Dataflow Analysis: Dataflow Frameworks
Announcements

- I'll see you all in-person in SAGE 3713 on Monday!

- May push back homework
 - Keep asking questions on Submitty!
Outline of Today’s Class

- Catch up, the four classical dataflow problems
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm

Reading:
- Dragon Book, Chapter 9.2 and 9.3
Dataflow Analysis

1. Control-flow graph (CFG):
 - G = (N, E, 1)
 - Nodes are basic blocks

2. Data

3. Dataflow equations
 \[\text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j) \]
 (gen and kill are parameters)

4. Merge operator \(V \)
 \[\text{in}(j) = V \text{ out}(i) \]
 \(i \) is predecessor of \(j \)
Problem 1. Reaching Definitions

(Reach)

Problem statement: for each CFG node \(n \), compute the set of definitions \((x, k) \) that reach \(n \).

First, define **data** (i.e., the dataflow facts) to propagate:

- **Primitive dataflow facts** are definitions \((x, k) \)
- \(\text{Reach} \) propagates **sets** of definitions, e.g., \(\{(i,1), (p,4)\} \)
Reaching Definitions (*Reach*)

Next, define the dataflow equations (i.e., effect of code at node \(j \) on incoming dataflow facts)

\[j: x = y+z \]

\[\text{kill}(j): \text{all definitions of } (x, _) \]
\[\text{gen}(j): \text{this definition of } x, (x, j) \]

\[\text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j) \]

E.g., if \(\text{in}(4) = \{ (x, 1), (y, 2), (x, 3) \} \)

Node 4 is: \(x = y+z \)

Then \(\text{out}(4) = \{ (y, 2), (x, 4) \} \)
Next, define the merge operator V (i.e., how to combine data from incoming paths)

For $Reach$, V is the set union U

$$in(j) = \{ U \text{ out}(i) \mid i \text{ is predecessor of } j \}$$

E.g., if $\text{out}(2) = \{ (x,1), (y,2) \}$ and $\text{out}(3) = \{ (x,3) \}$ and 2 and 3 are predecessors of 4

$\text{in}(4) = \{ (x,1), (x,3), (y,2) \}$
Reach: Dataflow Equations

1. \(x = 5 \)

2. \(y = 1 \)

3. \(x \geq 2 \)

4. \(y = x \times y \)

5. \(x = x - 1 \)

6. goto 3

7. ...

\[\text{in}(1) = \emptyset \quad \text{out}(1) = (\text{in}(1) - D_x) \cup \{(x, 1)\} \]

\[\text{in}(2) = \text{out}(1) \quad \text{out}(2) = (\text{in}(2) - D_y) \cup \{(y, 2)\} \]

\[\text{in}(3) = \text{out}(2) \cup \text{out}(6) \quad \text{out}(3) = \text{in}(3) \]

\[\text{in}(4) = \text{out}(3) \quad \text{out}(4) = (\text{in}(4) - D_y) \cup \{(y, 4)\} \]

\[\text{in}(5) = \text{out}(4) \quad \text{out}(5) = (\text{in}(5) - D_x) \cup \{(x, 5)\} \]

\[\text{in}(6) = \text{out}(5) \quad \text{out}(6) = \text{in}(6) \]

\[\text{in}(7) = \text{out}(3) \]
Reach: Solution of Equations

1. \(x = 5 \)
 - \(\text{in}(1) = \emptyset \)
 - \(\text{out}(1) = \{(x,1)\} \)

2. \(y = 1 \)
 - \(\text{in}(2) = \{(x,1)\} \)
 - \(\text{out}(2) = \{(x,1), (y,2)\} \)

3. \(x \geq 2 \)
 - \(\text{in}(3) = \{(x,1),(x,5),(y,2),(y,4)\} \)
 - \(\text{out}(3) = \{(x,1),(x,5),(y,2),(y,4)\} \)

4. \(y = x \times y \)
 - \(\text{in}(4) = \{(x,1),(x,5),(y,2),(y,4)\} \)
 - \(\text{out}(4) = \{(x,1),(x,5),(y,4)\} \)

5. \(x = x - 1 \)
 - \(\text{in}(5) = \{(x,1),(x,5),(y,4)\} \)
 - \(\text{out}(5) = \{(x,5),(y,4)\} \)

6. goto 3

7. ...

