Outline of Today’s Class
- Catch up
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm

Reading:
- Dragon Book, Chapter 9.2 and 9.3

Dataflow Analysis: Dataflow Frameworks

Outline of Today’s Class
- Catch up
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm

Spring 19 CSCI 4450/6450, A Milanova

Dataflow Analysis

1. Control-flow graph (CFG):
 - $G = (N, E, 1)$
 - Nodes are basic blocks
2. Data
3. Dataflow equations
 $$\text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j)$$
 (gen and kill are parameters)
4. Merge operator V
 $$\text{in}(j) = V \text{out}(i)$$
 i is predecessor of j

Problem 1: Reaching Definitions

1. $x=2$
2. $y=4$
3. $x=1$
4. $(y>x)$ then $5. z=y$
 else $6. z=y*y$
7. $x=z$

What variables are live on exit from statement 3? Statement 1?

Problem 2. Live Uses of Variables (Live)

- We say that a variable x is “live on exit from node j” if there is a live use of x on exit from j (recall the definition of “live use of x on exit from j”)
- Problem statement: for each node n, compute the set of variables that may be live on exit from n.

1. $x=2$
2. $y=4$
3. $x=1$
4. $(y>x)$ then $5. z=y$
 else $6. z=y*y$
7. $x=z$

What variables are live on exit from statement 3? Statement 1?

Live Example
Problem statement: for each node \(n \), compute the set of variables that may be live on exit from \(n \).

\[
\begin{align*}
\text{in}_{LV}(j) &= (\text{out}_{LV}(j) \cup \text{gen}_{LV}(j)) \\
\text{out}_{LV}(j) &= \{ \cup \text{in}_{LV}(i) \mid i \text{ is a successor of } j \}
\end{align*}
\]

Q: What are the primitive dataflow facts?
Q: What is \(\text{gen}_{LV}(j) \)?
Q: What is \(\text{kill}_{LV}(j) \)?

Problem 3: Available Expressions (Avail)

An expression \(x \ op \ y \) is available at program point \(n \) if every path from entry to \(n \) evaluates \(x \ op \ y \), and after every evaluation prior to reaching \(n \), there are NO subsequent assignments to \(x \) or \(y \).

Can we eliminate \(w=a*b \)?
Available Expressions (Avail)

- Data?
 - Primitive dataflow facts are expressions, e.g., x+y, a*b, a+2
 - Analysis propagates sets of expressions, e.g., \{x+y, a*b\}
- Dataflow equations at j: x = y op z?
 - out_{AE}(j) = (in_{AE}(j) - kill_{AE}(j)) \cup gen_{AE}(j)
 - kill_{AE}(j): all expressions with operand x:
 - (x op _), (_ op x)
 - gen_{AE}(j): new expression: \{(y op z)\}

Example

1. y=a+b
2. x=a*b
3. if y<=a*b
4. a=a+1
5. x=a*b
6. goto 3
7. ...

Problem 3: Available Expressions

- Merge operator?
 - For Avail, it is set intersection \(\bigcap \)
 \[in_{AE}(j) = \bigcap \{ out_{AE}(i) \mid i \text{ is predecessor of } j \} \]

Problem 4: Very Busy Expressions (VeryB)

- An expression \(x \ op \ y \) is very busy at node \(n \), if along EVERY path from \(n \) to the end of the program, we come to a computation of \(x \ op \ y \) BEFORE any redefinition of \(x \) or \(y \).

Very Busy Expressions (VeryB)

- Data?
 - Primitive dataflow facts are expressions, e.g., x+y, a*b
 - Analysis propagates sets of expressions, e.g., \{x+y, a*b\}
- Dataflow equations at j: x = y op z?
 - in_{VB}(j) = (out_{VB}(j) - kill_{VB}(j)) \cup gen_{VB}(j)
 - kill_{VB}(j): all expressions with operand x:
 - (x op _), (_ op x)
 - gen_{VB}(j): new expression: \{(y op z)\}
Very Busy Expressions (VeryB)

- Merge operator?
 - For VeryB, it is set intersection \(\bigcap \)

 \[\text{out}_{\text{VeryB}}(j) = \bigcap \text{in}_{\text{VeryB}}(i) \mid i \text{ is successor of } j \]

Another Example: Taint Analysis

- A definition \((x, k)\) is tainted if \(k\) is designated as a taint source, or \((x, k)\) is computed based on an operand that is tainted.

- Problem statement: for each node \(n\), compute the set of tainted definitions that may reach \(n\).

