Program Analysis Frameworks and Dataflow Analysis: Catch-up

Announcements
- HW2 out
- Submitty page is up
- Post questions on forum
 - Setup
 - Starter code, generic analysis framework and fixpoint iteration algorithm
 - Soot

Outline of Today’s Class
- Program analysis frameworks: Soot & Ghidra
- Catch-up: Points-to analysis for C
- Catch-up: Class analysis
 - Class Hierarchy Analysis (CHA)
 - Rapid Type Analysis (RTA)
- XTA, 0-CFA, and PTA (if we have time)

Overview of Soot

Advantages of Jimple and Soot
- Jimple
 - Typed local variables
 - 16(!) simple 3-address statements (1 operator per statement). Bridges gap between analysis abstraction and analysis implementation
- Soot provides
 - Intraprocedural dataflow analysis framework
 - Points-to analysis
 - Context-sensitive analysis framework
 - Android taint analysis

Jimple
- Run soot: java soot.Main –jimple A (need paths)
 - public class A extends java.lang.Object
 - public void <init>() {
 - A a = new A();
 - a.m();
 }
 - public void m() {
 - }
 - }
 - return;
 - }
 - (continues on next slide…)
public class A {
 main(String[] args) {
 A a = new A();
 a.m();
 }
 public void m() {
 ...
 }
}

public void m() {
 A r0;
 r0 := @this: A;
 return;
}

Jimple:

Java:

public class A {
 main(String[] args) {
 A a = new A();
 a.m();
 }
 public void m() {
 ...
 }
}

public void m() {
 A r0;
 r0 := @this: A;
 return;
}

Soot Abstractions. Look up API!

- Abstracts program constructs
- Some basic Soot classes and interfaces
 - SootClass
 - SootMethod
 - SootMethod sm; sm.isMain(), sm.isStatic(), etc.
 - Local
 - Local l; ... l.getType()
 - InstanceInvokeExpr
 - Represents an instance (as opposed to static) invoke expression
 - InstanceInvokeExpr iie; ... receiver = iie.getBase();

4 Kinds of Calls

- Constructor/Super Call:
 - A a = new A();
 - $r1 = new A;
 - specialinvoke $r1.<A: void <init>()>();
- Virtual Call:
 - a.m();
 - virtualinvoke r2.<A: void m()>();
- Static Call:
 - sm();
 - staticinvoke <A: void sm()>();
- Interface Call:
 - x.m();
 - interfaceinvoke r0.<pack2.X: void m()>();

1. We should not need to worry about dynamicInvoke. (Soot does support it.)

An Overview of Homework

- Syntax
 - Assignment stmt: x = y
 - Field read stmt: x = y.f
 - Field write stmt: x.f = y
 - Array read stmt: x = y[i]
 - Array write stmt: x[i] = y
 - Allocation stmt: x = new A;
 - Direct call: x = sm(args) or x = y.m(args)
 - Virtual call: x = y.m(args)

For RTA, we only care about the last 3
Outline of Today’s Class

- Program analysis frameworks: Soot & Ghidra
- Catch-up: Points-to analysis for C
- Catch-up: Class analysis
- Class Hierarchy Analysis (CHA)
- Rapid Type Analysis (RTA)
- XTA, 0-CFA, and PTA (if we have time)

Points-to Analysis

- Problem statement: What memory locations may a pointer variable point to?
- Many applications!
 - Enables compiler optimizations
 - Static debugging tools, static taint analysis tools

Points-to Analysis: Example

Example 1:

```c
int a, b;
int *p1, *p2;
p1 = &a;
p2 = p1;
*p2 = 1;
```

Example 2:

```c
int a, b = 15;
int *p1, *p2;
int **p3;
p3 = &p1;
p1 = &a;
p2 = *p3;
*p2 = b;
```

Points-to Analysis: Transfer Functions

1. \(f_{\text{addr}} \): “kill” all points-to edges from \(p \) to \(q \)
2. \(f_{\text{prop}} \): “kill” all points-to edges from \(p \); “generate” new points-to edges from \(p \) to every \(x \), such that \(q \) points to \(x \) in incoming points-to graph \(j \)
3. \(f_{\text{ind}} \): “kill” all points to edges from \(p \); “generate” new points-to edges from \(p \) to every \(x \), s.t. there is \(y \) where \(q \) points to \(y \), and \(y \) points to \(x \) in \(j \)
4. \(f_{\text{dow}} \): Do not kill! Can you think of a reason why?
 - “Generate” new points-to edges from every \(y \) to every \(x \), such that \(p \) points to \(y \) and \(q \) points to \(x \)

