Dataflow Analysis: Catch-up

Announcements
- HW2 out
- Should have Submitty page up today
- Post questions on form
 - Setup
 - Starter code, generic analysis framework and fixpoint iteration algorithm
 - Soot
- Quiz 2 at end of class

Outline of Today's Class
- Catch-up: Points-to analysis for C
- Catch-up: Class analysis
- Class Hierarchy Analysis (CHA)
- Rapid Type Analysis (RTA)
- XTA
- 0-CFA
- Points-to Analysis (PTA)

Outline of Today's Class
- Reading
 - Frank Tip and Jens Palsberg, "Scalable Propagation-Based Call Graph Construction Algorithms", OOPSLA '00

Points-to Analysis
- Problem statement: What memory locations may a pointer variable point to?
 - Assume the following 4 simple statements
 1. address taken \(p = &q \)
 2. propagation \(p = q \)
 3. indirect read \(p = *q \)
 4. indirect write (update) \(*p = q \)
Points-to Analysis: Transfer Functions

(1) $f_{\text{p}=&\text{q}}$: “kill” all points-to edges from p, and “generate” a new points-to edge from p to q

(2) $f_{\text{p}=\text{q}}$: “kill” all points-to edges from p, “generate” new points-to edges from p to every x, such that q points to x in incoming points-to graph $i(j)$

(3) $f_{\text{p}=^{*}\text{q}}$: “kill” all points to edges from p; “generate” new points-to edges from p to every x, s.t. there is y where q points to y, and y points to x in $i(j)$

(4) $f_{\text{p}=^{*}\text{q}}$: Do not kill! Can you think of a reason why? “Generate” new points-to edges from every y to every x, such that p points to y and q points to x

Example 1:
$p1 = &a$
$p2 = p1$
*p2 = 1

Example 2:
$p3 = &p1$
$p1 = &a$
$q = p3$
*r = *q$
$p1 = &b$

Points-to Analysis is Monotone

To argue monotonicity we must show that if P_{t1} is \leq (subset of) P_{t2}, then $f(P_{t1}) \leq f(P_{t2})$ for each transfer function f

(1) $P_{t1} \leq P_{t2}$ then $f_{\text{p}=&\text{q}} (P_{t1}) \leq f_{\text{p}=&\text{q}} (P_{t2})$

(2) $P_{t1} \leq P_{t2}$ then $f_{\text{p}=\text{q}} (P_{t1}) \leq f_{\text{p}=\text{q}} (P_{t2})$

(3) $P_{t1} \leq P_{t2}$ then $f_{\text{p}=^{*}\text{q}} (P_{t1}) \leq f_{\text{p}=^{*}\text{q}} (P_{t2})$

(4) $P_{t1} \leq P_{t2}$ then $f_{\text{p}=^{*}\text{q}} (P_{t1}) \leq f_{\text{p}=^{*}\text{q}} (P_{t2})$

Points-to Analysis is Not Distributive

What for “$*p = q$” does: Adds edges from each variable that p points to (x and z), to each variable that q points to (y and w). Result is 4 new edges: from x to y and to w and from z to y and to w. Result in $P_{t4} = f_{\text{p}=&\text{q}} (P_{t1} \lor P_{t1})$.

MFP vs. MOP for Points-to

1. $\text{if}(n>0)$

2. $\text{p} = \text{q} \lor \text{x} ; \text{q} = \text{y} ;$

3. $f_{\text{p}=&\text{q}} (P_{t3})$

4. $f_{\text{p}=\text{q}} (P_{t3})$

5. $f_{\text{p}=^{*}\text{q}} (P_{t4})$

6. $f_{\text{p}=^{*}\text{q}} (P_{t4})$

7. $f_{\text{p}=^{*}\text{q}} (P_{t4})$

8. $f_{\text{p}=^{*}\text{q}} (P_{t4})$

9. $f_{\text{p}=^{*}\text{q}} (P_{t4})$

10. $f_{\text{p}=^{*}\text{q}} (P_{t4})$
Andersen’s Points-to Analysis

- Commonly attributed to Lars Andersen [1994]
- "Andersen’s points-to analysis for C"
- More approximation than our earlier formulation: don’t ever “kill”; maintain a single points-to graph for all program points
- Flow-insensitive, context-insensitive analysis
- Formulated in terms of subset constraints
- Solvable by a version of the fixpoint iteration

\[\begin{align*}
\text{pts}(p) & \text{ denotes the points-to set of } p \\
1) & p = \&a \quad \{ a \} \subseteq \text{pts}(p) \\
2) & p = q \quad \text{pts}(q) \subseteq \text{pts}(p) \\
3) & p = \ast q \quad \text{for each } x \in \text{pts}(q), \text{pts}(x) \subseteq \text{pts}(p) \\
4) & \ast p = q \quad \text{for each } x \in \text{pts}(p), \text{pts}(q) \subseteq \text{pts}(x)
\end{align*} \]

