Hindley Milner Type Inference, Cont.
Announcements

- HW6 (and other HWs) due by the end of term, April 25th

- HW7 is out next week and it is optional

- Choose papers!
Outline

- Hindley Milner type inference
 - Expression and type syntax
 - Instantiations and generalization
 - Typing rules
 - Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
- Observations and examples
Towards Hindley Milner

let f = \(\lambda x.x \)
in
if (f true) then (f 1) else 1

- Constraints
 \(t_f = t_1 \rightarrow t_1 \)
 \(t_f = \text{bool} \rightarrow t_2 \) // at call (f true)
 \(t_f = \text{int} \rightarrow t_3 \) // at call (f 1)

- Doesn’t unify!
Expression Syntax
(to study Hindley Milner)

- Expressions:

 $E ::= c \mid x \mid \lambda x. E_1 \mid E_1 \ E_2 \mid \text{let } x = E_1 \text{ in } E_2$

- There are no types in the syntax

- The type of each sub-expression is derived by the **Hindley Milner type inference algorithm**
Type Syntax
(to study Hindley Milner)

- Types (aka monotypes):
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t \]
 - E.g., int, bool, int \rightarrow bool, t_1 \rightarrow int, t_1 \rightarrow t_1, etc.

- Type schemes (aka polymorphic types):
 \[\sigma ::= \tau \mid \forall t.\sigma \]
 - E.g., \(\forall t_1. \forall t_2. (\text{int} \rightarrow t_1) \rightarrow t_2 \rightarrow t_3 \)
 - Note: all quantifiers appear in the beginning, \(\tau \) cannot contain schemes

- Type environment now

\[\Gamma ::= \text{Identifiers} \rightarrow \text{Type schemes} \]
Instantiations

- Type scheme $\sigma = \forall t_1...t_n.\tau$ can be instantiated into a type τ' by substituting types for the bound variables (BV) under the universal quantifier \forall

- $\tau' = S \tau$ S is a substitution s.t. $\text{Domain}(S) \supseteq \text{BV}(\sigma)$

- τ' is said to be an instance of σ ($\sigma > \tau'$)

- τ' is said to be a generic instance when S maps some type variables to new type variables

- E.g., $\sigma = \forall t_1. t_1 \rightarrow t_2$

 $\tau' = [t_2/t_2](t_1 \rightarrow t_2) = t_1 \rightarrow t_2$

 $\tau' = [\text{mut} \rightarrow \text{mut}/t_1](t_1 \rightarrow t_2) = (\text{mut} \rightarrow \text{mut}) \rightarrow t_2$
Generalization (aka Closing)

- We can generalize a type τ as follows

$$\text{Gen}(\Gamma, \tau) = \forall t_1, \ldots, t_n. \tau$$

where $\{t_1 \ldots t_n\} = \text{FV}(\tau) - \text{FV}(\Gamma)$

- Generalization introduces polymorphism

- Quantify type variables that are free in τ but are not free in the type environment Γ

 - E.g., $\text{Gen}([], t_1 \rightarrow t_2)$ yields $\forall b_i \cdot t_1 \rightarrow t_2$

 - E.g., $\text{Gen}([x:t_2], t_1 \rightarrow t_2)$ yields $\forall t_4 \cdot t_1 \rightarrow t_2$
Generalization, Examples

Let $f = \lambda x. x$ in if (f true) then (f 1) else 1

- We’ll infer type for $\lambda x. x$ using simple type inference: $t_1 \rightarrow t_1$
- Then we’ll generalize that type, $\text{Gen}([], t_1 \rightarrow t_1)$: $\forall t. t_1 \rightarrow t_1$
- Then we’ll pass the polymorphic type into if (f true) then (f 1) else 1 and instantiate for each f in if (f true) then (f 1) else 1
 - E.g., $[u_2/t_1] (t_1 \rightarrow t_1)$ where u_2 is fresh type variable at (f 1)
Generalization, Examples

- \(\lambda f : t_f. \lambda x : t_x. \text{let } g = f \text{ in } g \ x \)
 - \(\text{Gen}([f : t_f, x : t_x], t_f) \) yields? = \(\text{tf} \) not \(\forall f : t_f \)

- Why can’t we generalize \(t_f \)?

