Dataflow Analysis: Class Analysis (conclusion)
Announcements

- Quiz 2

- HW2
 - Post question on Submitty
 - Setup, please do set this up as soon as possible!
 - Starter code, class analysis framework and worklist algorithm
 - Soot
 - There are already some useful posts
Announcements

Office hours change
- Mondays 4-5pm on Webex
- Fridays 4-5pm on Webex
- Mondays and Thursdays 2pm - in SAGE 3713
- or Wednesdays 3:30pm - 4:30pm
Outline of Today’s Class

- Rapid Type Analysis (RTA), last time
- HW2, Class analysis framework questions?
- The XTA analysis family
- 0-CFA
- Points-to analysis (PTA)
Your Homework

- A bunch of flow-insensitive, context-insensitive analyses for Java
 - RTA, XTA, and optionally other
 - Simple property space
 - Simple transfer functions
 - E.g., in fact, RTA gets rid of most CFG nodes, processes just 2 kinds of nodes
- Millions of lines of code in seconds
“Classical” Points-to Analysis (Imperative, i.e., “operational”)

- Flow-insensitive, context-insensitive analysis
 - Makes sense for points-to analysis

\[\text{Pt} = 0 /* initialize solution to empty points-to graph */ \]

\[\text{F} = \{ f_1, f_2, \ldots, f_n \} /* all transfer functions, without “kills“, including ones for implicit assignments */ \]

\[\text{W} = \{ f_1, f_2, \ldots, f_n \} \]

while \(W \neq \emptyset \) do {
 remove \(f_j \) from \(W \)
 \[\text{Pt} = f_j(\text{Pt}) \]
 if \(\text{Pt} \) changed then
 \[\text{W} = \text{W} \cup \text{F} /* Safe to add all transfer functions! */ \]
}
“Classical” Points-to Analysis (vs. Declarative)

- Known as Andersen’s Points-to Analysis

\(\text{pts}(p) \) denotes the points-to set of \(p \)

1. \(p = &a \quad \{ a \} \subseteq \text{pts}(p) \)
2. \(p = q \quad \text{pts}(q) \subseteq \text{pts}(p) \)
3. \(p = *q \quad \text{for each } x \text{ in } \text{pts}(q). \quad \text{pts}(x) \subseteq \text{pts}(p) \)
4. \(*p = q \quad \text{for each } x \text{ in } \text{pts}(p). \quad \text{pts}(q) \subseteq \text{pts}(x) \)

Use \textit{worklist-like algorithm} to compute least solution of these constraints
Problem statement: What are the classes of objects that a (Java) reference variable may refer to?

Applications
- Call graph construction
 - Nodes are method
 - Edges represent calling relationships
 - Notion of methods reachable from `main`
- Virtual call resolution

CSCI 4450/6450, A Milanova
RTA

\(R \) is the set of reachable methods
\(I \) is the set of instantiated types

1. \{ main \} \subseteq R // Algo: initialize \(R \) with \texttt{main}

2. for each method \(m \in R \) and each new site \texttt{new C} in \(m \)
 \{ C \} \subseteq I // Algo: add \texttt{C} to \(I \); schedule
 // “successor” constraints
3. for each method $m \in R$, each virtual call $y.n(z)$ in m, each class C in $\text{SubTypes}(\text{StaticType}(y)) \cap I$, and n', where $n' = \text{resolve}(C,n)$

$$\{ n' \} \subseteq R \quad // \quad \text{Algo: add target } n' \text{ to } R, \text{ if not already there. Schedule "successors"}$$
Let’s take a moment (or two) to go over HW2 class analysis framework
Due to Tip and Palsberg

Frank Tip and Jens Palsberg, “Scalable Propagation-Based Call Graph Construction Algorithms”, OOPSLA ’00

Generalizes RTA

Improves on RTA by keeping more info

What if we kept sets per method and per field rather than a “blob”?
R is the set of reachable methods

S_m is the set of types that flow to method m

S_f is the set of types that flow to field f

1. $\{\text{main}\} \subseteq R$

2. for each method $m \in R$ and each new site new C in m

 $\{C\} \subseteq S_m$
3. for each method $m \in R$, each virtual call $y.n(z)$ in m, each class C in $\text{SubTypes}(\text{StaticType}(y)) \cap S_m$ and n', where $n' = \text{resolve}(C, n)$

\[
\{ n' \} \subseteq R \quad // \text{add } n' \text{ to } R \text{ if not already there}
\]

\[
\{ C \} \subseteq S_{n'} \quad // \text{add } C \text{ to } S_{n'} \text{ if not already there}
\]

