Dataflow Analysis: Non-distributive Analyses, Approximations, and Intro to Soot

Announcements

- HW1 due
- HW2 will be out tonight
- Get started with your Submitty git repos, Soot and Jimple, etc
- We won’t cover class analysis (RTA, XTA, etc.) today

Outline of Today’s Class

- One more note on Worklist algorithm
- Non-distributive analyses
 - Constant propagation
 - Points-to analysis
- Analysis scope and approximations
- Introduction to Soot

Worklist Algorithm for Forward Dataflow Problems

```plaintext
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue;
out(1) = \text{false};
for m := 2 to n do
  in(m) = 0;
  out(m) = \text{false};
W := \{2, \ldots, n\} /* put every node but 1 on the worklist */
while W ≠ \emptyset do {
  remove j from W
  in(j) = \bigcup \{ out(i) | i \text{ is predecessor of } j \}
  out(j) = \text{false}
  if out(j) changed then
    W = W U \{ k | k \text{ is successor of } j \}
}
```

Example. Reach with Bitvectors

Initialization

```plaintext
00000 (i,1),(k,1)
\text{pres: } 00000 11111 11111 10001 10001 01110
\text{gen: } 11000 00000 00000 00100 00010 00001
```

```plaintext
00000 (i,1),(k,1)
\text{pres: } 00000 11111 11111 10001 10001 01110
\text{gen: } 11000 00000 00000 00100 00010 00001
```

```plaintext
00000 (i,1),(k,1)
\text{pres: } 00000 11111 11111 10001 10001 01110
\text{gen: } 11000 00000 00000 00100 00010 00001
```
Constant Propagation (Simple)

- **Problem statement:** What variables always hold constant values at a given program point.

- **Example:**
 1. \(x = 1 \) if \(b > 0 \)
 2. \(y = z + w \)
 3. \(z = 10 \times x \)
 4. \(x = \) not a constant!

Aside: Defining an Analysis

- **If property space has desired properties**
 - is a lattice \(L \), \(\leq \) that satisfies the *Ascending Chain Condition*
 - merge operator \(V \) is the join of \(L \)
 - Function space \(F: L \rightarrow L \) is monotone then analysis fits the monotone dataflow framework and can be solved by the worklist algorithm
Constant Propagation: Property Space

- Associate one of the following values with variable \(x \) at each program point

<table>
<thead>
<tr>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (or T)</td>
<td>(x) is NOT a constant</td>
</tr>
<tr>
<td>C</td>
<td>(x) has constant value C</td>
</tr>
<tr>
<td>0 (or (\perp))</td>
<td>(x) is unknown</td>
</tr>
</tbody>
</table>

Constant Propagation: Lattice

- Lattice \(L_x \) is the product lattice of \(L_x \)
- Dataflow lattice \(L \) is the product lattice of \(L_x \)
- \(l_1, l_2 \) in \(L \), \(l_1 \leq l_2 \) iff \(l_1 \leq l_2 \) for every variable \(x \)
- \(l_1 \lor l_2 \) amounts to \(l_1 \lor l_2 \) for every variable \(x \)
- Merge operator is join of \(L \)
- Does the product lattice satisfy the ACC?

Example

1. \(in(1) \) is \(T \)
2. \(x=1 \), \(y=2 \)
3. \(x=2 \), \(y=1 \)
4. \(z=x+y \)
5. \(w=10 \times z \)

Constant Propagation: Transfer Functions

- \(j: x = V \text{ Op } V' \)
- \(f_j: \text{ kill } x \to \text{ val} \), generate \(x \to C \)
- \(j: x = y \)
- \(f_j: \text{ kill } x \to \text{ val} \), add \(x \to \text{ val} \), s.t. \(y \to \text{ val} \) in \(in(j) \). \(\text{val} \) and \(\text{val} ' \) are one of
 - \(C \): constant
 - \(T \): top (not a constant)

Constant Propagation: Transfer Functions

- \(j: x = V \text{ Op } V' \)
- \(f_j: \text{ kill } x \to \text{ val} \), generate \(x \to C \)
- \(j: x = y \)
- \(f_j: \text{ kill } x \to \text{ val} \), add \(x \to \text{ val} \), s.t. \(y \to \text{ val} \) in \(in(j) \). \(\text{val} \) and \(\text{val} ' \) are one of
 - \(C \): constant
 - \(T \): top (not a constant)

Product Lattice

- E.g., \(<x=1, y=1, z=T>, <x=1, y=2, z=3> \), etc. are lattice elements
- E.g., \(<x=1, y=2, z=T> \leq <x=T, y=2, z=T> \)
- E.g., \(<x=1, y=3, z=T> \lor <x=T, y=2, z=T> = <T, T, T> \)
Not Distributive! A Counter Example

- \(f_4(f_2(f_1(T))) \) implies \(z \rightarrow 3 \)
- \(f_4(f_3(f_1(T))) \) implies \(z \rightarrow 3 \)

Thus, MOP at 5
\[f_4(f_2(f_1(T))) \lor f_4(f_3(f_1(T))) \]
implies \(z \rightarrow 3 \)

MFP at 5 implies \(z \rightarrow T \)
(i.e., \(z \) is NOT a const)

More Product Lattices

- Problem statement: Is integer variable \(x \) odd or even at program point \(n \)?

\[L_x: \]

\[\text{odd} \quad \text{even} \]

Points-to Analysis

- Problem statement: What memory locations may a pointer variable point to?