- Suppose we can generalize to \(\forall t_f \)
 - Then \(\forall t_f = t_g \) will instantiate at \(g \ x \) to some fresh \(u \)
 - Then \(u \) becomes \(t_x \to u' \) thus losing the important connection between \(t_x \) and \(t_f \)!
 - Thus \((\lambda f : t_f. \lambda x : t_x. \text{let } g = f \text{ in } g \ x) \ (\lambda y . y + 1) \text{ true} \) will type-check (unsound!!)

- DO NOT generalize variables that are mentioned in type environment \(\Gamma \)!
Hindley Milner Typing Rules

- Type of \(x \) as inferred for \(E_1 \) is \(\tau \). Type of \(x \) in \(E_2 \) is the generalized type scheme \(\sigma = \text{Gen}(\Gamma, \tau) \)

\[
\Gamma; x : \tau \vdash E_1 : \tau \\
\Gamma; x : \text{Gen}(\Gamma, \tau) \vdash E_2 : \tau'
\]

\(\Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : \tau' \)

- \(x \) in \(E_2 \) of \(\text{let}: x \) is of type \(\tau \) if its type \(\sigma \) in the environment can be instantiated to \(\tau \)

(Note: remaining rules, \(c, \text{App}, \text{Abs} \) are as in \(F_1 \).)
Hindley Milner type inference

- Expression and type syntax
- Instantiations and generalization
- Typing rules
- Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
- Observations and examples
Hindley Milner Type Inference, Rough Sketch

let $x = E_1$ in E_2

1. Calculate type T_{E_1} for E_1 in $\Gamma; x: t_x$ using simple type inference

2. Generalize free type variables in T_{E_1} to get the type scheme for T_{E_1} (be mindful of caveat!)

3. Extend environment with $x: \text{Gen}(\Gamma, T_{E_1})$ and start typing E_2

4. Every time we encounter x in E_2, instantiate its type scheme using fresh type variables

E.g., id’s type scheme is $\forall t_1. t_1 \rightarrow t_1$ so id is instantiated to $u_k \rightarrow u_k$ at (id 1)
Hindley Milner Type Inference

- Two ways:
 - Extend Strategy 1 (constraint-based typing)
 - Extend Strategy 2 (Algorithm W)
let \(f = \lambda x. x \) in if (f true) then (f 1) else 1

1. let \(\Gamma = [] \)
 \(t_1 = t_3 \)
 \(\Gamma = [f : t_f] \)

2. Abs
 \(\Gamma = [f : t_f, x : t_x] \)
 \(t_2 = t_x \rightarrow t_x \)

3. if-then-else
 \(t_3 = t_5 = \text{int} \)
 \(t_4 = \text{bool} \)
 \(\Gamma = [f : \forall t_x. t_x \rightarrow t_x] \)

4. App
 \(u_1 \rightarrow u_1 = \text{bool} \rightarrow t_4 \)
 \(u_2 \rightarrow u_2 = \text{int} \rightarrow t_5 \)

5. App
 \(f \rightarrow \text{true} \)
 \(f \rightarrow 1 \)

Next, generalize \(t_f : \forall t_x. t_x \rightarrow t_x \)

\(u_1 \) and \(u_2 \) are fresh type vars generated at instantiation of polymorphic type.
Example

\[\lambda x. \text{let } f = \lambda y. x \text{ in } (f \, \text{true}, f \, 1) : tx \rightarrow (tx \times tx) \]

1. \text{Abs}

\[\lambda x : tx \]

2. \text{let}

\[\lambda y : ty \rightarrow tx \]

3. \text{A}

\[\forall y : ty \rightarrow tx \]

4. \text{App}

\[\text{true} \]

5. \text{App}

\[u_1 : tx \]

6. \text{App}

\[u_2 : tx = \text{true} \]
def W(\(\Gamma, E\)) = case E of

\(c\) -> ([], TypeOf(c))

