(S_1(t_1 \rightarrow t_1)) = \)
 \[
 S_2 \left((t_0 \rightarrow \text{bool}) \rightarrow (t_0 \rightarrow \text{bool}) \right) = (\text{int} \rightarrow \text{bool}) \rightarrow \text{int} \rightarrow \text{bool}
 \]

Program Analysis CSCI 4450/6450, A Milanova (based on MIT 2015 Program Analysis OCW)
Examples

- Substitutions can be composed
 - $S_1 = \left[\frac{t_x}{t_1} \right]$
 - $S_2 = \left[\frac{t_x}{t_2} \right]$

- $\tau = t_2 \rightarrow t_1$

- $S_2 S_1 (\tau) = ?$
 - $S_2 \left(t_2 \rightarrow t_x \right) = t_x \rightarrow t_x$
Examples

Substitutions can be composed

- $S_1 = [t_1 / t_2]$
- $S_2 = [t_3 / t_1]$
- $S_3 = [t_4 \rightarrow \text{int} / t_3]$

- $\tau = t_1 \rightarrow t_2$
- $S_3 S_2 S_1 (\tau) = ?$

$$S_3 S_2 (t_1 \rightarrow t_1) = S_3 (t_3 \rightarrow t_2) = (t_4 \rightarrow \text{int}) \rightarrow t_4 \rightarrow \text{int}$$
Some Terminology...

- A substitution S_1 is **less specific** (i.e., more general) than substitution S_2 if $S_2 = S \cdot S_1$ for some substitution S
 - E.g., $S_1 = [t_1 \rightarrow t_1 / t_2]$ is more general than $S_2 = [\text{int} \rightarrow \text{int} / t_2]$ because $S_2 = S \cdot S_1$ for $S = [\text{int} / t_1]$

- A **principal unifier** of a constraint set C is a substitution S_1 that satisfies C, and S_1 is more general than any S_2 that satisfies C
Examples

- Find principal unifiers (when they exist) for
 - \(\{ \text{int} \rightarrow \text{int} = t_1 \rightarrow t_2 \} \) \(\left[\text{int} / t_1, \text{int} / t_2 \right] \)
 - \(\{ \text{int} = \text{int} \rightarrow t_2 \} \) DOES NOT EXIST
 - \(\{ t_1 = \text{int} \rightarrow t_2 \} \) \(\left[\text{int} / t_2 / t_1 \right] \)
 - \(\{ t_1 = \text{int}, t_2 = t_1 \rightarrow t_1 \} \) \(\left[\text{int} / t_1, \text{int} / \text{int} / t_2 \right] \)
 - \(\{ t_1 \rightarrow t_2 = t_2 \rightarrow t_3, t_3 = t_4 \rightarrow t_5 \} \) \(\left[t_1 / t_2, t_1 / t_3, t_4 \rightarrow t_5 / t_1 \right] \)
Unification

(essential for type inference!)

- **Unify**: tries to unify τ_1 and τ_2 and returns a **principal unifier for** $\tau_1 = \tau_2$ if unification is successful

```python
def Unify(\tau_1, \tau_2) =
    case (\tau_1, \tau_2)
    (\tau_1, t_2) = [\tau_1/t_2] provided $t_2$ does not occur in $\tau_1$
    (t_1, \tau_2) = [\tau_2/t_1] provided $t_1$ does not occur in $\tau_2$
    (b_1, b_2) = if (eq? b_1 b_2) then [ ] else fail
    (\tau_{11} \rightarrow \boxed{\tau_{12}}, \tau_{21} \rightarrow \boxed{\tau_{22}}) = let
        $S_1 = \text{Unify}(\tau_{11}, \tau_{21})$
        $S_2 = \text{Unify}(S_1(\tau_{12}), S_1(\tau_{22}))$
    in $S_2 S_1$ // compose substitutions
    otherwise = fail
```

This is the **occurs check**!
Examples

- **Unify** (int\(\rightarrow\)int, \(t_1\rightarrow t_2\)) yields ?
 \[
 [\text{int} / t_1] \leftarrow \text{Unify} (\text{int}, t_1) \\
 [\text{int} / t_2] \leftarrow \text{Unify} (\text{int}, t_2) \\
 [\text{int} / t_1, \text{int} / t_2] \leftarrow
 \]

- **Unify** (int, int\(\rightarrow\)t_2) yields ?
 \[
 \text{fail} \\
 (\text{int and int} \rightarrow t_2 \text{ cannot unify}) \\
 \text{all 4 cases miss}
 \]

- **Unify** (\(t_1\), int\(\rightarrow\)t_2) yields ?
 \[
 [\text{int} \rightarrow t_2 / t_1]
 \]
Unify Set of Constraints C

- **UnifySet**: tries to unify C and returns a **principal unifier for C** if unification is successful

```python
def UnifySet (C) =
    if C is Empty Set then []
    else let
        C = \{ $\tau_1=$$\tau_2$ \} U C'
        S = Unify ($\tau_1$,$\tau_2$) // Unify returns a substitution $S$
        in
        UnifySet ( S(C') ) ° S
        // Composition of substitutions
```

Program Analysis CSCI 4450/6450, A Milanova
Examples

- \{ t_1 = \text{int}, t_2 = t_1 \rightarrow t_1 \} \rightarrow [\text{int} / t_1, \text{int} \rightarrow \text{int} / t_2]$

- \{ t_1 \rightarrow t_2 = t_2 \rightarrow t_3, t_3 = t_4 \rightarrow t_5 \}$

- \{ t_f = t_2 \rightarrow t_1, t_f = t_x \rightarrow t_2 \}$

- \{ t_2 = t_4 \rightarrow t_1, t_2 = t_f \rightarrow t_3, t_4 = t_x \rightarrow t_5, t_f = \text{int} \rightarrow t_3, t_5 = \text{int}, t_x = \text{int} \}$
Type Inference, Strategy 1

- Aka constraint-based typing (e.g., Pierce)

- Traverse parse tree to derive a set of type constraints C
 - These are equality constraints
 - (Pseudo code in earlier slides)

- Solve type constraints offline
 - Use unification algorithm
 - (Pseudo code in slide 36)