Use worklist-like algorithm to compute least solution of these constraints

Andersen’s Points-to Analysis: Examples

Example 1:
\[
\begin{align*}
p1 &= \&a \\
p2 &= p1 \\
P2 &= 1
\end{align*}
\]

Example 2:
\[
\begin{align*}
p3 &= \&p1 \\
p1 &= \&a \\
q &= p3 \\
r &= \ast q \\
p1 &= \&b
\end{align*}
\]

Outline of Today’s Class

- Catch-up: Points-to-analysis for C
- Catch-up: Class analysis
- Class Hierarchy Analysis (CHA)
- Rapid Type Analysis (RTA)
- The XTA analysis family
- 0-CFA
- Points-to Analysis (PTA)

Class Analysis

- Problem statement: What are the classes of objects that a (Java) reference variable may refer to?
- Applications
 - Call graph construction
 - Virtual call resolution

Class Hierarchy Analysis (CHA)

- Attributed to Dean, Grove and Chambers:
 - Jeff Dean, David Grove, and Craig Chambers, “Optimization of OO Programs Using Static Class Hierarchy Analysis”, ECOOP’95
- Simplest way of inferring information about reference variables, simply look at class hierarchy!
In Java, if a reference variable \(r \) has type \(A \), \(r \) can refer only to objects that are concrete subclasses of \(A \). Denoted by \(\text{SubTypes}(A) \)

- Note: refers to Java subtype, not true subtype
- Note: \(\text{SubTypes}(A) \) notation due to Tip and Palsberg (OOPSLA '00)
- At virtual call site \(r.m() \), we can find what methods may be called based on the hierarchy information

Example

```java
public class A {
    public static void main() {
        A a;
        D d = new D();
        E e = new E();
        if (...) a = d; else a = e;
    }
}

public class B extends A {
    public void foo() {
        G g = new G();
    }
}
```

RTA

1. \(\{ \text{main} \} \subseteq R \) // initialize \(R \) with \(\text{main} \)
2. for each method \(m \in R \) with each \(\text{new site} \) \(\text{new} C \) in \(m \)
 \(\{ C \} \subseteq I \)

RTA starts at \(\text{main} \).
Records that \(D \) and \(E \) are instantiated.
At call \(a.m() \) looks at all CHA targets.
Expands only into target \(C.m() \).
Never reaches \(B.foo() \), never records \(G \) as being instantiated.

XTA Analysis Family

- Due to Tip and Palsberg
 - Frank Tip and Jens Palsberg, “Scalable Propagation-Based Call Graph Construction Algorithms”, OOPSLA ‘00

Generalizes RTA

Implements on RTA by storing more precise information about flow of class types
XTA

R is the set of reachable methods
S_m is the set of types that flow to method m
S_f is the set of types that flow to field f

1. $\{ \text{main} \} \subseteq R$
2. for each method $m \in R$ and each new site $\text{new } C$ in m
 $\{ C \} \subseteq S_m$
3. for each method $m \in R$, each virtual call $y.n(z)$ in m,
 each class C in $\text{SubTypes}(\text{StaticType}(y)) \cap S_m$
 and n', where $n' = \text{resolve}(C,n)$
 $\{ n' \} \subseteq R$ // add n' to R if not already there
 $\{ C \} \subseteq S_n'$ // add C to S_n' if not already there
 $S_m \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq S_n'$
 $S_n' \cap \text{SubTypes}(\text{StaticType}(\text{ret})) \subseteq S_m$
 (p denotes the parameter of n', and ret
 denotes the return of n')

4. for each method $m \in R$, each field read $x = y.f$ in m
 $S_f \subseteq S_m$
5. for each method $m \in R$, each field write $x.f = y$ in m
 $S_m \cap \text{SubTypes}(\text{StaticType}(f)) \subseteq S_f$

Practical Concerns

- Multiple parameters
- Direct calls
 - either static invoke calls or
 - special invoke calls
- Array reads and writes!
- Static fields
- See Tip and Palsberg for more

Example: RTA vs. XTA

```java
public class A {
    public static void main() {
        n1();
        n2();
    }
    static void n1() {
        A a1 = new B();
        a1.m();
    }
    static void n2() {
        A a2 = new C();
        a2.m();
    }
}
```

Boolean Expression Hierarchy: RTA vs. XTA vs. “Ground Truth”

```java
public class AndExp extends BoolExp {
    private BoolExp left;
    private BoolExp right;
    public AndExp(BoolExp left, BoolExp right) {
        this.left = left;
        this.right = right;
    }
    public boolean evaluate(Context c) {
        private BoolExp l = this.left;
        private BoolExp r = this.right;
        return l.evaluate(c) && r.evaluate(c);
    }
}
```
public class OrExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}

main() {
 Context theContext = new Context();
 BoolExp x = new VarExp("X");
 BoolExp y = new VarExp("Y");
 BoolExp exp = new AndExp(
 new Constant(true), new OrExp(x, y));
 theContext.assign(x, true);
 theContext.assign(y, false);
 boolean result = exp.evaluate(theContext);
}