\(x\) -> if (x NOT in Domain(\(\Gamma\))) then fail
else let T_E = \(\Gamma(x)\)
in case T_E of

\([\forall t_1, \ldots, t_n.]\tau\) -> ([], [u_1/t_1 \ldots u_n/t_n] \(\tau\))

\(\varnothing\) -> ([], T_E)

\(\lambda x. E_1\) -> let (S_{E_1}, T_{E_1}) = W(\(\Gamma+\{x: t_x\}, E_1\))
in (S_{E_1}, S_{E_1}(t_x \rightarrow T_{E_1}))

// ...

// continues on next slide!

u_1 to u_n are fresh type vars generated at instantiation of polymorphic type
def W(\(\Gamma, E\)) = case E of

// continues from previous slide
// ...

E_1 E_2 -> let (S_{E_1}, T_{E_1}) = W(\(\Gamma, E_1\))
(S_{E_2}, T_{E_2}) = W(S_{E_1}(\(\Gamma\)), E_2)
S = \text{Unify}(S_{E_2}(T_{E_1}), T_{E_2} \rightarrow t)
in (S S_{E_2} S_{E_1}, S(t))

let x = E_1 in E_2 -> let (S_{E_1}, T_{E_1}) = W(\(\Gamma + \{x:t_x\}, E_1\))
S = \text{Unify}(S_{E_1}(t_x), T_{E_1})
\(\sigma = \text{Gen}(S S_{E_1}(\(\Gamma\)), S(T_{E_1}))\)
(S_{E_2}, T_{E_2}) = W(S S_{E_1}(\(\Gamma\)) + \{x: \(\sigma\)\}, E_2)
in (S_{E_2} S S_{E_1}, T_{E_2})
Strategy 2 Example

let f = \(\lambda x.x\) in if (f true) then (f 1) else 1

1. let \(\Gamma = []\) \(T_1 = \text{int}\)
 \(S_1 = ...\)

2. Abs \(f\)
 \(\Gamma = [f: t_f]\)
 \(T_2 = t_x \rightarrow t_x\)
 \(S_2 = []\)
 \(\Gamma = [x: t_x, f: t_f]\)

3. if-then-else
 \(\Gamma = [f: \forall t_x . t_x \rightarrow t_x]\)
 \(T_3 = \text{int}\)
 \(S_3 = ...

4. App \(f\) \(\text{true}\)
 \(T_4 = \text{bool}\)
 \(S_4 = [\text{bool}/t_4][\text{bool}/u_1]\)
 \(T = u_1 \rightarrow u_1\)
 \(S = []\)
 \(s = \text{Gen}([], t_x \rightarrow t_x) = \forall t_x . t_x \rightarrow t_x\)

5. App \(f\) 1
 \(T_5 = \text{int}\)
 \(S_5 = [\text{int}/t_5][\text{int}/u_2]\)

\(\text{From } \text{Unify}(u_1 \rightarrow u_1, \text{bool} \rightarrow t_4)\)
Hindley Milner Observations

- Do not generalize over type variables mentioned in type environment (they are used elsewhere).

- `let` is the only way of defining polymorphic constructs.

- Generalize the types of `let`-bound identifiers only after processing their definitions.
Hindley Milner Observations

- Generates the **most general type** (principal type) for each term/subterm
- Type system is sound

- **Complexity of Algorithm W**
 - PSPACE-Hard
 - Because of nested let blocks
Hindley Milner Limitations

- Only let-bound constructs can be polymorphic and instantiated differently

```ml
let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound
in foo twice
```

Program Analysis CSCI 4450/6450, A Milanova 22
Hindley Milner Limitations

Quiz example:

\[(\lambda x. \, x \, (\lambda y. \, y) \, (x \, 1)) \, (\lambda z. \, z)\]

vs.

\[\text{let } x = (\lambda z. \, z)\]
\[\text{in} \]
\[x \, (\lambda y. \, y) \, (x \, 1)\]