Outline of Today’s Class

- Catch up
- Dataflow frameworks
- Lattice
- Transfer functions
- Worklist algorithm

- Reading:
 - Dragon Book, Chapter 9.2 and 9.3

Dataflow Problems

<table>
<thead>
<tr>
<th></th>
<th>May Problems</th>
<th>Must Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Problems</td>
<td>Reaching Definitions</td>
<td>Available Expressions</td>
</tr>
<tr>
<td>Backward Problems</td>
<td>Live Uses of Variables</td>
<td>Very Busy Expressions</td>
</tr>
</tbody>
</table>
Similarities

- Analyses operate over similar property spaces.
- In all cases, analysis operates over a finite set \(D \) of primitive dataflow facts.
 - Reach: \(D \) is the set of all definitions in the program:

 \[\{(x,1), (y,2), (x,4), (y,5)\} \]
 - Avail and VeryB: \(D \) is the set of all arithmetic expressions:

 \[\{a+b, a*a, a+1\} \]
 - Live: \(D \) is the set of all variables

 \[\{x, y, z\} \]

- Solution at node \(n \) is a subset of \(D \) (e.g., a definition either reaches \(n \) or it does not reach \(n \)).

Dataflow Frameworks

- We generalize and study the properties of the property space.
 - Property space is a lattice.
 - Choice settles merge operator.
- We generalize and study the properties of the transfer function space.
 - Functions are monotone or distributive.
- We generalize and study the properties of the worklist algorithm that computes a solution.

Lattice Theory

- Partial ordering (denoted by \(\leq \) or \(\sqsubseteq \)):
 - Relation between pairs of elements
 - Reflexive \(a \leq a \)
 - Anti-symmetric \(a \leq b \) and \(b \leq a \implies a = b \)
 - Transitive \(a \leq b \) and \(b \leq c \implies a \leq c \)
- Partially ordered set (poset) (set \(S \), \(\leq \)):
 - 0 Element \(0 \leq a \), for every \(a \) in \(S \)
 - 1 Element \(a \leq 1 \), for every \(a \) in \(S \)

We don’t necessarily need 0 and 1 element.

Poset Example

\[D = \{a, b, c\} \]

The poset is \(2^3 \), \(\leq \) is set inclusion.
Lattice Theory

- Greatest lower bound (glb)
 - \(l_1, l_2 \) in poset \(S \), \(a \) in poset \(S \) is the glb\((l_1, l_2)\) iff
 1) \(a \leq l_1 \) and \(a \leq l_2 \)
 2) for any \(b \) in \(S \), \(b \leq l_1, b \leq l_2 \) implies \(b \leq a \)

- Least upper bound (lub)
 - \(l_1, l_2 \) in poset \(S \), \(c \) in poset \(S \) is the lub\((l_1, l_2)\) iff
 1) \(c \geq l_1 \) and \(c \geq l_2 \)
 2) for any \(d \) in \(S \), \(d \geq l_1, d \geq l_2 \) implies \(d \geq c \)

If glb exists, it is unique. Why? Called meet (denoted by \(\wedge \) or \(\cap \)) of \(l_1 \) and \(l_2 \).

If lub exists, it is unique. Called join (denoted by \(V \) or \(\cup \)) of \(l_1 \) and \(l_2 \).

Definition of a Lattice \((L, \wedge, V)\)

- A lattice \(L \) is a poset under \(\leq \), such that every pair of elements has a glb (meet) and lub (join)

- A lattice need not contain a 0 or 1 element
- A finite lattice must contain 0 and 1 elements
- Not every poset is a lattice
- If there is element \(a \) such that \(a \leq x \) for every \(x \) in \(L \), then \(a \) is the 0 element of \(L \)
- If there is \(a \) such that \(x \leq a \) for every \(x \) in \(L \), then \(a \) is the 1 element of \(L \)

Examples of Lattices

- \(H = (2^D, \cap, U) \) where \(D \) is a finite set
 - glb\((s_1, s_2)\) denoted \(s_1 \cap s_2 \), is set intersection \(s_1 \cap s_2 \)
 - lub\((s_1, s_2)\) denoted \(s_1 \cup s_2 \), is set union \(s_1 \cup s_2 \)
 - \(J = (\mathbb{N}, \gcd, \text{lcm}) \)
 - Partial order is integer divide on \(\mathbb{N} \)
 - lub\((n_1, n_2)\) denoted \(\text{lcm}(n_1, n_2) \)
 - glb\((n_1, n_2)\) denoted \(\gcd(n_1, n_2) \)
 (\(\mathbb{N} \) denotes natural numbers starting at 1)

Chain

- A poset \(C \) where for every pair of elements \(c_1, c_2 \) in \(C \), either \(c_1 \leq c_2 \) or \(c_2 \leq c_1 \)
 - E.g., \(\emptyset \leq \{a\} \leq \{a,b\} \leq \{a,b,c\} \)
 - E.g., from the lattice \(J \) as shown here,
 \[1 \leq 2 \leq 6 \leq 30 \]
 \[1 \leq 3 \leq 15 \leq 30 \]
 - A lattice s.t. every ascending chain is finite, is said to satisfy the Ascending Chain Condition
Lattices in Dataflow Analysis

- Lattices define property space
- Lattices entail properties of the standard dataflow analysis solution procedure (the worklist algorithm, which we will study shortly).