8. in(6) = {(x,5),(y,4)}

9. in(7) = {(x,1),(x,5),(y,2),(y,4)}
Forward, may dataflow problem
Problem 2. Live Uses of Variables (Live)

- We say that a variable x is “live on exit from node j” if there is a live use of x on exit from j (recall the definition of “live use of x on exit from j”)

- Problem statement: for each node n, compute the set of variables that are live on exit from n.

1. $x=2$; 2. $y=4$; 3. $x=1$; if $(y>x)$ then 5. $z=y$; else 6. $z=y*y$; 7. $x=z$;

What variables are live on exit from statement 3? Statement 1?
Live Example

1. \(x=2\)

2. \(y=4\)

3. \(x=1\)

4. \(y > x\) [T/F]

5. \(z=y\)

6. \(z=y \times y\)

7. \(x=z\)
Live Uses of Variables (Live)

- Data
 - Primitive facts: variables x
 - Propagates sets: $\{x, y, z\}$

- Dataflow equations. At j: $x = y + z$
 - $\text{kill}_{LV}(j): \{x\}$
 - $\text{gen}_{LV}(j): \{y, z\}$

- Merge operator: set union U
Live Uses of Variables (*Live*)

- Problem statement: for each node n, compute the set of variables that may be live on exit from n.

\[
\text{in}_{LV}(j) = (\text{out}_{LV}(j) - \text{kill}_{LV}(j)) \cup \text{gen}_{LV}(j)
\]

\[
\text{out}_{LV}(j) = \{ \text{U in}_{LV}(i) \mid i \text{ is a successor of } j \}
\]
Problem 2: Live Uses of Variables

Backward, may dataflow problem

What are the primitive dataflow facts? Variables, e.g., x, y, z. Equations act on sets of variables.
Available Expressions

- An expression $x \text{ op } y$ is available at program point n if every path from entry to n evaluates $x \text{ op } y$, and there are NO subsequent assignments to x or y after evaluation and prior to reaching n.

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```

```
x = ...
y = ...
x \text{ op } x
```

```
x = ...
y = ...
x \text{ op } y
```
Problem 3. Available Expressions (Avail)

- Problem statement: For every node n, compute the set of expressions that are available at n
Avail Enables Global Common Subexpressions

\[
z = a \times b
\]
\[
r = 2 \times z
\]
\[
q = a \times b
\]
\[
\]
\[
u = a \times b
\]
\[
z = u / 2
\]
\[
w = a \times b
\]
Avail Enables Global Common Subexpressions

Can we eliminate $w = a \times b$?
Available Expressions (Avail)

- Data?
 - Primitive dataflow facts are expressions, e.g., \(x+y, a*b, a+2 \)
 - Analysis propagates sets of expressions, e.g., \{x+y, a*b\}

- Dataflow equations at \(j \): \(x = y \ op z? \)
 - \(\text{out}_{AE}(j) = (\text{in}_{AE}(j) - \text{kill}_{AE}(j)) \cup \text{gen}_{AE}(j) \)
 - \(\text{kill}_{AE}(j) \): all expressions with operand \(x \): \((x \ op _) \), \((_, \ op x) \)
 - \(\text{gen}_{AE}(j) \): new expression: \(\{ (y \ op z) \} \)
Available Expressions (Avail)

- Merge operator?
 - For Avail, it is set intersection \(\bigcap \)

\[
in_{AE}(j) = \{ \bigcap out_{AE}(i) \mid i \text{ is predecessor of } j \}
\]
1. $y = a + b$

2. $x = a \times b$

3. if $y \leq a \times b$

4. $a = a + 1$

5. $x = a \times b$

6. goto 3

7. ...
Problem 3: Available Expressions

Forward, must dataflow problem

What are the primitive dataflow facts? Expressions, e.g., $x+y$, $a*b$. Equations act on sets of expressions.
An expression **x op y** is **very busy** at node **n**, if along EVERY path from **n** to the end of the program, we come to a computation of **x op y** BEFORE any redefinition of **x** or **y**.
Very Busy Expressions (VeryB)

Data?

