Dataflow Frameworks, conclusion
Announcements

- Welcome back!
- I’ve moved Quiz 1 to Thursday
- Office hour at 4:30pm today
- Recordings:
- Homework due January 31st
 - Questions?
 - Will push back deadline if necessary
Outline of Today’s Class

- Dataflow framework
 - Lattices
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution
Lattice Theory

- **Partial ordering** (denoted by \(\leq \) or \(\subseteq \))
 - Relation between pairs of elements
 - Reflexive: \(a \leq a \)
 - Anti-symmetric: \(a \leq b \) and \(b \leq a \) \(\implies a = b \)
 - Transitive: \(a \leq b \) and \(b \leq c \) \(\implies a \leq c \)

- **Partially ordered set** (poset) (set \(S, \leq \))
 - 0 element: \(0 \leq a \), for every \(a \) in \(S \)
 - 1 element: \(a \leq 1 \), for every \(a \) in \(S \)

We don’t necessarily need 0 or 1 element
D = \{a, b, c\}
The poset is 2^D, \leq is set inclusion
Lattice Theory

- Greatest lower bound (glb)
 \(l_1, l_2 \) in poset \(S \), \(a \) in poset \(S \) is the \(\text{glb}(l_1, l_2) \) iff
 1) \(a \leq l_1 \) and \(a \leq l_2 \)
 2) for any \(b \) in \(S \), \(b \leq l_1, b \leq l_2 \) implies \(b \leq a \)

If glb exists, it is unique. Why? Called *meet* (denoted by \(\wedge \) or \(\cap \)) of \(l_1 \) and \(l_2 \).

- Least upper bound (lub)
 \(l_1, l_2 \) in poset \(S \), \(c \) in poset \(S \) is the \(\text{lub}(l_1, l_2) \) iff
 1) \(c \geq l_1 \) and \(c \geq l_2 \)
 2) for any \(d \) in \(S \), \(d \geq l_1, d \geq l_2 \) implies \(d \geq c \)

If lub exists, it is unique. Called *join* (denoted by \(V \) or \(\cup \)) of \(l_1 \) and \(l_2 \).
Definition of a Lattice \((L, \Lambda, V) \)

- A lattice \(L \) is a poset under \(\leq \), such that every pair of elements has a \textit{glb} (meet) and \textit{lub} (join).

- A lattice need not contain a 0 or 1 element.
- A finite lattice must contain 0 and 1 elements.
- Not every poset is a lattice.
- If there is element \(a \) such that \(a \leq x \) for every \(x \) in \(L \), then \(a \) is the 0 element of \(L \).
- If there is \(a \) such that \(x \leq a \) for every \(x \) in \(L \), then \(a \) is the 1 element of \(L \).
A Poset but Not a Lattice

There is no \text{lub}(e_3, e_4) in this poset so it is not a lattice.

Suppose we add the \text{lub}(e_3, e_4), is it a lattice?
Is This Poset a Lattice

\[D = \{a, b, c\} \]

The poset is \(2^D\), \(\leq\) is set inclusion
Examples of Lattices

- $H = (2^D, \cap, U)$ where D is a finite set
 - $\text{glb}(s_1,s_2)$ denoted $s_1 \Lambda s_2$, is set intersection $s_1 \cap s_2$
 - $\text{lub}(s_1,s_2)$ denoted $s_1 \vee s_2$, is set union $s_1 \cup s_2$

- $J = (N_1, \gcd, \lcm)$
 - Partial order is integer divide on N_1
 - $\text{glb}(n_1,n_2)$ denoted $n_1 \Lambda n_2$ is $\gcd(n_1,n_2)$
 - $\text{lub}(n_1,n_2)$ denoted $n_1 \vee n_2$ is $\lcm(n_1,n_2)$

(N_1 denotes natural numbers starting at 1)
A poset C where for every pair of elements c_1, c_2 in C, either $c_1 \leq c_2$ or $c_2 \leq c_1$.

