Hindley Milner Type Inference, Cont.
Announcements

- HW6 (and other HWs) due by the end of term, April 25th

- HW7 is out next week and it is optional

- Choose papers!
Outline

- Hindley Milner type inference
 - Expression and type syntax
 - Instantiations and generalization
 - Typing rules
 - Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
 - Observations and examples
Towards Hindley Milner

let f = \lambda x.x

in

if (f true) then (f 1) else 1

- Constraints

 \(t_f = t_1 \rightarrow t_1 \)

 \(t_f = \text{bool} \rightarrow t_2 \) // at call \(f \text{ true} \)

 \(t_f = \text{int} \rightarrow t_3 \) // at call \(f \text{ 1} \)

- Doesn’t unify!
Expression Syntax (to study Hindley Milner)

- Expressions:
 \[E ::= c \mid x \mid \lambda x. E_1 \mid E_1 E_2 \mid \text{let } x = E_1 \text{ in } E_2 \]

- There are no types in the syntax

- The type of each sub-expression is derived by the **Hindley Milner type inference algorithm**
Type Syntax
(to study Hindley Milner)

- Types (aka monotypes):
 - $\tau ::= b \mid \tau_1 \to \tau_2 \mid t$
 - E.g., int, bool, int \to bool, $t_1 \to$ int, $t_1 \to t_1$, etc.

- Type schemes (aka polymorphic types):
 - $\sigma ::= \tau \mid \forall t.\sigma$
 - E.g., $\forall t_1. \forall t_2. (\text{int} \to t_1) \to t_2 \to t_3$
 - Note: all quantifiers appear in the beginning, τ cannot contain schemes

- Type environment now

 Gamma ::= Identifiers \to Type schemes
Instantiations

- Type scheme $\sigma = \forall t_1 \ldots t_n.\tau$ can be instantiated into a type τ' by substituting types for the bound variables (BV) under the universal quantifier \forall
 - $\tau' = S \tau$
 - S is a substitution s.t. $\text{Domain}(S) \supseteq \text{BV}(\sigma)$
 - τ' is said to be an instance of σ ($\sigma > \tau'$)
 - τ' is said to be a generic instance when S maps some type variables to new type variables
- E.g., $\sigma = \forall t_1.\ t_1 \rightarrow t_2$
Generalization (aka Closing)

- We can generalize a type τ as follows
 \[
 \text{Gen}(\Gamma, \tau) = \forall t_1, \ldots, t_n. \tau
 \]
 where $\{t_1 \ldots t_n\} = \text{FV}(\tau) - \text{FV}(\Gamma)$

- Generalization introduces polymorphism

- Quantify type variables that are free in τ but are not free in the type environment Γ
 - E.g., $\text{Gen}([], t_1 \rightarrow t_2)$ yields
 - E.g., $\text{Gen}([x:t_2], t_1 \rightarrow t_2)$ yields
let $f = \lambda x. x$ in if (f true) then (f 1) else 1

- We’ll infer type for $\lambda x. x$ using simple type inference: $t_1 \rightarrow t_1$

- Then we’ll generalize that type, $\text{Gen}([], t_1 \rightarrow t_1)$:
 \[\forall t_1. t_1 \rightarrow t_1 \]

- Then we’ll pass the polymorphic type into if (f true) then (f 1) else 1 and instantiate for each f in if (f true) then (f 1) else 1
 - E.g., $[u_2/t_1] (t_1 \rightarrow t_1)$ where u_2 is fresh type variable at (f 1)
Generalization, Examples

- \(\lambda f : t_f. \lambda x : t_x. \) let \(g = f \) in \(g\ x \)
 - \(\text{Gen}([f : t_f, x : t_x], t_f) \) yields?

Why can’t we generalize \(t_f \)?

Suppose we can generalize to \(\forall t_f \)
- Then \(\forall t_f = t_g \) will instantiate at \(g\ x \) to some fresh \(u \)
- Then \(u \) becomes \(t_x \rightarrow u' \) thus losing the important connection between \(t_x \) and \(t_f \)!
- Thus \((\lambda f : t_f. \lambda x : t_x. \) let \(g = f \) in \(g\ x) \) (\(\lambda y . y + 1 \)) \text{ true} \) will type-check (unsound!!!)

DO NOT generalize variables that are mentioned in type environment \(\Gamma \)!
Hindley Milner Typing Rules

\[
\Gamma; x: \tau |- E_1 : \tau \quad \Gamma; x: \text{Gen}(\Gamma, \tau) |- E_2 : \tau' \\
\Gamma |- \text{let } x = E_1 \text{ in } E_2 : \tau'
\]

(Let)

- Type of \(x \) as inferred for \(E_1 \) is \(\tau \). Type of \(x \) in \(E_2 \) is the generalized type scheme \(\sigma = \text{Gen}(\Gamma, \tau) \)

\[
x: \sigma \in \Gamma \quad \tau < \sigma \quad (\text{Var})
\]

\[
\Gamma |- x : \tau
\]

- \(x \) in \(E_2 \) of \text{let}: \(x \) is of type \(\tau \) if its type \(\sigma \) in the environment can be instantiated to \(\tau \)

(Note: remaining rules, \(c, \text{App, Abs} \) are as in \(F_1 \).)
Outline

- Hindley Milner type inference
 - Expression and type syntax
 - Instantiations and generalization
 - Typing rules
 - Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
 - Observations and examples
let \(x = E_1 \) in \(E_2 \)

