Announcements

- Homework is due Thursday (may extend)
 - Problem 6(b) is Extra credit
 - Submit in Submitty
 - Lock your team. Max size is 3. Ideal size is 2

- I’m away on Thursday and Friday
 - No class on Thursday
 - Quiz 1 today at the end of class

Outline of Today’s Class

- Dataflow frameworks, conclusion
- MOP solution vs. MFP solution
- Non-distributive analyses
 - Constant propagation

Catch up: Definition of a Lattice
(L, \leq)

- A lattice L is a poset under \leq, such that every pair of elements has a glb (meet) and lub (join)

- A lattice need not contain a 0 or a 1 element
- A finite height lattice must contain 0 and 1
- Not every poset is a lattice
- If there is element a such that $a \leq x$ for every x in L, then a is the 0 element of L
- If there is a such that $x \leq a$ for every x in L, then a is the 1 element of L

Catch up: Is This Lattice?

$D = \{a, b, c\}$

Poset is 2^3, \leq is set inclusion

D = \{a, b, c\}

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This a Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Poset a Lattice

$D = \{a, b, c\}$

\{(a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova

Catch up: Is This Lattice?

$D = \{a, b, c\}$

\{(a), (b), (c), (a, b), (a, c), (b, c), \emptyset\}

Spring 20 CSCI 4450/6450, A Milanova
A poset C where for every pair of elements c_1, c_2 in C, either $c_1 \leq c_2$ or $c_2 \leq c_1$.
- E.g., $\emptyset \leq \{a\} \leq \{a,b\} \leq \{a,b,c\}$
- E.g., from the lattice J as shown here,
 - $1 \leq 2 \leq 6 \leq 30$
 - $1 \leq 3 \leq 15 \leq 30$
- A lattice s.t. every ascending chain is finite, is said to satisfy the Ascending Chain Condition.

Lattices define property space
- Lattice properties lead to properties of the standard dataflow analysis solution procedure (the worklist algorithm, which we will study shortly)

A problem fits into the dataflow framework if
- its property space is a lattice L, \leq that satisfies the Ascending Chain Condition
- its merge operator V is the join of L
- its transfer function space F: $L \rightarrow L$ is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm

Property space is the lattice of the subsets where
- D is the set of all definitions in the program
- \leq is the subset operation
- Join is set union \cup. (Merge in Reach is set union, merge operator is join of lattice, thus \leq is subset.)
- Lattice has \emptyset being \emptyset, and 1 being D
- Lattice satisfies the Ascending Chain Condition
Catch up: *Reach* Lattice

\[\mathcal{D} = \text{all definitions: } \{(x,1),(x,4),(a,3)\} \]

Poset is 2\(^n\), \(\leq\) is the subset relation

1. \(x = a \cdot b\)
2. \(y = a \cdot b\)
3. \(a = a + 1\)
4. \(x = a \cdot b\)
5. goto 3

Catch up: *Avail* Lattice

Property space is the lattice of the subsets where

- \(\mathcal{D}\) is the set of all expressions in the program
- \(\leq\) is *superset*
 - join operation of the lattice is set intersection, since the merge operator in *Avail* is set intersection

- Lattice has 0 being \(\mathcal{D}\), and 1 being \(\emptyset\)
- Lattice satisfies *Ascending Chain Condition*

Catch up: *Avail* lattice

\[\mathcal{D} = \text{all expressions: } \{a \cdot b, a + 1, y \cdot z\} \]

Poset is 2\(^n\), \(\supseteq\) is the superset relation

1. \(x \leftarrow a \cdot b\)
2. if \(y \leq a \cdot b\)
3. \(a \leftarrow a + 1\)
4. \(x \leftarrow a \cdot b\)
5. goto 2

Catch up: Transfer Functions

- The transfer functions
 \[\text{out}(j) = (\text{in}(j)) \cap \text{pres}(j) \cup \text{gen}(j) \]
 or \(\text{out}(j) = f_j(\text{in}(j))\)

- **The transfer functions:** \(f: L \rightarrow L\). Formally, function space \(F\) is such that
 1. \(F\) contains all \(f_j\)
 2. \(F\) contains the identity function \(\text{id}(x) = x\)
 3. \(F\) is closed under composition
 4. Each \(f\) is monotone