- Primitive dataflow facts are expressions, e.g., $x+y$, $a*b$
- Analysis propagates sets of expressions, e.g., \{x+y, a*b\}

Dataflow equations at j: $x = y \ op \ z$?

- $\text{in}_{\text{VB}}(j) = (\text{out}_{\text{VB}}(j) - \text{kill}_{\text{VB}}(j)) \cup \text{gen}_{\text{VB}}(j)$
- $\text{kill}_{\text{VB}}(j)$: all expressions with operand x: $(x \ op \ _) \ , \ (_ \ op \ x)$
- $\text{gen}_{\text{VB}}(j)$: new expression: \{ (y \ op \ z) \}
Very Busy Expressions (VeryB)

- Merge operator?
 - For VeryB, it is set intersection \bigcap

$$\text{out}_{\text{VB}}(j) = \{ \bigcap \text{in}_{\text{VB}}(i) \mid i \text{ is successor of } j \}$$
Very Busy Expressions

Backward, must dataflow problem

\[\text{out}_{VB}(j) \]

\[\text{out}_{VB}(i1) \]

\[\text{out}_{VB}(i2) \]

\[\text{out}_{VB}(i3) \]
Another Example: Taint Analysis

- A definition $i: x = \ldots (x,i)$ is **tainted** if
 - $i: x = \text{tainted_source}()$ is designated as a taint source
 - e.g., `deviceId=telephony_mgr.getDeviceId();`
 - or $i: x = y \text{ op } z$ and a tainted (y,j) or a tainted (z,k) reaches i

- Problem statement: for each node n, compute the set of tainted definitions that reach n.
1. \texttt{x=read()}
2. \texttt{y=1}
3. \texttt{x>=2}
4. \texttt{y=x*y}
5. \texttt{x=x-1}
6. \texttt{goto 3}
7. \texttt{z=y-1}

Example: Taint Analysis (explicit flow)
Outline of Today’s Class

- Catch up
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm

Reading:
- Dragon Book, Chapter 9.2 and 9.3
Dataflow Problems

<table>
<thead>
<tr>
<th></th>
<th>May Problems</th>
<th>Must Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Problems</td>
<td>Reaching Definitions</td>
<td>Available Expressions</td>
</tr>
<tr>
<td>Backward Problems</td>
<td>Live Uses of Variables</td>
<td>Very Busy Expressions</td>
</tr>
</tbody>
</table>

CSCI 4450/6450, A Milanova
Similarities

- Analyses operate over similar property spaces
- In all cases, analysis operates over a finite set D of primitive dataflow facts
 - $Reach$: D is the set of all definitions in the program:

 e.g., \{(x,1), (y,2), (x,4), (y,5)\}

 - $Avail$ and $VeryB$: D is the set of all arithmetic expressions:

 e.g., \{a+b, a*b, a+1\}

 - $Live$: D is the set of all variables

 e.g., \{x, y, z\}
- Solution at node n is a subset of D (e.g., a definition either reaches n or it does not reach n)
Similarities

- Dataflow equations have the same form (from now on, we’ll focus on forward problems):
 \[
 \text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j) = \\
 (\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j)
 \]
 \[
 \text{in}(j) = \{ \text{V out}(i) \mid i \text{ is predecessor of } j \}
 \]

- \text{pres}(j) is the complement of \text{kill}(j)

- A note: what makes the 4 classical problems special is that sets \text{kill}(j)/\text{pres}(j) and \text{gen}(j) do not depend on \text{in}(j)

- Set union and set intersection can be implemented as logical OR and AND respectively
Similarities