1. Calculate type \(T_{E_1} \) for \(E_1 \) in \(\Gamma; x: t_x \) using simple type inference

2. Generalize free type variables in \(T_{E_1} \) to get the type scheme for \(T_{E_1} \) (be mindful of caveat!)

3. Extend environment with \(x: \text{Gen}(\Gamma, T_{E_1}) \) and start typing \(E_2 \)

4. Every time we encounter \(x \) in \(E_2 \), instantiate its type scheme using fresh type variables

E.g., \(\text{id} \)'s type scheme is \(\forall t_1. t_1 \rightarrow t_1 \) so \(\text{id} \) is instantiated to \(u_k \rightarrow u_k \) at \(\text{(id 1)} \)
Hindley Milner Type Inference

- Two ways:
 - Extend Strategy 1 (constraint-based typing)
 - Extend Strategy 2 (Algorithm W)
Strategy 1

\[\text{let } f = \lambda x \cdot x \text{ in if (f true) then (f 1) else 1} \]

1. let \(\Gamma = [] \)
 \(t_1 = t_3 \)
 \(\Gamma = [f : t_f] \)

2. Abs
 \(t_2 = t_x \rightarrow t_x \)
 \(\Gamma = [f : t_f, x : t_x] \)

3. if-then-else
 \(t_3 = t_5 = \text{int} \)
 \(t_4 = \text{bool} \)

4. App
 \(u_1 \rightarrow u_1 = \text{bool} \rightarrow t_4 \)
 \(u_2 \rightarrow u_2 = \text{int} \rightarrow t_5 \)

5. App
 \(f \)
 \(\text{true} \)
 \(f \)
 \(1 \)

Next, generalize \(t_f : \forall t_x \cdot t_x \rightarrow t_x \)

\(u_1 \) and \(u_2 \) are fresh type vars generated at instantiation of polymorphic type.
Example

\[\lambda x. \text{let } f = \lambda y. x \text{ in } (f \text{ true}, f \text{ 1}) \]
def W(Γ, E) = case E of
 c -> ([], TypeOf(c))
 x -> if (x NOT in Domain(Γ)) then fail
 else let T_E = Γ(x)
 in case T_E of
 _ -> ([], T_E)
 τ -> ([], [u_1/t_1...u_n/t_n] τ)
 λx.E_1 -> let (S_{E_1}, T_{E_1}) = W(Γ+{x:t_x},E_1)
 in (S_{E_1}, S_{E_1}(t_x)→T_{E_1})

 // ...

 // continues on next slide!
Strategy 2: Algorithm W

def W(Γ, E) = case E of

 // continues from previous slide
 // ...
 E₁ E₂ -> let (Sₑ₁,Tₑ₁) = W(Γ,E₁)
 (Sₑ₂,Tₑ₂) = W(Sₑ₁(Γ),E₂)
 S = Unify(Sₑ₂(Tₑ₁),Tₑ₂→t)
 in (S Sₑ₂ Sₑ₁, S(t))

 let x = E₁ in E₂ -> let (Sₑ₁,Tₑ₁) = W(Γ+{x:tₓ},E₁)
 S = Unify(Sₑ₁(tₓ),Tₑ₁)
 σ = Gen(S Sₑ₁(Γ), S(Tₑ₁))
 (Sₑ₂,Tₑ₂) = W(S Sₑ₁(Γ)+{x:σ},E₂)
 in (Sₑ₂ S Sₑ₁, Tₑ₂)
let f = \(\lambda x . x \) in if (f true) then (f 1) else 1

1. let \(\Gamma = [f : t_f] \) \(T_1 = \text{int} \) \(S_1 = \ldots \) \(\Gamma = [f : \forall t_x . t_x \rightarrow t_x] \) \(\Gamma = \emptyset \) \(T_2 = t_x \rightarrow t_x \) \(S_2 = \emptyset \) \(\Gamma = [x : t_x, f : t_f] \)

2. Abs

\[f : t_x \rightarrow t_x \]

\[S_2 = \emptyset \]

No constraint, types immediately: \(T_2 = t_x \rightarrow t_x : [t_x \rightarrow t_x / t_2] \)

\(\sigma = \text{Gen}(\emptyset, t_x \rightarrow t_x) = \forall t_x . t_x \rightarrow t_x \)

3. if-then-else \(\Gamma = \emptyset \) \(T_3 = \text{int} \) \(S_3 = \ldots \) \(f : \forall t_x . t_x \rightarrow t_x \)

4. App

\[T_4 = \text{bool} \]

\[S_4 = [\text{bool} / t_4][\text{bool} / u_1] \]

\[T_5 = \text{int} \]

\[S_5 = [\text{int} / t_5][\text{int} / u_2] \]

5. App

\[T = u_1 \rightarrow u_1 \]

\[S = \emptyset \]

From \(\text{Unify}(u_1 \rightarrow u_1, \text{bool} \rightarrow t_4) \)
Hindley Milner Observations

- Do not generalize over type variables mentioned in type environment (they are used elsewhere)

- `let` is the only way of defining polymorphic constructs

- Generalize the types of let-bound identifiers **only after** processing their definitions
Hindley Milner Observations

- Generates the **most general type** (principal type) for each term/subterm
- Type system is sound

- Complexity of Algorithm W
 - PSPACE-Hard
 - Because of nested let blocks
Hindley Milner Limitations

- Only let-bound constructs can be polymorphic and instantiated differently

```verbatim
let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism
```

```verbatim
let twice f x = f (f x)
  foo g = g g succ 4 // lambda-bound
in foo twice
```
Hindley Milner Limitations

Quiz example:

\[(\lambda x. x (\lambda y. y) (x \ 1)) (\lambda z. z)\]

vs.

let x = (\lambda z. z)

in

x (\lambda y. y) (x \ 1)