Catch up: Monotonicity

- \(F: L \rightarrow L\) is *monotone* if and only if:
 1. \(a, b \in L, f \in F\) then \(a \leq b \implies f(a) \leq f(b)\)
 or (equivalently):
 2. \(x, y \in L, f \in F\) then \(f(x) \vee f(y) \leq f(x \vee y)\)

- Theorem: Definitions (1) and (2) are equivalent.
 - Show that (1) implies (2)
 - Show that (2) implies (1)

Catch up: Distributivity

- \(F: L \rightarrow L\) is *distributive* if and only if
 \(x, y \in L, f \in F\) then \(f(x \vee y) = f(x) \vee f(y)\)

- Every distributive function is also monotone but not the other way around

- Distributivity is a very nice property!
Catch up: Monotonicity and Distributivity

- Is classical Reach distributive?
 - Yes
 - Key property: \(\text{pres}(j) \) and \(\text{gen}(j) \) are constants
 - To show distributivity we have to show:
 - For each \(j \) \(\left((X \cup Y) \cap \text{pres}(j) \right) \cup \text{gen}(j) = (X \cap \text{pres}(j)) \cup (Y \cap \text{pres}(j)) \cup \text{gen}(j) \)

Monotone Dataflow Frameworks

- A problem fits into the dataflow framework if
 - its property space is a lattice \(L, \leq \) that satisfies the Ascending Chain Condition
 - its merge operator \(V \) is the join of \(L \) and
 - its transfer function space \(F: L \to L \) is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm

Worklist Algorithm for Forward Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
in_{\text{Reach}}(1) = \text{UNDEF}
for m = 2 to n do
 in(m) = 0
 in_{\text{Reach}}(m) = \emptyset
W = \{1,2,\ldots,n\} /* put every node on the worklist */
while W \(\neq \emptyset \) do {
 remove j from W
 in(j) = V \left\{ \text{out}(i) \mid i \text{ is predecessor of } j \right\}
 if out(j) \leq in(j) then {
 out(j) = f_j(\text{in}(j))
 if out(j) changed then
 W = W \cup \{ k \mid k \text{ is successor of } j \}
 }
 W = W \cup \{ i \}
}

Worklist Algorithm for Forward Dataflow Problems (slightly different)

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
in_{\text{Reach}}(1) = \text{UNDEF} out(1) = f_1(\text{in}(1))
for m = 2 to n do
 in(m) = 0
 out(m) = f_m(0)
W = \{2,\ldots,n\} /* put every node but 1 on the worklist */
while W \(\neq \emptyset \) do {
 remove j from W
 in(j) = V \left\{ \text{out}(i) \mid i \text{ is predecessor of } j \right\}
 if out(j) changed then
 W = W \cup \{ k \mid k \text{ is successor of } j \}
}

Termination Argument

- Why does the algorithm terminate?
- Sketch of argument:
 - At each “phase”, at least one \(\text{out}(j) \) changes.
 - Monotonicity of \(f_j \) entails that change is up the chain: \(\text{out}(j) \geq \text{out}(j) \).
 - Since \(\text{out}(j) \) in \(L \), and \(L \) satisfies the Ascending Chain Condition, \(\text{out}(j) \) changes at most \(O(h) \) times where \(h \) is the height of the lattice \(L \).
Precision Argument

- Theorem: The algorithm computes the least solution of the dataflow equations.
 - Historically though, this solution is called the maximal fixpoint solution (MFP)
 - I.e., For every node \(j \), the worklist algorithm computes a solution \(MFP(j) = \{ \text{in}(j), \text{out}(j) \} \), such that every other solution \(\{ \text{in}'(j), \text{out}'(j) \} \) of the dataflow equations is \(\text{in}(j) \leq \text{in}'(j), \text{out}(j) \leq \text{out}'(j) \)

Example

\[
\begin{align*}
1. & \quad z := x + y \\
2. & \quad \text{if } (z > 500) \\
3. & \quad \text{skip}
\end{align*}
\]

\[
\begin{align*}
\text{in}_{\text{avail}}(2) &= \text{out}_{\text{avail}}(1) \\
\text{in}_{\text{avail}}(3) &= \text{out}_{\text{avail}}(2) \\
\text{in}_{\text{avail}}(1) &= \emptyset \\
\text{out}_{\text{avail}}(2) &= \text{in}_{\text{avail}}(2) \\
\text{out}_{\text{avail}}(3) &= \text{in}_{\text{avail}}(3) \\
\text{out}_{\text{avail}}(1) &= (\text{in}_{\text{avail}}(1) - E_z) \cup \{x + y\}
\end{align*}
\]

Equivalent to: \(\text{in}_{\text{avail}}(2) = \{x + y\} \) and recall that \(\cap \) (i.e., set intersection).

Question

Willy Wazoo changed the worklist algorithm to initialize to 1.

\[
\begin{align*}
\text{in}(1) &= \text{InitialValue}; \\
\text{in}_{\text{avail}}(1) &= \emptyset \\
\text{for } m = 2 \text{ to } n & \text{ do } \text{in}(m) = 1 \\
 W &= \{1, 2, ..., n\}" \\
\text{while } W \neq \emptyset \text{ do } \{ \\
 & \quad \text{remove } j \text{ from } W \\
 & \quad \text{out}(j) = f_j(\text{in}(j)) \\
 & \quad \text{for } i \text{ in } \text{successors}(j) \quad \text{if } \text{out}(j) \subseteq \text{in}(i) \text{ then } \{ \\
 & \quad \quad \text{in}(i) = \text{out}(j) \cup \text{in}(i) \\
 & \quad \quad \text{W} = \text{W} \cup \{i\} \\
\} \\
\}\end{align*}
\]

1. Does Willy’s algorithm compute an over-approximation or an under-approximation of the MFP?

Meet Over All Paths (MOP)

- Desired dataflow information at \(n \) is obtained by traversing ALL PATHS from 1 (entry node) to \(n \).
 - For every path \(p = (1, n_2, n_3, ..., n_k) \) we compute \(f_{n_k}(...f_{n_2}(f_1(\text{init}(1)))) \)
 - The MOP at entry of \(n \) is \(V f_{n_k}(...f_{n_2}(f_1(\text{init}(1)))) \) over all paths \(p \) from 1 to \(n \)

MOP vs. MFP

- The MOP is an abstract model for the best solution computable with this kind of static analysis
 - It is a common assumption in this kind of static analysis that all program paths are executable
 - Abstract interpretation, axiomatic semantics, and symbolic execution abstract state more precisely, and can rule out some paths
 - The MFP is the solution computed by the worklist algorithm

MOP vs. MFP

- For distributive problems \(\text{MFP} = \text{MOP}! \)
 - Unfortunately, for monotone problems this is not true. But we still have a safe solution: it is a theorem that for monotone problems, \(\text{MFP} \geq \text{MOP} \)
Safety of a Dataflow Solution

- A safe (also, correct or sound) solution X over approximates the “best” possible dataflow solution, i.e., $X \geq \text{MOP}$.
- Historically, an acceptable solution X is one that is better than what we can do with the MFP, i.e., $X \leq \text{MFP}$.

Safe Solutions

- In many problems 1 is the universal set of facts, the merge operator is set union. It is safe to err by saying that a fact reaches a node when in fact it doesn’t.
- E.g., intuitively, it is safe to err by saying that a definition (x,k) reaches a node, when in fact it MAY NOT REACH that node.
- Safe entails “larger” than the MOP under our partial order. Our definition of \leq is subset inclusion (which is natural).

Safe Solutions: Reach

$D = \{ (x,1), (x,4), (a,3) \}$

Poset is 2^D, \subseteq is the subset relation.

1. $x = a \cdot b$
2. if $y = a \cdot b$
3. $a = a + 1$
4. $x = a \cdot b$
5. goto 3

Safe Solutions: Avail

$D = \{ a \cdot b, a + 1, y \cdot z \}$

Poset is 2^D, \supseteq is the superset relation.

1. $x = a \cdot b$
2. if $y \cdot z \leq a \cdot b$
3. $a = a + 1$
4. $x = a \cdot b$
5. goto 2

Precision of a Dataflow Solution

- Precise solution is one that is “close” to MOP.
 - A precise solution contains few spurious dataflow facts (spurious facts are what we call noise).
 - Unfortunately, for most problems even the MOP (an approximation itself) is undecidable.

 - $\text{MOP} \leq X \leq Y$: X is more precise than Y.
 - We can compare two solutions X and Y.
 - But, for most problems, we have no way of knowing the “ground truth.”
Outline of Today’s Class

- Dataflow frameworks
- MOP vs. MPF
- Non-distributive analyses
 - Constant propagation

Constant Propagation (Simple)

- Problem statement: What variables always hold constant values at a given program point

Example:

1. \(\text{in}(1): x \) is not const
 \(\text{out}(1): x = 1 \)

2. \(\text{in}(2): x = 1 \)
 \(\text{out}(2): x = 2 \)

3. \(\text{in}(3): x = 0 \)
 \(\text{out}(3): x = 1 \)

4. \(\text{in}(4): x \) is NOT a const!

Aside: Defining an Analysis

- Define program syntax
- In practice, we deal with a lot more than the simple abstraction
- Define property space
- The abstract program state that approximates the concrete program state
- Define transfer function space over syntax
- Abstract program execution over abstract state

Aside: Defining an Analysis

- If property space has desired properties
 - is a lattice \(L, \leq \) that satisfies the *Ascending Chain Condition*
 - merge operator \(V \) is the join of \(L \) and
- Function space \(F: L \rightarrow L \) is monotone then analysis fits the monotone dataflow framework and can be solved using the worklist algorithm

Constant Propagation: Syntax

\[S ::= S; S \mid \text{while} (b) \{ S \} \mid \text{if} (b) \{ S \} \text{else} \{ S \} \mid x = V \mid x = V \text{Op} V \]
\[\text{Op ::= + | - | * | /} \]
\[V ::= x \mid y \mid z \mid C \]

- \(x, y, z \) are program variables
- \(C \) is constant
- We have to define transfer functions for \(x = V \) and \(x = V \text{Op} V \)

Constant Propagation: Property Space

- Associate one of the following values with variable \(x \) at each program point

<table>
<thead>
<tr>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (or T)</td>
<td>x is NOT a constant</td>
</tr>
<tr>
<td>c</td>
<td>x has constant value c</td>
</tr>
<tr>
<td>0 (or ⊥)</td>
<td>x is unknown</td>
</tr>
</tbody>
</table>
Constant Propagation: Lattice

- Lattice $L_x \leq$

 \[
 \begin{align*}
 &2 &1 &0 &1 &2 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 1 & & & & & \\
 \end{align*}
 \]

- Dataflow lattice L is the product of L_x
 - $1, 2 \in L$, $1 \leq 2$ if $1_x \leq 2_x$ for every variable x
 - $1 \lor 2$ amounts to $1_x \lor 2_x$ for every variable x
 - Merge operator is join of L

- Does the product lattice satisfy the ACC?

Constant Propagation: Transfer Functions

- $j: x = c$
 - f_j: kill $x \to \text{val}$, generate $x \to c$

- $j: x = y$
 - f_j: kill $x \to \text{val}$, add $x \to \text{val}'$, s.t. $y \to \text{val}'$ in $\text{in}(j)$.

- val and val' are one of
 - \bot: bottom (unknown)
 - c: constant
 - T: top (not a constant)

Example

1. if ($b > 0$)

2. $x = 1$
 $y = 2$

3. $x = 2$
 $y = 1$

4. $z = x + y$

5. $w = 10 \times z$

Not Distributive! A Counter Example

- $f_4(f_2(f_1(T)))$ implies $z \to 3$
- $f_4(f_3(f_1(T)))$ implies $z \to 3$

- Thus, $\text{MOP} \leq 5$
- $f_4(f_2(f_1(T))) \lor f_4(f_3(f_1(T)))$

- $\text{MFP} \leq 5$ gave us $z \to T$
 (i.e., z is NOT a const)

Spring 20 CSCI 4450/6450, A Milanova