Points-to Analysis: Property Space

- Lattice \(L, \leq \)
 - Lattice of the subsets over all edges \(p \to q \) where \(p \) and \(q \) are program variables
 - … or in simpler terms, lattice elements are points-to graphs, e.g.,
 - \(p_3 \)
 - \(V \) is points-to graph union
 - \(0 \) of \(L \) is empty graph
 - \(1 \) of \(L \) is complete graph
Points-to Analysis: Examples

Example 1:

\[p_1 = \&a \]
\[p_2 = p_1 \]
\[*p_2 = 1 \]

Example 2:

\[p_3 = \&p_1 \]
\[p_1 = \&a \]
\[\ldots \]
\[q = p_3 \]
\[r = *q \]
\[p_1 = \&b \]

Points-to Analysis is Monotone

To argue monotonicity we must show that if \(Pt_1 \leq Pt_2 \), then \(f(Pt_1) \leq f(Pt_2) \) for each transfer function \(f \).

Points-to Analysis is Not Distributive

\[p = \&x; \quad q = \&y; \]
\[p = \&z; \quad q = \&w; \]
\[*p = q \]

MFP vs. MOP for Points-to

Andersen’s Points-to Analysis

- Commonly attributed to Lars Andersen [1994]
- “Andersen’s points-to analysis for C”
- More approximation than our earlier formulation: don’t ever “kill”; maintain a single points-to graph for all program points
- Flow-insensitive, context-insensitive analysis
- Formulated in terms of subset constraints
- Solvable by a version of the fixpoint iteration

… but it is not distributive!

- Because of updates!
Andersen’s Points-to Analysis

$\text{pts}(p)$ denotes the points-to set of p

1. $p = \&a \{ a \} \in \text{pts}(p)$
2. $p = q \Rightarrow \text{pts}(q) \subseteq \text{pts}(p)$
3. $p = *q$ for each x in $\text{pts}(q)$. $\text{pts}(x) \subseteq \text{pts}(p)$
4. $*p = q$ for each x in $\text{pts}(p)$. $\text{pts}(q) \subseteq \text{pts}(x)$

Use worklist-like algorithm to compute least solution of these constraints

Andersen’s Points-to Analysis: Examples

Example 1:

```
p1 = &a
p2 = p1
*p2 = 1
```

Example 2:

```
p3 = &p1
p1 = &a
...
q = p3
r = *q
p1 = &b
```
Example

public class A {
 public static void main() {
 A a;
 D d = new D();
 E e = new E();
 if (...) a = d; else a = e;
 a.m();
 }
}

public class B extends A {
 public void foo() {
 G g = new G();
 }
}

RTA

R is the set of reachable methods
I is the set of instantiated types

1. \{ main \} \subseteq R // initialize R with main
2. for each method m in R and each new site new C in m
 \{ C \} \subseteq I

XTA

R is the set of reachable methods
S_m is the set of types that flow to method m
S_f is the set of types that flow to field f

1. \{ main \} \subseteq R
2. for each method m in R and each new site new C in m
 \{ C \} \subseteq S_m // add C to S_m if not already there

XTA Analysis Family

- Due to Tip and Palsberg
 - Frank Tip and Jens Palsberg, "Scalable Propagation-Based Call Graph Construction Algorithms", OOPSLA '00
- Generalizes RTA
- Improves on RTA by storing more precise information about flow of class types
4. for each method m in R, each field read x = y.f in m
 \(S_f \subseteq S_m \)

5. for each method m \(\in R \), each field write x.f = y in m
 \(S_f \cap \text{SubTypes}(\text{StaticType}(f)) \subseteq S_r \)

Practical Concerns
- Multiple parameters
- Direct calls
 - either static invoke calls or
 - special invoke calls
- Array reads and writes!
- Static fields
- See Tip and Palsberg for more

Example: RTA vs. XTA
```java
public class A {
    public static void main() {
        n1();
        n2();
    }
    static void n1() {
        A a1 = new B();
        a1.m();
    }
    static void n2() {
        A a2 = new C();
        a2.m();
    }
}
```

Boolean Expression Hierarchy: RTA vs. XTA vs. “Ground Truth”
```java
public class AndExp extends BoolExp {
    private BoolExp left;
    private BoolExp right;
    public AndExp(BoolExp left, BoolExp right) {
        this.left = left;
        this.right = right;
    }
    public boolean evaluate(Context c) {
        private BoolExp l = this.left;
        private BoolExp r = this.right;
        return l.evaluate(c) && r.evaluate(c);
    }
}
```

```java
public class OrExp extends BoolExp {
    private BoolExp left;
    private BoolExp right;
    public OrExp(BoolExp left, BoolExp right) {
        this.left = left;
        this.right = right;
    }
    public boolean evaluate(Context c) {
        private BoolExp l = this.left;
        private BoolExp r = this.right;
        return l.evaluate(c) || r.evaluate(c);
    }
}
```

```java
public class main() {
    Context theContext = new Context();
    BoolExp x = new VarExp("X");
    BoolExp y = new VarExp("Y");
    BoolExp exp = new AndExp( new Constant(true), new OrExp(x, y) );
    theContext.assign(x, true);
    theContext.assign(y, false);
    boolean result = exp.evaluate(theContext);
}
```
Described in Tip and Palsberg’s paper

0-CFA stands for 0-level Control Flow Analysis, where “0-level” stands for context-insensitive analysis.