$S_m \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq S_{n'}$

$S_{n'} \cap \text{SubTypes}(\text{StaticType}(\text{ret})) \subseteq S_m$

(p denotes the parameter of n', and ret denotes the return of n')
4. for each method $m \in R$, each field read $x = y.f$ in m

$$S_f \subseteq S_m$$

5. for each method $m \in R$, each field write $x.f = y$ in m

$$S_m \cap \text{SubTypes(StaticType}(f)) \subseteq S_f$$
Practical Concerns

- Multiple parameters
- Direct calls
 - either static invoke calls or
 - special invoke calls
- Array reads and writes!
- Static fields

See Tip and Palsberg for more
Example: RTA vs. XTA

```java
public class A {
    public static void main() {
        n1();
        n2();
    }
    static void n1() {
        A a1 = new B();
        a1.m();
    }
    static void n2() {
        A a2 = new C();
        a2.m();
    }
}
```

CSCI 4450/6450, A Milanova
public class AndExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public AndExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) && r.evaluate(c);
 }
}

Boolean Expression Hierarchy: RTA vs. XTA vs. “Ground Truth”
public class OrExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}
main() {
 Context theContext = new Context();
 BoolExp x = new VarExp("X");
 BoolExp y = new VarExp("Y");
 BoolExp exp = new AndExp(
 new Constant(true), new OrExp(x, y));
 theContext.assign(x, true);
 theContext.assign(y, false);
 boolean result = exp.evaluate(theContext);
}
Outline of Today’s Class

- Rapid Type Analysis (RTA), last time
- HW2, Class analysis framework questions?
- The XTA analysis family
- 0-CFA
- Points-to analysis (PTA)
0-CFA

- Described in Tip and Palsbserg’s paper

- 0-CFA stands for 0-level Control Flow Analysis, where “0-level” stands for context-insensitive analysis
 - Will see 1-CFA, 2-CFA, … k-CFA later

- Improves on XTA by storing even more information about flow of class types
0-CFA

\(R \) is the set of reachable methods

\(S_v \) is the set of types that flow to variable \(v \)

\(S_f \) is the set of types that flow to field \(f \)

1. \{ main \} \subseteq R

2. for each method \(m \in R \) and each new site \(x = \text{new } C \) in \(m \)

\{ C \} \subseteq S_x
3. for each method \(m \in R \), each virtual call \(x = y.n(z) \) in \(m \), each class \(C \) in \(S_y \) and \(n' \), where \(n' = \text{resolve}(C,n) \):

\[
\{ \ n' \ \} \subseteq R \\
\{ \ C \ \} \subseteq S_{\text{this}} \\
S_z \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq S_p \\
S_{\text{ret}} \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq S_x
\]

(this is the implicit parameter of \(n' \), \(p \) is the parameter of \(n' \), and \(\text{ret} \) is the return of \(n' \))
0-CFA

4. for each method \(m \in R \), each field read \(x = y.f \) in \(m \)
 \[S_f \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq S_x \]

5. for each method \(m \in R \), each field write \(x.f = y \) in \(m \)
 \[S_y \cap \text{SubTypes}(\text{StaticType}(f)) \subseteq S_f \]
6. for each method $m \in R$, each assignment $x = y$ in m

$$S_y \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq S_x$$
Example: XTA vs. 0-CFA

```java
public class A {
    public static void main() {
        A a1 = new B();
        a1.m();

        A a2 = new C();
        a2.m();
    }
}
```
```java
public class AndExp extends BoolExp {
    private BoolExp left;
    private BoolExp right;

    public AndExp(BoolExp left, BoolExp right) {
        this.left = left;
        this.right = right;
    }

    public boolean evaluate(Context c) {
        private BoolExp l = this.left;
        private BoolExp r = this.right;
        return l.evaluate(c) && r.evaluate(c);
    }
}
```
public class OrExp extends BoolExp {
 private BoolExp left;
 private BoolExp right;

 public OrExp(BoolExp left, BoolExp right) {
 this.left = left;
 this.right = right;
 }

 public boolean evaluate(Context c) {
 private BoolExp l = this.left;
 private BoolExp r = this.right;
 return l.evaluate(c) || r.evaluate(c);
 }
}
main() {
 Context theContext = new Context();
 BoolExp x = new VarExp("X");
 BoolExp y = new VarExp("Y");
 BoolExp exp = new AndExp(
 new Constant(true), new OrExp(x, y));
 theContext.assign(x, true);
 theContext.assign(y, false);
 boolean result = exp.evaluate(theContext);
}
Outline of Today’s Class