- E.g., $\{\} \leq \{a\} \leq \{a,b\} \leq \{a,b,c\}$
- E.g., from the lattice J as shown here,

 $1 \leq 2 \leq 6 \leq 30$

 $1 \leq 3 \leq 15 \leq 30$

A lattice s.t. every ascending chain is finite, is said to satisfy the *Ascending Chain Condition*
Lattices in Dataflow Analysis

- Lattices define the property space
- Lattices lead to certain properties of the standard solution procedure for dataflow analysis (the worklist algorithm)
Dataflow Lattices: Reach

D = all definitions: {(x,1),(x,4),(a,3)} {(x,1),(x,4),(a,3)}
Poset is 2^D, \leq is the subset relation \subseteq

1. $x=a*b$

2. if $y<=a*b$

3. $a=a+1$

4. $x=a*b$

5. goto 3
Dataflow Lattices: \textit{Avail}

D = all expressions: \{a*b, a+1, y*z\}

Poset is 2^D, \leq is the superset relation \supseteq

1. $x := a*b$

2. if $y*z \leq a*b$

3. $a := a+1$

4. $x := a*b$

5. goto 2

CSCI 4450/6450, A Milanova
Dataflow Framework

Equations:

\[\text{in}(j) = V \text{out}(i) \quad \text{out}(j) = f_j(\text{in}(j)) \]

\(i \) in pred\((j)\)

where:

- \(\text{in}(j), \text{out}(j) \) are elements of a property space
- \(f_j \) is the transfer function associated with node \(j \)
- \(V \) is the merge operator
Dataflow Framework (cont.)

- Analysis property space must be:
 1. A lattice \(L, \leq \)
 2. \(L \) satisfies the *Ascending Chain Condition*
 Requires that all ascending chains are finite
Dataflow Framework (cont.)

- **Merge operator** V must be the join of L

- In dataflow, L is often the lattice of the subsets over a finite set of dataflow facts D
 - Choose universal set D (e.g., all definitions)
 - Choose ordering operation \leq
 - In many problems merge operator is the union, thus, \leq is *subset*
 - In *must* problems merge is intersection, thus, \leq is *superset*
Example: *Reach* Lattice

- Property space is the lattice of the subsets where
 - D is the set of all definitions in the program
 - \leq is the *subset* operation
 - Join is set union U, as needed for *Reach*, which is a *may* problem

- Lattice has a 0 being \emptyset, and a 1 being D
- Lattice satisfies the *Ascending Chain Condition*
Reach Lattice

D = all definitions: \{(x,1),(x,4),(a,3)\} \{(x,1),(x,4),(a,3)\}
Poset is \(2^D\), \(\leq\) is the subset relation \(\subseteq\)

1. \(x = a \cdot b\)
2. if \(y \leq a \cdot b\)
3. \(a = a + 1\)
4. \(x = a \cdot b\)
5. goto 3

\{(x,1),(x,4)\} \{(x,4),(a,3)\} \{(x,1),(a,3)\}
\{(x,1)\} \{(x,4)\} \{(a,3)\}
\{\}\n
Example: \textit{Avail} Lattice

- Property space is the lattice of the subsets where
 - \mathbb{D} is the set of all expressions in the program
 - \leq is superset
 - join of the lattice is set intersection, as needed for \textit{Avail}, which is a \textit{must} problem

- Lattice has a \textbf{0} being \mathbb{D}, and a \textbf{1} being \emptyset
- Lattice satisfies \textit{Ascending Chain Condition}
Dataflow Lattices: \textit{Avail}

\(D = \text{all expressions: \{a*b, a+1, y*z\}} \)

Poset is \(2^D, \leq\) is the superset relation \(\supseteq\)

1. \(x := a*b \)

2. if \(y*z \leq a*b \)

3. \(a := a + 1 \)

4. \(x := a*b \)

5. goto 2

\[\begin{array}{c}
\{a*b\} & \{a+1\} & \{y*z\} \\
\{a*b, y*z\} & \{a*b, a+1\} & \{a+1, y*z\} \\
\{a*b, a+1, y*z\} & \{\} & 1 \\
0 & & \\
\end{array} \]
(Monotone) Dataflow Framework

- A problem fits into the dataflow framework if
 - its property space is a lattice \mathbf{L}, \leq that satisfies the Ascending Chain Condition
 - its merge operator V is the join of \mathbf{L}
 and
 - its transfer function space $F : \mathbf{L} \rightarrow \mathbf{L}$ is monotone