Dataflow Lattices: Reach

\[D = \text{all definitions:}\{(x,1),(x,4),(a,3)\} \]

Poset is \(\mathbb{2} \), \(\leq \) is the subset relation

\[
\begin{align*}
1. & x = a \cdot b \\
2. & y \leq a \cdot b \\
3. & a = a + 1 \\
4. & x = a \cdot b \\
5. & \text{goto 3}
\end{align*}
\]

Dataflow Lattices: Avail

\[D = \text{all expressions:}\{a \cdot b, a + 1, y \cdot z\} \]

Poset is \(\mathbb{2} \), \(\supseteq \) is the superset relation

\[
\begin{align*}
1. & x = a \cdot b \\
2. & y \leq a \cdot b \\
3. & a = a + 1 \\
4. & x = a \cdot b \\
5. & \text{goto 2}
\end{align*}
\]

Dataflow Frameworks

- Equations:
 \[\text{in}(i) = V \text{out}(i), \quad \text{out}(j) = f_j(\text{in}(j)) \]

 where:
 - \(\text{in}(i), \text{out}(j) \) are elements of a property space
 - \(f_j \) is the transfer function associated with node \(j \)
 - \(V \) is the merge operator

Dataflow Frameworks (cont.)

- The property space must be:
 1. A lattice \(L, \leq \)
 2. \(L \) satisfies the Ascending Chain Condition
 Requires that all ascending chains are finite
- The merge operator \(V \) must be the join of \(L \)
- In dataflow, \(L \) is often the lattice of the subsets over a finite set of dataflow facts \(D \)
 - Choose universal set \(D \) (e.g., all definitions)
 - Choose ordering operation \(\leq \). Since the merge operator is must be the join of \(L \), a may problem entails that \(\leq \) is subset. Conversely, a must problem entails that \(\leq \) is superset.

Example: Reach Lattice

- Property space is the lattice of the subsets where
 - \(D \) is the set of all definitions in the program
 - \(\leq \) is the subset operation
 - \(\text{Join} \) is set union \(\cup \), as needed for \(\text{Reach} \), which is a may problem
 - Lattice has \(0 \) being \(\emptyset \), and \(1 \) being \(D \)
 - Lattice satisfies the Ascending Chain Condition
Reach Lattice

- \(D \) = all definitions: \{(x,1),(x,4),(a,3)\}
- \(\leq \) is the subset relation
- \(1 \)

Example: Avail Lattice

- Property space is the lattice of the subsets where
 - \(D \) is the set of all expressions in the program
 - \(\leq \) is superset
 - \(\text{join} \) of the lattice is set intersection, as needed for \(\text{Avail} \), which is a must problem

- Lattice has \(0 \) being \(D \), and \(1 \) being \(\emptyset \)
- Lattice satisfies *Ascending Chain Condition*

Dataflow Lattices: Avail

- \(D = \) all expressions: \{a*b,a+1,y*z\}
- \(\leq \) is the superset relation

Transfer Functions

- The transfer functions: \(f_j : L \rightarrow L \). Formally, function space \(F \) is such that
 1. \(F \) contains all \(f_j \),
 2. \(F \) contains the identity function \(\text{id}(x) = x \)
 3. \(F \) is closed under composition.
 4. Each \(f_j \) is monotone

Monotonicity

- \(F : L \rightarrow L \) is monotone if and only if:
 1. \(a, b \) in \(L \), \(f \) in \(F \) then \(a \leq b \implies f(a) \leq f(b) \)
 or (equivalently):
 2. \(x, y \) in \(L \), \(f \) in \(F \) then \(f(x) \lor f(y) \leq f(x \lor y) \)

- Theorem: Definitions (1) and (2) are equivalent.
 - Show that (1) implies (2)
 - Show that (2) implies (1)

Distributivity

- \(F : L \rightarrow L \) is distributive if and only if
 1. \(x, y \) in \(L \), \(f \) in \(F \) then \(f(x \lor y) = f(x) \lor f(y) \)

- Every distributive function is also monotone but not the other way around
 - Distributivity is a very nice property!
Monotonicity and Distributivity

- Is classical Reach distributive?
 - Yes
 - To show distributivity:
 - For each \(j \) \((\text{in}(j) \cup \text{in}'(j)) \cap \text{pres}(j)) \cup \text{gen}(j) = ((\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j)) \cup ((\text{in}'(j) \cap \text{pres}(j)) \cup \text{gen}(j)) \)
 - \((\text{in}(j) \cup \text{in}'(j)) \cap \text{pres}(j)) \cup \text{gen}(j) = ((\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j)) \cup ((\text{in}'(j) \cap \text{pres}(j)) \cup \text{gen}(j)) \)

