Dataflow Analysis: Dataflow Frameworks

Outline of Today’s Class
- Catch up
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm
- Reading:
 - Dragon Book, Chapter 9.2 and 9.3

Problem 1: Reaching Definitions

Problem 2. Live Uses of Variables (Live)
- We say that a variable x is “live on exit from node j" if there is a live use of x on exit from j (recall the definition of “live use of x on exit from j”)
- Problem statement: for each node n, compute the set of variables that may be live on exit from n.

Live Example

What variables are live on exit from statement 3? Statement 1?
Live Uses of Variables (Live)

- Data
 - Primitive facts: variables \(x \)
 - Propagates sets: \(\{x, y, z\} \)
- Dataflow equations. At \(j: x = y+z \)
 - \(\text{kill}_V(j): \{x\} \)
 - \(\text{gen}_V(j): \{y, z\} \)
- Merge operator: set union \(\cup \)

Problem statement: for each node \(n \), compute the set of variables that may be live on exit from \(n \).

\[
\text{in}_V(j) = \left(\text{out}_V(j) - \text{kill}_V(j) \right) \cup \text{gen}_V(j)
\]

\[
\text{out}_V(j) = \{ \cup \text{in}_V(i) \mid i \text{ is a successor of } j \}
\]

Q: What are the primitive dataflow facts?
Q: What is \(\text{gen}_V(j) \)?
Q: What is \(\text{kill}_V(j) \)?

Avail Enables Global Common Subexpressions

Can we eliminate \(w = a \times b \)?
Available Expressions (Avail)

Data?
- Primitive dataflow facts are expressions, e.g., \(x + y\), \(a \cdot b\), \(a + 2\)
- Analysis propagates sets of expressions, e.g., \(\{x + y, a \cdot b\}\)

Dataflow equations at \(j\): \(x = y \text{ op } z\)?
- \(\text{out}_{AE}(j) = (\text{in}_{AE}(j) \setminus \text{kill}_{AE}(j)) \cup \text{gen}_{AE}(j)\)
- \(\text{kill}_{AE}(j)\): all expressions with operand \(x\): \((x \text{ op } _), (_ \text{ op } x)\)
- \(\text{gen}_{AE}(j)\): new expression: \(\{(y \text{ op } z)\}\)

Example

```
1. \(y = a + b\)
2. \(x = a \cdot b\)
3. if \(y \leq a \cdot b\)
   4. \(a = a + 1\)
   5. \(x = a \cdot b\)
   6. goto 3
7. ...
```

Problem 3: Available Expressions

```
What are the primitive dataflow facts?
Expressions, e.g., \(x + y\), \(a \cdot b\). Equations act on sets of expressions.
```

Problem 4: Very Busy Expressions (VeryB)

```
An expression \(x \text{ op } y\) is very busy at node \(n\), if along EVERY path from \(n\) to the end of the program, we come to a computation of \(x \text{ op } y\) BEFORE any redefinition of \(x\) or \(y\).
```

Very Busy Expressions (VeryB)

```
Data?
- Primitive dataflow facts are expressions, e.g., \(x + y\), \(a \cdot b\)
- Analysis propagates sets of expressions, e.g., \(\{x + y, a \cdot b\}\)

Dataflow equations at \(j\): \(x = y \text{ op } z\)?
- \(\text{in}_{VB}(j) = (\text{out}_{VB}(j) \setminus \text{kill}_{VB}(j)) \cup \text{gen}_{VB}(j)\)
- \(\text{kill}_{VB}(j)\): all expressions with operand \(x\): \((x \text{ op } \_), (\_ \text{ op } x)\)
- \(\text{gen}_{VB}(j)\): new expression: \(\{(y \text{ op } z)\}\)
**Very Busy Expressions (VeryB)**
- Merge operator?
  - For VeryB, it is set intersection $\cap$

  $\text{out}_{\text{VeryB}}(j) = \{ \text{in}_{\text{VeryB}}(i) | i \text{ is a successor of } j \}$

---

**Another Example: Taint Analysis**
- A definition $(x,k)$ is tainted if $k$ is designated as a taint source, or $(x,k)$ is computed based on an operand that is tainted.
- Problem statement: for each node $n$, compute the set of tainted definitions that may reach $n$.

---

**Example: Taint Analysis (explicit flow)**

---

**Outline of Today’s Class**
- Catch up
- Dataflow frameworks
- Lattice
- Transfer functions
- Worklist algorithm
- Reading:
  - Dragon Book, Chapter 9.2 and 9.3

---

**Another Example: Taint Analysis**
- Info leaks