- We can make use of a generic solution procedure, known as the worklist algorithm.
Outline of Today’s Class

- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution
Transfer Functions

The transfer functions: $f: L \rightarrow L$. Formally, function space F is such that

1. F contains all f_j
2. F contains the identity function $\text{id}(x) = x$
3. F is closed under composition
4. Each f is monotone
Monotonicity Property

- **F: L → L** is monotone if and only if:
 1. \(a, b \in L, f \in F \) then \(a \leq b \iff f(a) \leq f(b)\)
 or (equivalently):
 2. \(x, y \in L, f \in F \) then \(f(x) \lor f(y) \leq f(x \lor y)\)

- Theorem: Definitions (1) and (2) are equivalent.
 - Show that (1) implies (2)
 - Show that (2) implies (1)
Monotonicity Property

- Show that (1) implies (2)
Distributivity Property

- $F : L \rightarrow L$ is **distributive** if and only if $x, y \in L$, $f \in F$ then $f(x \lor y) = f(x) \lor f(y)$

- Every distributive function is also monotone but not the other way around

- Distributivity is a very nice property!
Monotonicity and Distributivity

Is classical \textit{Reach} distributive?
- Yes

To show distributivity:
For each \(j \):
\[
((X \cup Y) \cap \text{pres}(j)) \cup \text{gen}(j) =
((X \cap \text{pres}(j)) \cup \text{gen}(j)) \cup ((Y \cap \text{pres}(j)) \cup \text{gen}(j))
\]

\[
((X \cup Y) \cap \text{pres}(j)) \cup \text{gen}(j) =
((X \cap \text{pres}(j)) \cup (Y \cap \text{pres}(j))) \cup \text{gen}(j) =
((X \cap \text{pres}(j)) \cup \text{gen}(j)) \cup ((Y \cap \text{pres}(j)) \cup \text{gen}(j))
\]
Monotone Dataflow Framework

A problem fits into the dataflow framework if
- its property space is a lattice \mathbf{L}, \leq that satisfies the Ascending Chain Condition
- its merge operator V is the join of \mathbf{L} and
- its transfer function space $F: \mathbf{L} \rightarrow \mathbf{L}$ is monotone

Thus, we can make use of a generic solution procedure, known as the worklist algorithm.
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f_1(in(1))
for m = 2 to n do in(m) = 0; out(m) = f_m(0)
W = \{2,\ldots,n\} /* put every node but 1 on the worklist */

while W ≠ Ø do {
 remove j from W
 in(j) = V \{ out(i) | i is predecessor of j \}
 out(j) = f_j(in(j))
 if out(j) changed then
 W = W U \{ k | k is successor of j \}
}
Worklist Algorithm on Reach

D = all definitions: {(x,1),(x,4),(a,3)}
Poset is 2^D, \leq is the subset relation \subseteq

1. $x = a \cdot b$

2. if $y \leq a \cdot b$

3. $a = a + 1$

4. $x = a \cdot b$

5. goto 3
Termination Argument

Why does the algorithm terminate?

Sketch of argument:
At each “phase”, at least one $\text{out}(j)$ changes. Monotonicity of f_j entails that change is up the chain: $\text{out}’(j) \geq \text{out}(j)$. Since $\text{out}(j)$ in L, and L satisfies the Ascending Chain Condition, $\text{out}(j)$ changes at most $O(h)$ times where h is the height of the lattice L.
Correctness Argument

Theorem: The worklist algorithm computes a solution that satisfies the dataflow equations.

Why?

Sketch of argument:
- Argue that for each path, $\text{out}(i) \leq \text{in}(j)$ where i is a predecessor of j. Thus, $V_{\text{out}}(i) \leq \text{in}(j)$
- Then argue that $\text{in}(j) \leq V_{\text{out}}(i)$
Theorem: The algorithm computes the least solution of the dataflow equations.

Historically though, this solution is called the maximal fixpoint solution (MFP).