Spring 19 CSCI 4450/6450, A. Milanova

Monotone Dataflow Frameworks

- A problem fits into the dataflow framework if
 - its property space is a lattice \(L, \leq \) that satisfies the Ascending Chain Condition
 - its merge operator \(V \) is the join of \(L \) and
 - its function space \(F: L \rightarrow L \) is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm

Worklist Algorithm for Forward Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
inReach(1) = UNDEF (or {})
for m = 2 to n do
 in(m) = 0
 inReach(m) = {}
W = \{1,2,...,n\} /* put every node on the worklist */
while W \(\neq \) Ø do{
 remove j from W
 out(j) = \(f_j(\text{in}(j)) \)
 for i in successors(j)
 if \(\text{out}(i) \leq \text{in}(j) \) then{
 if \(\text{out}(i) \neq \text{in}(i) \) then{
 \(\text{inReach}(i) = \text{inReach}(i) \cup \text{pres}(i) \cup \text{gen}(i) \)
 \(\text{out}(i) = \text{out}(i) \cup \text{gen}(i) \)
 }
 }
 W = W \cup \{ i \}
}

Worklist Algorithm for Forward Dataflow Problems (slightly different)

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
inReach(1) = UNDEF (or {})
for m := 2 to n do
 in(m) = 0
 out(m) = \(f_m(0) \)
W := \{2,...,n\} /* put every node but 1 on the worklist */
while W \(\neq \) Ø do{
 remove j from W
 in(j) = \(\bigvee \{ \text{out}(i) | i \text{ is predecessor of } j \} \)
 out(j) = \(f_j(\text{in}(j)) \)
 if out(j) changed then
 W = W \cup \{ k | k \text{ is successor of } j \}
}

Termination Argument

- Why does the algorithm terminate?
 - Sketch of proof:
 - At each iteration, at least one \(\text{out}(j) \) changes.
 - Since \(\text{out}(j) \) in \(L \), and \(L \) satisfies the Ascending Chain Condition, \(\text{out}(j) \) changes at most \(O(h) \) times where \(h \) is the height of the lattice \(L \)

Correctness Argument

- Theorem: The worklist algorithm computes a solution that satisfies the dataflow equations
 - Why?
 - Sketch of proof:
 - Whenever \(j \) is processed, algorithms sets \(\text{out}(j) = f_j(\text{in}(j)) \). Whenever \(\text{out}(j) \) changes, algorithm puts successors on the list, so \(\text{in}(j) = \bigvee \{ \text{out}(i) \} \).
 - So final solution will satisfy equations.
Precision Argument

- **Theorem:** The algorithm computes the least solution of the dataflow equations.
 - Historically though, this solution is often called the maximal fixpoint solution (MFP).
 - I.e., For every node j, the worklist algorithm computes a solution $\text{MFP}(j) = \{\text{in}(j), \text{out}(j)\}$, such that every other solution $\{\text{in}'(j), \text{out}'(j)\}$ of the dataflow equations is $\text{in}(j) \leq \text{in}'(j)$, $\text{out}(j) \leq \text{out}'(j)$.

Example

<table>
<thead>
<tr>
<th>Solution1</th>
<th>Solution2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

1. $z = x + y$
 - $\text{in}_{\text{avail}}(1) = \emptyset$
 - $\text{out}_{\text{avail}}(1) = \{\text{in}_{\text{avail}}(1) \cup \{x+y\}\}

2. if ($z > 500$)
 - $\text{in}_{\text{avail}}(2) = \emptyset$
 - $\text{out}_{\text{avail}}(2) = \emptyset$

3. skip
 - $\text{in}_{\text{avail}}(3) = \emptyset$
 - $\text{out}_{\text{avail}}(3) = \emptyset$

Equivalent to: $\text{in}_{\text{avail}}(2) = \{x+y\}$ and recall that \cap is \land (i.e., set intersection).

Many Applications!

- Static debugging
 - Memory errors in C/C++ programs
 - Memory leaks
 - Null pointer dereferences
 - Array-out-of-bound accesses
 - Concurrency errors in shared-memory apps
 - Data-races, atomicity violations, deadlocks
- Information flow (as known as taint analysis)

Dataflow Analysis

- Classical technique
- Compared to Hoare logic, it captures state in a more coarse way
- Still relevant, many interesting problems are phrased in dataflow terms

Next Class

- MOP vs MFP solutions
- Two classical non-distributive dataflow analyses:
 - Constant propagation and
 - Points-to analysis