```c
void *fp = &exit;
...
x->f = fp;...
y = x;...
printf("libc function @ %p\n", y->f):
... 0x7f2f8a497030
```
Dataflow Problems

<table>
<thead>
<tr>
<th></th>
<th>May Problems</th>
<th>Must Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Problems</td>
<td>Reaching Definitions</td>
<td>Available Expressions</td>
</tr>
<tr>
<td>Backward Problems</td>
<td>Live Uses of Variables</td>
<td>Very Busy Expressions</td>
</tr>
</tbody>
</table>

Similarities

- Analyses operate over similar property spaces
  - In all cases, analysis operates over a finite set of primitive dataflow facts
    - Reach: \( D \) is the set of all definitions in the program:
      - e.g., \( \{ (x, 1), (y, 2), (x, 4), (y, 5) \} \)
    - Avail and VeryB: \( D \) is the set of all arithmetic expressions:
      - e.g., \( \{ a+b, a*b, a+1 \} \)
    - Live: \( D \) is the set of all variables:
      - e.g., \( \{ x, y, z \} \)
  - Solution at node \( n \) is a subset of \( D \) (e.g., a definition either reaches \( n \) or it does not reach \( n \))

Similarities

- Dataflow equations have the same form (from now on, we’ll focus on forward problems):
  - \( \text{out}(j) = (\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j) \)
  - \( \text{in}(j) = \{ \text{V out}(| i \text{ is a predecessor of } j \}) \)
  - \( \text{pres}(j) \) is the complement of \( \text{kill}(j) \) in \( D \)
    - A note: what makes the 4 classical problems special is that sets \( \text{kill}(j) \cap \text{pres}(j) \) and \( \text{gen}(j) \) do not depend on \( \text{in}(j) \)
    - Thus, set intersection and set union can be implemented as logical AND and OR respectively

Dataflow Frameworks

- We generalize and study the properties of the property space
  - Property space is a lattice
    - Choice settles merge operator
- We generalize and study the properties of the transfer function space
  - Functions are monotone or distributive
- We generalize and study the properties of the worklist algorithm that computes a solution

Lattice Theory

- Partial ordering (denoted by \( \leq \) or \( \sqsubseteq \))
  - Relation between pairs of elements
    - Reflexive \( a \leq a \)
    - Anti-symmetric \( a \leq b \) and \( b \leq a \) \( \Rightarrow a = b \)
    - Transitive \( a \leq b \) and \( b \leq c \) \( \Rightarrow a \leq c \)
- Partially ordered set (poset) (set \( S, \leq \))
  - 0 Element \( 0 \leq a \), for every \( a \) in \( S \)
  - 1 Element \( a \leq 1 \), for every \( a \) in \( S \)
  - We don’t necessarily need 0 and 1 element.
**Definition of a Lattice (L, Λ, V)**

A lattice L is a poset under ≤, such that every pair of elements has a \( \text{glb} \) (meet) and \( \text{lub} \) (join).

- A lattice need not contain a 0 or a 1 element
- A finite (height) lattice must contain 0 and 1
- Not every poset is a lattice
- If there is element \( a \) such that \( a \leq x \) for every \( x \) in \( L \), then \( a \) is the 0 element of \( L \)
- If there is a \( x \) such that \( x \leq a \) for every \( x \) in \( L \), then \( a \) is the 1 element of \( L \)

**Examples of Lattices**

- \( H = (2^D, \cap, U) \) where \( D \) is a finite set
  - \( \text{glb}(s1,s2) \) denoted \( s1 \cap s2 \), is set intersection \( s1 \cap s2 \)
  - \( \text{lub}(s1,s2) \) denoted \( s1 \cup s2 \), is set union \( s1 \cup s2 \)
- \( J = (N_1, \gcd, \text{lcm}) \)
  - Partial order is integer divide on \( N_1 \)
  - \( \text{lub}(n1,n2) \) denoted \( n1 \mid n2 \) is \( \text{lcm}(n1,n2) \)
  - \( \text{glb}(n1,n2) \) denoted \( n1 \nmid n2 \) is \( \gcd(n1,n2) \)
- \( N_1 \) denotes natural numbers starting at 1
A poset $C$ where for every pair of elements $c_1, c_2$ in $C$, either $c_1 \leq c_2$ or $c_2 \leq c_1$.

E.g., {} $\leq$ \{a\} $\leq$ \{a,b\}
E.g., from the lattice $J$ as shown here,
$1 \leq 2 \leq 6 \leq 30$
$1 \leq 3 \leq 15 \leq 30$

A lattice s.t. every ascending chain is finite, is said to satisfy the Ascending Chain Condition.