- The dataflow equation at node j is a transfer function. It takes $\text{in}(j)$ as argument and produces $\text{out}(j)$ as result:

 \[\text{out}(j) = f_j(\text{in}(j)) \]
Dataflow Frameworks

- We generalize and study the properties of the property space
 - Property space is a lattice
 - Choice settles merge operator
- We generalize and study the properties of the transfer function space
 - Functions are monotone or distributive
- We generalize and study the properties of the worklist algorithm that computes a solution
Lattices

- Partial ordering (denoted by \leq or \sqsubseteq)
 - Relation between pairs of elements
 - Reflexive $a \leq a$
 - Anti-symmetric $a \leq b$ and $b \leq a \Rightarrow a = b$
 - Transitive $a \leq b$ and $b \leq c \Rightarrow a \leq c$

- Partially ordered set (poset) (set S, \leq)
 - 0 element $0 \leq a$, for every a in S
 - 1 element $a \leq 1$, for every a in S

We don’t necessarily need 0 or 1 element
Poset Example

D = \{a, b, c\}
The poset is 2^D, \leq is set inclusion
Greatest lower bound (glb)

Let \(l_1, l_2 \) in poset \(S \), \(a \) in poset \(S \) is the \(\text{glb}(l_1, l_2) \) iff

1) \(a \leq l_1 \) and \(a \leq l_2 \)
2) for any \(b \) in \(S \), \(b \leq l_1, b \leq l_2 \) implies \(b \leq a \)

If glb exists, it is unique. Why? Called meet (denoted by \(\land \) or \(\sqcap \)) of \(l_1 \) and \(l_2 \).

Least upper bound (lub)

Let \(l_1, l_2 \) in poset \(S \), \(c \) in poset \(S \) is the \(\text{lub}(l_1, l_2) \) iff

1) \(c \geq l_1 \) and \(c \geq l_2 \)
2) for any \(d \) in \(S \), \(d \geq l_1, d \geq l_2 \) implies \(d \geq c \)

If lub exists, it is unique. Called join (denoted by \(\lor \) or \(\sqcup \)) of \(l_1 \) and \(l_2 \).
Definition of a Lattice \((L, \Lambda, V)\)

- A lattice \(L\) is a poset under \(\leq\), such that every pair of elements has a **glb** (meet) and **lub** (join).

- A lattice need not contain a 0 or 1 element.
- A finite lattice must contain 0 and 1 elements.
- Not every poset is a lattice.
- If there is element \(a\) such that \(a \leq x\) for every \(x\) in \(L\), then \(a\) is the 0 element of \(L\).
- If there is \(a\) such that \(x \leq a\) for every \(x\) in \(L\), then \(a\) is the 1 element of \(L\).
A Poset but Not a Lattice

There is no \(\text{lub}(e_3,e_4) \) in this poset so it is not a lattice.

Suppose we add the \(\text{lub}(e_3,e_4) \), is it a lattice?
Is This Poset a Lattice

D = \{a,b,c\}
The poset is 2^D, \leq \text{ is set inclusion}
Examples of Lattices

- $H = (2^D, \cap, \cup)$ where D is a finite set
 - $\text{glb}(s_1, s_2)$ denoted $s_1 \land s_2$, is set intersection $s_1 \cap s_2$
 - $\text{lub}(s_1, s_2)$ denoted $s_1 \lor s_2$, is set union $s_1 \cup s_2$

- $J = (N_1, \gcd, \text{lcm})$
 - Partial order is integer divide on N_1
 - $\text{lub}(n_1, n_2)$ denoted $n_1 \lor n_2$ is $\text{lcm}(n_1, n_2)$
 - $\text{glb}(n_1, n_2)$ denoted $n_1 \land n_2$ is $\gcd(n_1, n_2)$

(N_1 denotes natural numbers starting at 1)
A poset C where for every pair of elements c_1, c_2 in C, either $c_1 \leq c_2$ or $c_2 \leq c_1$.