Will see 1-CFA, 2-CFA, ... k-CFA next time.

Improves on XTA by storing even more information about flow of class types.

0-CFA

R is the set of reachable methods

S_v is the set of types that flow to variable v

S_f is the set of types that flow to field f

1. \{ main \} ⊆ R

2. for each method m in R and each new site x = new C in m

\(\{ C \} \subseteq S_x \)

3. for each method m in R, each virtual call \(x = y.n(z) \) in m,
 each class C in \(S_y \)
 and n’, where n’ = \(\text{resolve}(C,n) \)

\(\{ n' \} \subseteq R \)

\(\{ C \} \subseteq S_{\text{this}} \) // this (impl. param) of n’

\(S_y \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq S_y \)

\(S_f \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq S_f \)

(this is the implicit parameter of n’, p is the parameter of n’, and ret is the return of n’)

4. for each method m in R,
 each field read \(x = y.f \) in m

\(\text{SubTypes}(\text{StaticType}(x)) \subseteq S_x \)

5. for each method m in R,
 each field write \(x.f = y \) in m

\(\text{SubTypes}(\text{StaticType}(f)) \subseteq S_f \)

Example: XTA vs. 0-CFA

```java
public class A {
    public static void main() {
        A a1 = new B();
        a1.m();
        A a2 = new C();
        a2.m();
    }
}
```

Boolean Expression Hierarchy: XTA vs. 0-CFA

```java
public class AndExp extends BoolExp {
    private BoolExp left;
    private BoolExp right;
    public AndExp(BoolExp left, BoolExp right) {
        this.left = left;
        this.right = right;
    }
    public boolean evaluate(Context c) {
        private BoolExp l = this.left;
        private BoolExp r = this.right;
        return l.evaluate(c) && r.evaluate(c);
    }
}
```
public class OrExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;
 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }
 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}

Boolean Expression Hierarchy: XTA vs. 0-CFA

- Widely referred to as Andersen's points-to analysis for Java
- Improves on 0-CFA by storing information about objects, not classes

 - A a1 = new A(); // o1
 - A a2 = new A(); // o2

PTA

3. for each method m in R, each virtual call x = y.n(z) in m, each class o in Pt(y)
 and n', where n' = resolve(class_of(o),n)
 { n' } ⊆ R
 { o } ⊆ Pt(this)
 Pt(z) ∩ SubTypes(StaticType(p)) ⊆ Pt(p)
 Pt(ret) ∩ SubTypes(StaticType(x)) ⊆ Pt(x)
 (this is the implicit parameter of n', p is the parameter of n', and ret is the return of n')

4. for each method m in R, each field read x = y.f in m
 for each object o ∈ Pt(y)
 Pt(o.f) ∩ SubTypes(StaticType(x)) ⊆ Pt(x)
 Pt(y) ∩ SubTypes(StaticType(f)) ⊆ Pt(o.f)

Spring 20 CSCI 4450/6450, A Milanova

main() {
 Context theContext = new Context();
 BoolExp x = new VarExp("X");
 BoolExp y = new VarExp("Y");
 BoolExp exp = new AndExp(
 new Constant(true), new OrExp(x, y));
 theContext.assign(x, true);
 theContext.assign(y, false);
 boolean result = exp.evaluate(theContext);
}

Spring 20 CSCI 4450/6450, A Milanova
The Big Picture

- All fit into the monotone dataflow framework!
- Flow-insensitive, context-insensitive
 - Least solution of $S = f(S) \lor S$
- Differ (most importantly) in “size” of S
 - RTA: only 2 kinds of statements; Lattice?
 - XTA: expands to all statements; Lattice?
 - 0-CFA: all statements; Lattice?
 - PTA (Points-to analysis): all statements; Lattice elements are points-to graphs

Next class

- Quiz 2 on points-to analysis and RTA/XTA
- Interprocedural Analysis
- Context sensitivity

Example: 0-CFA vs. PTA

```java
class A {
    public static void main() {
        X x1 = new X(); // o_1
        A a1 = new B(); // o_2
        x1.f = a1; // o_4, f points to o_2
        A a2 = x1.f; // a2 points to o_2
        a2.m();

        X x2 = new X(); // o_3
        A a3 = new C(); // o_4
        x2.f = a3; // o_5, f points to o_4
        A a4 = x2.f; // a4 points to o_4
        a4.m();
    }
}
```