Lattices in Dataflow Analysis
- Lattices define property space
- Lattice properties lead to properties of the standard dataflow analysis solution procedure (the worklist algorithm, which we will study shortly)

Dataflow Lattices: Reach
$D = \text{all definitions:}\{(x,1),(x,4),(a,3)\}$

Position is $2^D$, $\leq$ is the subset relation

1. $x=a*b$
2. if $y<=a*b$
3. $a=a+1$
4. $x=a*b$
5. goto 3

Dataflow Lattices: Avail
$D = \text{all expressions:}\{a*b,a+1,y*z\}$

Position is $2^D$, $\subseteq$ is the superset relation

1. $x:=a*b$
2. if $y*z <= a*b$
3. $a:=a+1$
4. $x:=a*b$
5. goto 2

Dataflow Frameworks
- Equations:
  \[ \text{in}(j) = V \text{out}(i) \quad \text{out}(j) = f_j(\text{in}(j)) \]
  
  where:
  - $\text{in}(j), \text{out}(j)$ are elements of a property space
  - $f_j$ is the transfer function associated with node $j$
  - $V$ is the merge operator

- The property space must be:
  1. A lattice $L$, $\leq$
  2. $L$ satisfies the Ascending Chain Condition

- The merge operator $V$ must be the join of $L$
  - In dataflow, $L$ is often the lattice of the subsets over a finite set of dataflow facts $D$
    - Choose universal set $D$ (e.g., all definitions)
    - Choose ordering operation $\subseteq$. Since the merge operator must be the join of $L$, a may problem locks $\subseteq$ to subset. Conversely, a must problem locks $\subseteq$ to superset
**Example: Reach Lattice**

- Property space is the lattice of the subsets where:
  - \( D \) is the set of all definitions in the program
  - \( \subseteq \) is the subset operation
  - `Join` is set union \( \cup \), as needed for Reach, which is a `may` problem
- Lattice has 0 being \( \{\} \), and 1 being \( D \)
- Lattice satisfies the Ascending Chain Condition

---

**Example: Avail Lattice**

- Property space is the lattice of the subsets where:
  - \( D \) is the set of all expressions in the program
  - \( \subseteq \) is superset
  - `Join` of the lattice is set intersection, as needed for Avail, which is a `must` problem
- Lattice has 0 being \( D \), and 1 being \( \{\} \)
- Lattice satisfies Ascending Chain Condition

---

**Dataflow Lattices: Avail**

- \( D \) = all expressions: \{a*b,a+1,y*z\}
- Poset is \( 2^D \), \( \subseteq \) is the superset relation

---

**Transfer Functions**

- **The transfer functions:** \( f_j : L \rightarrow L \). Formally, function space \( F \) is such that:
  1. \( F \) contains all \( f_j \)
  2. \( F \) contains the identity function \( id(x) = x \)
  3. \( F \) is closed under composition
  4. Each \( f_j \) is monotone

---

**Monotonicity**

- \( F : L \rightarrow L \) is monotone if and only if:
  1. \( a,b \) in \( L \), \( f \) in \( F \) then \( a \leq b \) \( \Rightarrow \) \( f(a) \leq f(b) \)
  or (equivalently):
  2. \( x,y \) in \( L \), \( f \) in \( F \) then \( f(x) \lor f(y) \leq f(x \lor y) \)

- Theorem: Definitions (1) and (2) are equivalent.
  - Show that (1) implies (2)
  - Show that (2) implies (1)
Distributivity

- A function $f: L \to L$ is distributive if and only if $f(x \lor y) = f(x) \lor f(y)$ for all $x, y \in L$.
- Every distributive function is also monotone but not the other way around.
- Distributivity is a very nice property!

Monotonicity and Distributivity

- Is classical Reach distributive?
  - Yes, $\text{out}(j) = \text{f}(\text{in}(j))$ is $Y = (X \land \text{pres}(j)) \lor \text{gen}(j)$.
  - To show distributivity:
    - For each $j$: $(X \lor (X' \land \text{pres}(j))) \lor \text{gen}(j) = (X \land \text{pres}(j)) \lor \text{gen}(j) \lor (X' \land \text{pres}(j)) \lor \text{gen}(j)$.

Monotone Dataflow Frameworks

- A problem fits into the dataflow framework if:
  - Its property space is a lattice $L$ that satisfies the Ascending Chain Condition.
  - Its merge operator $V$ is the join of $L$.
  - Its function space $F: L \to L$ is monotone.
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm.

Worklist Algorithm for Forward Dataflow Problems