- Many applications!
 - Enables compiler optimization
 1. \(a = 1; \)
 2. \(*p = b; \)
 3. \(s = a*a; \)
 - Static debugging tools, static taint analysis tools

Points-to Analysis: Example

Example 1:
```c
int a, b;
int *p1, *p2;
p1 = &a;
p2 = p1;
*p2 = 1;
```

Example 2:
```c
int a, b = 15;
int *p1, *p2;
iint **p3;
p3 = &p1;
p1 = &a;
p2 = *p3;
*p2 = b;
```

Points-to Analysis: Syntax

- Assume the following 4 simple statements
 1. address taken \(p = \&q \)
 2. propagation \(p = q \)
 3. indirect read \(p = \&q \)
 4. indirect write (update) \(*p = q \)

- One can transform any program into a sequence of statements of these kinds
Points-to Analysis: Property Space

- Lattice $L \subseteq$ Lattice of the subsets over all edges $p \rightarrow q$ where p and q are program variables
- ... or in simpler terms, lattice elements are points-to graphs, e.g.,
- V is points-to graph union
- 0 of L is empty graph
- 1 of L is complete graph

Spring 18 CSCI 4450/6450, A. Milanova

Points-to Analysis: Transfer Functions

1. $f_{p \& q}$: "kill" all points-to edges from p, and "generate" a new points-to edge from p to q
2. $f_{p = q}$: "kill" all points-to edges from p; "generate" new points-to edges from p to every x, such that q points to x in incoming points-to graph
3. $f_{p = *q}$: "kill" all points to edges from p; "generate" new points-to edges from p to every x, s.t. there is y where q points to y and y points to x in incoming points-to graph
4. $f_{p = *q}$: Do not kill! Can you think of a reason why? "Generate" new points-to edges from every y to every x, such that p points to y and q points to x

The Problem with Updates

- Updates (4) $f_{p = *q}$ (also known as destructive updates) ... are a pain
- If we drop (4) from our language we get
 1. $p = &a$ $p = \text{cons}(a,\text{null})$
 2. $p = q$ $p = q$
 3. $p = *q$ $p = \text{car}(q)$
- Research problems!

Spring 18 CSCI 4450/6450, A. Milanova

Points-to Analysis is Monotone

To argue monotonicity we must show that if Pt_1 is \subseteq (subset of) Pt_2, then $f(Pt_1) \subseteq f(Pt_2)$ for each transfer function f

1. $Pt_1 \subseteq Pt_2$ then $f_{p \& q}(Pt_1) \subseteq f_{p \& q}(Pt_2)$
2. $Pt_1 \subseteq Pt_2$ then $f_{p = q}(Pt_1) \subseteq f_{p = q}(Pt_2)$
3. $Pt_1 \subseteq Pt_2$ then $f_{p = *q}(Pt_1) \subseteq f_{p = *q}(Pt_2)$
4. $Pt_1 \subseteq Pt_2$ then $f_{p = *q}(Pt_1) \subseteq f_{p = *q}(Pt_2)$

Points-to Analysis is Not Distributive

- but it is not distributive!
- Because of updates!

Spring 18 CSCI 4450/6450, A. Milanova
MFP vs. MOP for Points-to

1. $z := x$
2. $q := x, \quad q := y$
3. $q := z, \quad q := w$
4. $p = q$

$\text{in}_{PT}(4) = \text{out}_{PT}(3)$
$\text{out}_{PT}(4) = f_{\text{same}}(\text{in}_{PT}(4))$
$\text{in}_{PT}(5) = \text{out}_{PT}(4)$

MFP
MOP?
Ø
Ø

Outline of Today's Class

- One brief note on the Worklist algorithm
- Non-distributive analyses
 - Constant propagation
 - Points-to analysis
- Analysis scope and approximations
- Introduction to Soot

Final Note

- HW2 will be up tonight or tomorrow morning
 - Go ahead and clone your repo in Eclipse
 - Run Soot on the toy programs and get used to Jimple

- Next time:
 - Analysis scope and approximations
 - Analysis for object-oriented programs
 - CHA, RTA, XTA, PTA (points-to analysis)