I.e., For every node j, the worklist algorithm computes a solution $\text{MFP}(j) = \{\text{in}(j), \text{out}(j)\}$, such that every other solution $\{\text{in}'(j), \text{out}'(j)\}$ of the dataflow equations $\text{in}(j) \leq \text{in}'(j)$ and $\text{out}(j) \leq \text{out}'(j)$.
Example

1. \(z := x + y \)

2. if (\(z > 500 \))
 - \(\text{in}_{\text{Avail}}(1) = \emptyset \)
 - \(\text{out}_{\text{Avail}}(1) = (\text{in}_{\text{Avail}}(1) - E_z) \cup \{x+y\} \)
 - \(\text{in}_{\text{Avail}}(2) = \text{out}_{\text{Avail}}(1) \lor \text{out}_{\text{Avail}}(3) \)
 - \(\text{out}_{\text{Avail}}(2) = \text{in}_{\text{Avail}}(2) \)
 - \(\text{in}_{\text{Avail}}(3) = \text{out}_{\text{Avail}}(2) \)
 - \(\text{out}_{\text{Avail}}(3) = \text{in}_{\text{Avail}}(3) \)

3. skip

Equivalent to: \(\text{in}_{\text{Avail}}(2) = \{x+y\} \lor \text{in}_{\text{Avail}}(2) \)
and recall that \(\lor \) is \(\cap \) (i.e., set intersection).

Solution 1
- \(\emptyset \)
- \(\{x+y\} \)
- \(\{x+y\} \)
- \(\emptyset \)

Solution 2
- \(\emptyset \)
- \(\{x+y\} \)
- \(\emptyset \)
Outline of Today’s Class

- Dataflow frameworks, conclusion
 - Lattices (last time)
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution
Meet Over All Paths (MOP)

- Desired dataflow information at n is obtained by traversing ALL PATHS from 1 (entry node) to n.

- For every path $p=(1, n_2, n_3, ..., n_k)$ we compute $f_{n_k}(...f_{n_2}(f_1(\text{Initial\ Value})))$

- The MOP at entry of n is $\forall f_{n_k}(...f_{n_2}(f_1(\text{Initial\ Value})))$ over all paths p from 1 to n
MOP vs. MFP

- MOP is an abstraction of the best solution computable with dataflow analysis
 - It is a common assumption in dataflow analysis that *all program paths are executable*
 - (Abstract interpretation and axiomatic semantics are more precise and rule out some infeasible paths)
- Recall that the MFP is the solution computed by the worklist algorithm
MOP vs. MFP

- For *distributive* problems $\text{MFP} = \text{MOP}$!

- Unfortunately, for *monotone* problems this is not true. But we still have a *safe* solution: it is a theorem that for monotone problems, $\text{MFP} \geq \text{MOP}$
Safety of a Dataflow Solution

- A safe (also, correct or sound) solution X overestimates the “best” possible dataflow solution, i.e., $X \geq \text{MOP}$

- Historically, an acceptable solution X is one that is better than what we can do with the MFP, i.e., $X \leq \text{MFP}$
Safe Solutions: Reach

\[U = \text{all definitions:}\{(x,1),(x,4),(a,3)\} \quad \{(x,1),(x,4),(a,3)\} \]

Poset is \(2^U \), \(\leq \) is the subset relation \(\subseteq \)

1. \(x=a*b \)

2. if \(y \leq a*b \)

3. \(a=a+1 \)

4. \(x=a*b \)

5. goto 3

CSCI 4450/6450, A Milanova
Safe Solutions: Avail

U = all expressions: \{a*b, a+1, y*z\}

Poset is 2^U, \leq is the superset relation \supseteq

1. $x := a*b$

2. if $y*z \leq a*b$

3. $a := a+1$

4. $x := a*b$

5. goto 2
Precision of a Dataflow Solution

- **Precise** solution is one that is “close” to MOP
 - A precise solution contains few spurious dataflow facts (spurious facts is what we call *noise*)
 - Unfortunately, for most problems even the MOP (an approximation itself!) is undecidable

- MOP \(\leq X \leq Y \): X is more precise than Y
 - Usually, we can compare two solutions X and Y
 - But, for most problems, we have no way of knowing the “ground truth”
Next class: real analyses

- Next time: non-distributive analyses
 - Constant propagation
 - Pointer analysis