- Rapid Type Analysis (RTA), last time
- HW2, Class analysis framework questions?
- The XTA analysis family
- 0-CFA
- Points-to analysis (PTA)
PTA

- Widely referred to as Andersen’s points-to analysis for Java

- Improves on 0-CFA by storing information about **objects**, not classes

 - A a1 = new A(); // o₁
 - A a2 = new A(); // o₂
PTA

\mathbb{R} is the set of reachable methods

$\text{Pt}(v)$ is the set of objects that v may point to

$\text{Pt}(o.f)$ is the set of objects that field f of object o may point to

1. \{ main \} $\subseteq \mathbb{R}$

2. for each method $m \in \mathbb{R}$ and each new site i: $x = \text{new } C$ in m

 \{ o_i \} $\subseteq \text{Pt}(x)$ // instead of C, we have o_i
3. for each method $m \in R$, each virtual call $x = y.n(z)$ in m, each class o_i in $Pt(y)$ and n', where $n' = resolve(\text{class}_\text{of}(o_i), n)$

$$\{ n' \} \subseteq R$$

$$\{ o_i \} \subseteq Pt(this)$$

$$Pt(z) \cap \text{SubTypes}(\text{StaticType}(p)) \subseteq Pt(p)$$

$$Pt(ret) \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq Pt(x)$$

(this is the implicit parameter of n', p is the parameter of n', and ret is the return of n')
4. for each method \(m \in R \), each field \(x = y.f \) in \(m \)
 for each object \(o \in Pt(y) \)
 \[Pt(o.f) \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq Pt(x) \]

5. for each method \(m \in R \), each field \(x.f = y \) in \(m \)
 for each object \(o \in Pt(x) \)
 \[Pt(y) \cap \text{SubTypes}(\text{StaticType}(f)) \subseteq Pt(o.f) \]
6. for each method $m \in R$, each assignment stmt $x = y$ in m

$$\text{Pt}(y) \cap \text{SubTypes}(\text{StaticType}(x)) \subseteq \text{Pt}(x)$$
Example: 0-CFA vs. PTA

```java
public class A {
    public static void main() {
        X x1 = new X();    // o_1
        A a1 = new B();   // o_2
        x1.f = a1;  // o_1.f points to o_2
        A a2 = x1.f; // a2 points to o_2
        a2.m();

        X x2 = new X();    // o_3
        A a3 = new C();   // o_4
        x2.f = a3; // o_3.f points to o_4
        A a4 = x2.f; // a4 points to o_4
        a4.m();
    }
}
```

The Big Picture

- All fit into our monotone dataflow framework!
- Flow-insensitive, context-insensitive
 - Compute single solution S
- Algorithms differ mainly in “size” of S
 - RTA: only 2 kinds of statements; Lattice?
 - XTA: expands to all statements; Lattice?
 - 0-CFA: all statements; Lattice?
 - PTA (Points-to analysis): all statements; Lattice elements are points-to graphs
The Big Picture

RTA:

Types: A B C D

<table>
<thead>
<tr>
<th>I</th>
</tr>
</thead>
</table>

XTA:

<table>
<thead>
<tr>
<th>S_{m1}</th>
<th>S_{m2}</th>
<th>...</th>
<th>S_{mk}</th>
<th>S_{f1}</th>
<th>...</th>
<th>S_{fk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td>C</td>
<td>D</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

0-CFA:

<table>
<thead>
<tr>
<th>v_1, v_2, ...</th>
<th>v_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

PTA:

<table>
<thead>
<tr>
<th>v_1, v_2, ...</th>
<th>v_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_1:A</td>
<td>o_2:A</td>
</tr>
</tbody>
</table>