```
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
for m := 2 to n do
 in(m) = 0;
out(m) = f_m(0);
W := {2,...,n} /* put every node but 1 on the worklist */
while W \neq {} do {
 remove j from W
 in(j) = V \{ out(i) | i \in \text{successors}(j) \}
 out(j) = \text{f}_j(\text{in}(j))
 if \text{out}(j) \neq \text{in}(j) then {
 in(j) = \text{out}(j) \lor \text{v}(\text{in}(j))
 W = W \cup \{ i \}
 }
}
```

Termination Argument

- Why does the algorithm terminate?
- Sketch of proof:
  - At each iteration, no $\text{in}(j)$ nor $\text{out}(j)$ shrinks, and at least one $\text{out}(j)$ grows.
  - Since $\text{out}(j)$ in $L$, and $L$ satisfies the Ascending Chain Condition, $\text{out}(j)$ changes at most $O(\text{h})$ times where $\text{h}$ is the height of the lattice $L$. 

Correctness Argument

- Theorem: The worklist algorithm computes a solution that satisfies the dataflow equations.
- Why?
- Sketch of proof:
  Whenever \( j \) is processed, algorithm sets \( \text{out}(j) = f_j(\text{in}(j)) \). Whenever \( \text{out}(j) \) changes, algorithm puts successors on the list, so \( \text{in}(j) = \bigvee \{ \text{out}(i) \} \).
  So final solution will satisfy equations.

Precision Argument

- Theorem: The algorithm computes the least solution of the dataflow equations.
- Historically though, this solution is often called the maximal fixpoint solution (MFP).
- I.e., For every node \( j \), the worklist algorithm computes a solution \( \text{MFP}(j) = (\text{in}(j), \text{out}(j)) \), such that every other solution \( (\text{in}'(j), \text{out}'(j)) \) of the dataflow equations is \( \text{in}(j) \leq \text{in}'(j), \text{out}(j) \leq \text{out}'(j) \).

Example

<table>
<thead>
<tr>
<th>( \text{in}_{\text{avail}}(1) = \emptyset )</th>
<th>Solution 1</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{out}<em>{\text{avail}}(1) = (\text{in}</em>{\text{avail}}(1) \cup { x+y }) )</td>
<td>( { x+y } )</td>
<td>( { x+y } )</td>
</tr>
<tr>
<td>( \text{in}<em>{\text{avail}}(2) = \text{out}</em>{\text{avail}}(1) \lor \text{out}_{\text{avail}}(3) )</td>
<td>( { x+y } )</td>
<td>( \emptyset )</td>
</tr>
<tr>
<td>( \text{out}<em>{\text{avail}}(2) = \text{in}</em>{\text{avail}}(2) )</td>
<td>( { x+y } )</td>
<td>( \emptyset )</td>
</tr>
<tr>
<td>( \text{in}<em>{\text{avail}}(3) = \text{out}</em>{\text{avail}}(2) )</td>
<td>( { x+y } )</td>
<td>( \emptyset )</td>
</tr>
<tr>
<td>( \text{out}<em>{\text{avail}}(3) = \text{in}</em>{\text{avail}}(3) )</td>
<td>( { x+y } )</td>
<td>( \emptyset )</td>
</tr>
</tbody>
</table>

Equivalent to: \( \text{in}_{\text{avail}}(2) = \{ x+y \} \lor \text{in}_{\text{avail}}(2) \) and recall that \( \lor \) (i.e., set intersection).

Many Applications!

- Static debugging
  - Memory errors in C/C++ programs
    - Memory leaks
    - Null pointer dereferences
    - Array-out-of-bound accesses
  - Concurrency errors in shared-memory apps
    - Data-races, atomicity violations, deadlocks
- Information flow (as known as taint analysis)

Many Applications!

- White-box testing: compute coverage
  - Control-flow-based testing
  - Data-flow-based testing
  - Intuitively, test each def-use chain
- Regression testing
  - Analyze changes and select regression tests that actually test changed code

Dataflow Analysis

- Classical technique
- Compared to Hoare logic, it captures state in a more coarse way
- Still relevant, many interesting problems are phrased in dataflow terms
Next Class

- MOP vs MFP solutions

- Two classical non-distributive dataflow analyses:
  - Constant propagation and
  - Points-to analysis