- E.g., $\emptyset \leq \{a\} \leq \{a,b\} \leq \{a,b,c\}$
- E.g., from the lattice J as shown here,

 $1 \leq 2 \leq 6 \leq 30$
 $1 \leq 3 \leq 15 \leq 30$

A lattice s.t. every ascending chain is finite, is said to satisfy the Ascending Chain Condition.
Lattices in Dataflow Analysis

- Lattices define property space

- Lattice properties lead to certain properties of the standard dataflow analysis solution procedure (the worklist algorithm, which we will study shortly)
Dataflow Lattices: \textit{Reach}

\[\text{D} = \text{all definitions:} \{(x,1),(x,4),(a,3)\} \quad \{(x,1),(x,4),(a,3)\} \]

Poset is \(2^\text{D}\), \(\leq\) is the subset relation \(\sqsubseteq\)

1. \(x = a \cdot b\)

2. if \(y \leq a \cdot b\)

3. \(a = a + 1\)

4. \(x = a \cdot b\)

5. goto 3

CSCI 4450/6450, A Milanova
Dataflow Lattices: **Avail**

\[D = \text{all expressions: \{a*b, a+1, y*z\}} \]

Poset is \(2^D, \leq \) is the superset relation \(\supseteq \)

1. \(x := a*b \)
2. if \(y*z \leq a*b \)
3. \(a := a+1 \)
4. \(x := a*b \)
5. goto 2
Dataflow Framework

Equations:

\[\text{in}(j) = V \text{out}(i) \quad \text{out}(j) = f_j(\text{in}(j)) \]

where:

\[i \text{ in pred}(j) \]

- \(\text{in}(j), \text{out}(j) \) are elements of a property space
- \(f_j \) is the transfer function associated with node \(j \)
- \(V \) is the merge operator
The property space must be:

1. A lattice \(L, \leq \)

2. \(L \) satisfies the \textit{Ascending Chain Condition}

 Requires that all ascending chains are finite
The merge operator V must be the join of L.

In dataflow, L is often the lattice of the subsets over a finite set of dataflow facts D:

- Choose universal set D (e.g., all definitions).
- Choose ordering operation \leq. Since the merge operator must be the join of L, a *may* problem sets \leq to *subset* and a *must* problem sets \leq to *superset*.
Example: *Reach* Lattice

- Property space is the lattice of the subsets where
 - \mathcal{D} is the set of all definitions in the program
 - \subseteq is the **subset** operation
 - Join is set union \cup, as needed for *Reach*, which is a *may* problem

- Lattice has a 0 being \emptyset, and a 1 being \mathcal{D}
- Lattice satisfies the *Ascending Chain Condition*
Reach Lattice

\[D = \text{all definitions:}\{(x,1),(x,4),(a,3)\} \quad \{(x,1),(x,4),(a,3)\} \]

Poset is \(\mathbb{2}^D \), \(\leq \) is the subset relation \(\sqsubseteq \)

1. \(x = a \cdot b \)
2. if \(y \leq a \cdot b \)
3. \(a = a + 1 \)
4. \(x = a \cdot b \)
5. goto 3
Example: Avail Lattice

- Property space is the lattice of the subsets where
 - D is the set of all expressions in the program
 - \(\leq \) is superset
 - join of the lattice is set intersection, as needed for Avail, which is a must problem

- Lattice has a 0 being D, and a 1 being {};
- Lattice satisfies Ascending Chain Condition
Dataflow Lattices: \textit{Avail}

D = all expressions: \{a*b, a+1, y*z\}

Poset is 2^D, \leq is the superset relation \supseteq

1. $x := a*b$

2. if $y*z \leq a*b$

3. $a := a+1$

4. $x := a*b$

5. goto 2
A problem fits into the dataflow framework if
- its property space is a lattice L, \leq that satisfies the Ascending Chain Condition
- its merge operator V is the join of L
and
- its transfer function space $F: L \rightarrow L$ is monotone

Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm
Next…

- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution