Announcements

- Homework is due Monday
 - Problem 6(b) is Extra credit
 - Submit in Submitty
 - You can lock your team later. Maximal size is 3. Ideal size is 2.

- Quiz 1 today

Outline of Today’s Class

- Dataflow frameworks, conclusion
- MOP solution vs. MFP solution
- Non-distributive analyses
 - Constant propagation

Monotone Dataflow Frameworks

- A problem fits into the dataflow framework if
 - its property space L, \leq that satisfies the Ascending Chain Condition
 - its merge operator V is the join of L
 - its transfer function space $F : L \rightarrow L$ is monotone

Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm

Catch up: Transfer Functions

- The transfer functions: $f : L \rightarrow L$. Formally, function space F is such that
 1. F contains all f_j
 2. F contains the identity function $id(x) = x$
 3. F is closed under composition
 4. Each f is monotone

Catch up: Monotonicity

- $F : L \rightarrow L$ is monotone if and only if:
 1. a, b in L, f in F then $a \leq b \iff f(a) \leq f(b)$
 or (equivalently):
 2. x, y in L, f in F then $f(x) V f(y) \leq f(x V y)$

Theorem: Definitions (1) and (2) are equivalent.
- Show that (1) implies (2)
- Show that (2) implies (1)
Catch up: Distributivity

- **F: L \rightarrow L** is distributive if and only if for all \(x, y \) in \(L \), \(f(x \lor y) = f(x) \lor f(y) \)
- Every distributive function is also monotone but not the other way around
- Distributivity is a very nice property!

Catch up: Monotonicity and Distributivity

- Is classical Reach distributive?
 - Yes
 - To show distributivity:
 For each \(j \):
 \[
 ((X \lor Y) \land \text{pres}(j)) \lor \text{gen}(j) = (X \land \text{pres}(j)) \lor \text{gen}(j) \]
 \[
 (X \land \text{pres}(j)) \lor \text{gen}(j) = (Y \land \text{pres}(j)) \lor \text{gen}(j) \]

Monotone Dataflow Frameworks

- A problem fits into the dataflow framework if:
 - Its property space is a lattice \(L \) that satisfies the **Ascending Chain Condition**
 - Its merge operator \(V \) is the join of \(L \)
 - Its transfer function space \(F: L \rightarrow L \) is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm or the maximal fixpoint algorithm or the fixpoint iteration algorithm

Worklist Algorithm for Forward Dataflow Problems

```c
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f_1(in(1))
for m = 2 to n do in(m) = 0; out(m) = f_m(0)
W = \{ 2, ..., n \} /* put every node but 1 on the worklist */
while W ≠ Ø do {
    remove j from W
    in(j) = V \{ out(i) | i is predecessor of j \}
    out(j) = f_j(in(j))
    if out(j) changed then
        W = W U \{ k | k is successor of j \}
}
```

Worklist Algorithm for Forward Dataflow Problems (slightly different)

```c
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f_1(in(1))
for m = 2 to n do in(m) = 0; out(m) = f_m(0)
W = \{ 2, ..., n \} /* put every node but 1 on the worklist */
while W ≠ Ø do {
    remove j from W
    in(j) = V \{ out(i) | i is predecessor of j \}
    out(j) = f_j(in(j))
    if out(j) changed then
        W = W U \{ k | k is successor of j \}
}
```

Termination Argument

- Why does the algorithm terminate?
 - Sketch of argument:
 At each “phase”, at least one \(\text{out}(j) \) changes. Monotonicity of \(f \) entails that change of is up the chain: \(\text{out}(j) \geq \text{out}(k) \). Since \(\text{out}(j) \) in \(L \) and \(L \) satisfies the **Ascending Chain Condition**, \(\text{out}(j) \) changes at most \(O(h) \) times where \(h \) is the height of the lattice \(L \).
Correctness Argument

- **Theorem:** The worklist algorithm computes a solution that satisfies the dataflow equations

 Why?

 Sketch of argument:

 Whenever j is processed, algorithms sets $\text{out}(j) = f_j(\text{in}(j))$. Whenever $\text{out}(j)$ changes, algorithm puts successors on the list, so $\text{in}(j) = V\{\text{out}(l)\}$. So final solution will satisfy equations.

Precision Argument

- **Theorem:** The algorithm computes the least solution of the dataflow equations.

 Historically though, this solution is called the maximal fixpoint solution (MFP)

 I.e., For every node j, the worklist algorithm computes a solution $MFP(j) = \{\text{in}(j), \text{out}(j)\}$, such that every other solution $\{\text{in}(j), \text{out}(j)\}$ of the dataflow equations is $\text{in}(j) \leq \text{in}'(j)$, $\text{out}(j) \leq \text{out}'(j)$

Example

1. $z := x + y$
2. if ($z > 500$)
3. skip

$\text{in}(Avail(2)) = \text{out}(Avail(1))
\text{V} \text{out}(Avail(3))$

$\text{in}(Avail(3)) = \text{out}(Avail(2))$

$\text{in}(Avail(1)) = \emptyset$

$\text{out}(Avail(2)) = \text{in}(Avail(2))$

$\text{out}(Avail(3)) = \text{in}(Avail(3))$

$\text{out}(Avail(1)) = (\text{in}(Avail(1)) - E_z) \{x+y\}$

Equivalent to: $\text{in}(Avail(2)) = \{x+y\} \text{ V } \text{in}(Avail(2))$ and recall that V is \cap (i.e., set intersection).

Question

Willy Wazoo changed the worklist algorithm to initialize to 1.

```plaintext
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
in(Reach(1)) = UNDEF
for m = 2 to n do
  in(m) = 1
  in(Reach(m)) = ALL_DEFS
W = {1,2,3,...,n} /* put every node on the worklist */
while W $\neq \emptyset$ do {
  remove j from W
  out(j) = $f_j(\text{in}(j))$
  out(Reach(j)) = (\text{in}(Reach(j)) \cap \text{pres}(j)) \cup \text{gen}(j)$
  for i in successors(j)
    if out(j) $\leq$ in(i) then {
      if out(Reach(i)) $\neq \text{in}(i)$ then {
        in(Reach(i)) = out(Reach(i)) \cup \text{in}(Reach(i))
      } else {
        in(Reach(i)) = \text{out}(Reach(i)) \cup \text{in}(Reach(i))
      }
      W = W \cup \{ i \}
    }
}
```

1. Does Willy’s algorithm compute an over-approximation or an under-approximation of the MFP?

Meet Over All Paths (MOP)

- Desired dataflow information at n is obtained by traversing ALL PATHS from 1 (entry node) to n.
 For every path $p = \{1, n_2, n_3, ..., n_k\}$ we compute $f_{n_2}(...f_{n_2}(f_1(\text{init}(1))))$

- The MOP at entry of n is $V f_{n_2}(...f_{n_2}(f_1(\text{init}(1))))$ over all paths p from 1 to n

MOP vs. MFP

- The MOP is an abstract model for the best solution computable with this kind of static analysis

 It is a common assumption in this kind of static analysis that all program paths are executable

 (Abstract interpretation and axiomatic semantics abstract state more precisely, and can rule out some paths)

- The MFP is the solution computed by the worklist algorithm
MOP vs. MFP

- For **distributive** problems MFP = MOP!

- Unfortunately, for **monotone** problems this is not true. But we still have a **safe** solution: it is a theorem that for monotone problems, MFP ≥ MOP

Safety of a Dataflow Solution

- A safe (also, correct or sound) solution X overestimates the “best” possible dataflow solution, i.e., X ≥ MOP

- Historically, an **acceptable** solution X is one that is better than what we can do with the MFP, i.e., X ≤ MFP

Safe Solutions

In **may problems** 1 is the universal set of facts, the merge operator is set union. It is **safe** to err by saying that a fact reaches a node when in fact it doesn’t

- E.g., intuitively, it is **safe** to err by saying that a definition \((x,k)\) reaches a node, when in fact it MAY NOT REACH that node

- **Safe** entails “larger” then the MOP under our partial order. Our definition of ≤ is subset inclusion (which is natural). So “safer” solutions are larger sets

Safe Solutions: Reach

\(U = \{ (x,1), (x,4), (a,3) \} \) \(\{ (x,1), (x,4), (a,3) \} \)

| 1. \(x = a \cdot b\) |
| 2. \(if \ y \leq a \cdot b\) |
| 3. \(a = a+1\) |
| 4. \(x = a \cdot b\) |
| 5. goto 3 |

Safe Solutions: Avail

\(U = \{ a \cdot b, a+1, y \cdot z \} \) \(\{ a \cdot b, a+1, y \cdot z \} \)

| 1. \(x = a \cdot b\) |
| 2. \(if \ y \cdot z \leq a \cdot b\) |
| 3. \(a = a+1\) |
| 4. \(x = a \cdot b\) |
| 5. goto 2 |
Precision of a Dataflow Solution

- **Precise** solution is one that is "close" to MOP
 - A precise solution contains few spurious dataflow facts (spurious facts is what we call noise)
 - Unfortunately, for most problems even the MOP (an approximation itself) is undecidable

- MOP ≤ X ≤ Y: X is more precise than Y
 - Usually we can compare two solutions X and Y
 - But, for most problems, we have no way of knowing the "ground truth"

Outline of Today’s Class

- Dataflow frameworks
- MOP vs. MPF
- Non-distributive analyses
 - Constant propagation

Constant Propagation (Simple)

- Problem statement: What variables always hold constant values at a given program point

- Example:

```
1. x = 1
   if (b>0)
   in(1): x is not const
   out(1): x is 1

2. y = z + w
   x = 2
   in(2): x is 2
   out(2): x is z
   out(3): x is 1

3. y = 0
   in(3): x is 1
   out(3): x is 1

4. z = 10*x
   in(4): x is NOT a const!
   out(4): x is 1
   out(2): x is 2
   out(3): x is 1
   out(4): x is 1
```

Aside: Defining an Analysis

- Define program syntax
 - In practice, we deal with a lot more than the simple abstraction 😊
- Define property space
 - The abstract program state that approximates the concrete program state
- Define transfer function space over syntax
 - Symbolically execute program over abstract state

Aside: Defining an Analysis

- If property space has desired properties
 - is a lattice L, ≤ that satisfies the Ascending Chain Condition
 - merge operator V is the join of L
 - Function space F: L → L is monotone
 - then analysis fits the monotone dataflow framework and can be solved using the worklist algorithm

Constant Propagation: Syntax

\[
S ::= S; S | \text{while (b) } \{ S \} | \text{if (b) } \{ S \} \text{ else } \{ S \}
\]

\[
| x = V | x = V \text{ Op } V
\]

\[
Op ::= + | - | * | /
\]

\[
V ::= x | y | z | C
\]

- x, y, z are program variables
- C is constant
- We have to define transfer functions for x = V and x = V Op V
Constant Propagation: Property Space

- Associate one of the following values with variable \(x \) at each program point

<table>
<thead>
<tr>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (or (T))</td>
<td>(x) is NOT a constant</td>
</tr>
<tr>
<td>(c)</td>
<td>(x) has constant value (c)</td>
</tr>
<tr>
<td>0 (or (\perp))</td>
<td>(x) is unknown</td>
</tr>
</tbody>
</table>

Constant Propagation: Lattice

- Lattice \(L_x \leq \)

- Dataflow lattice \(L \) is the product of \(L_x \)
 - \(l_1, l_2 \) in \(L \), \(l_1 \leq l_2 \) if \(l_1, l_2 \) for every variable \(x \)
 - \(l_1 \lor l_2 \) amounts to \(l_1_x \lor l_2_x \) for every variable \(x \)
 - Merge operator is join of \(L \)
 - Does the product lattice satisfy the ACC?

Constant Propagation: Transfer Functions

- \(j \): \(x = c \)
 - \(f_j \): kill \(x \to \text{val} \), generate \(x \to c \)
- \(j \): \(x = y \)
 - \(f_j \): kill \(x \to \text{val} \), add \(x \to \text{val'} \), s.t. \(y \to \text{val'} \) in \(\text{in}(j) \)
- \(\text{val} \) and \(\text{val'} \) are one of
 - \(\perp \): bottom (unknown)
 - \(c \): constant
 - \(T \): top (not a constant)

Example

1. if (\(b > 0 \))
2. \(x = 1 \)
 \(y = 2 \)
3. \(x = 2 \)
 \(y = 1 \)
4. \(z = x + y \)
5. \(w = 10 * z \)

Not Distributive! A Counter Example

1. if (\(b > 0 \))
2. \(x = 1 \)
 \(y = 2 \)
3. \(x = 2 \)
 \(y = 1 \)
4. \(z = x + y \)
5. \(w = 10 * z \)

MFP at 5 gave us \(z \to T \)
(i.e., \(z \) is NOT a const)
Next Class

- We’ll continue with non-distributive analyses
 - Constant propagation
 - Points-to analysis
- Introduction to Soot