Interprocedural Analysis and Context Sensitivity

Announcements

Graded HW2

- Fix issues before moving on to HW3
- You can submit HW2 in Submitty

One issue in virtual call y.m() static_type_of_y It is not target.getDeclaringClass() It is ((RefType) args.get(0).getType()).getSootClass() in virtualCallStmt

So Far

Four classical dataflow problems

- Intraprocedural
- Flow-sensitive

Class analysis: RTA, XTA, 0-CFA, and PTA

- Interprocedural
- Flow-insensitive and context-insensitive analysis

Interprocedural analysis and context sensitivity

CSCI 4450/6450, A Milanova

Outline of Today's Class

Interprocedural control-flow graph (ICFG)

- Realizable paths
- Meet over all realizable paths (MORP)

Classical ideas in interprocedural analysis

- Functional approach
- Call string approach
- Reading
 - Chapter 12.1-3 Dragon book

Outline of Today's Class

- Context-sensitive analysis in practice
 - Notion of calling context
 - Call-string-based context sensitivity
 - Summary-based context sensitivity

Interprocedural Control Flow Graph (ICFG)

- Add procedure <u>entry</u> node and <u>exit</u> node
- At each procedure call add
 - A call node and a call-entry edge

A return node and an exit-return edge

Context-Insensitive Analysis

Add explicit assignments at call and return

- E.g., x = id(y)
- p = y models flow from actual argument y to formal parameter p

x = ret models flow from return to left-hand-side

- Treat ICFG as one big CFG
 - Can be flow-sensitive or
 - Flow-insensitive XTA, D-CFA, PTA, RTA
 - E.g., Andersen's points-to analysis for C

Wash **Context Insensitivity** 1. a = 5 int id(int p) { 2. p = a return p; call id C1 3. return id b = reta = 5; 7. entry id Zb-sT> **c1**: b = id(a);4. x = b*b 8. ret = p c = 6 $\mathbf{x} = \mathbf{b}^*\mathbf{b};$ 9. exit id c = 6; 5. p = ccall id c2: d = id(c); 6. return id d = ret CSCI 4450/6450, A Milanova 8

Context-Insensitive Analysis

Problem with context-insensitive analysis: propagates data along "unrealizable paths"

Goal of context-sensitive analysis is to propagate data along "realizable paths"

Another Example (p3 from HW3)

Another Example

```
int fib(int z, int u) {
  if (z<3) {
       return u+1;
  } else {

        ← c2: v = fib(z-1,u);
```

/* ret = u+1; auxiliary variable ret holds the return values */

c1: y = fib(x,0);

What does **fib** compute? Here **z** and **u** are formal parameters; ret is the special variable holding the return value.

Realizable Paths (RP)

Context-free grammar!

→M ::= e

 $|M,M_2|$

Grammar describes same-level path (SLP):

e denotes <u>intraprocedural</u> edge $((M)_{ci})_{ci}$ path from call to return

- An intraprocedural edge is annotated with e
- Call-entry edge that originates at call site c_i is (ci
- Corresponding exit-return edge is) ci
- A path p, from m to n, is in SLP_{m,n} iff string along p is in language described by M

Realizable Paths (RP)

- What about paths with outstanding calls (calls that have not yet returned)?
- Another grammar:
- $C ::= (_{ci} \mid M (_{ci} \mid C (_{ci} \mid C M$
- A path from entry node 1 to node **n** is in $\mathbb{RP}_{1,n}$ iff the string from 1 to **n** is in the language generated by either M or C

Meet Over All Realizable Paths (MORP) • MORP (n) = $\bigvee f_{n_k} \circ f_{n_{k-1}} \circ \dots f_{n_2} \circ f_1$ (init) $p=(1,n_2...n_k,n)$ is a path in RP_{1,n} (° denotes function composition)

Also called MVP (meet over all valid paths) or just MRP

• $MORP(n) \leq MOP(n)$. Why?

- May be undecidable, even for lattices of finite height
- Goal: encode context and restrict flow over realizable paths, as much as possible

Outline of Today's Class

Interprocedural control-flow graph (ICFG)

- Realizable paths
- Meet over all realizable paths (MORP)
- Classical ideas in interprocedural analysis
 - Functional approach
 - Call string approach

Reading

Chapter 12.1-3 Dragon book

Functional Approach

- Operates on unchanged property space
- Computes summary transfer functions (Φ_p) that summarize the effect of procedure p

- Reduces problem to intraprocedural case:
 - in(return p) = Φ_p(in(call p))
 - thus, avoids propagation from callee along the exit p--->return p edge!

Functional Approach

CSCI 4450/6450, A Milanova

Call String Approach

A call string
 records outstanding
 calls in a path

E.g., call string (c1(c2) denotes that "we got there" on a path with outstanding calls at c1 and at c2

CSCI 4450/6450, A Milanova

Call String Approach

- Tags solutions per program point with corresponding call string
- Multiple tagged solutions per program point j in p:
 - Sharir and Pnueli Example:

We have < { a*b }, (_{c1}>, < { }, (_{c1}(_{c2}> at 6)

Meaning: a*b is available at 6 on paths with outstanding call string c1, but it is not available on paths with outstanding call string c1 c2

Call String Approach

- Apply original transfer functions point-wise on elements of the original, i.e., "intraprocedural" dataflow lattice
 - Elements: { a*b }, { a*b, a+b }, {}, etc.
- Extend to handle call-entry and exit-return
 - At call-entry, simply append (ci
 - At exit-return, propagate only if)_{ci} matches!

Sharir and Pnueli, Key Result

- S_{FA}(j) is the solution at j computed by the functional approach
- Scs(j) is the solution at j computed by the call string approach
- For (certain) distributive functions and finite lattices

$S_{FA}(j) = S_{CS}(j) = MORP(j)$

Caveats?

Sharir and Pnueli, Key Result

Caveats

- Summary functions Φ_{p} difficult to compute
- With recursion, infinite call strings, S_{cs} is infinite
- Even for distributive functions and finite lattices,
 S_{FA} and S_{CS} cannot be computed in general
- Simple programming model
- Only distributive analysis

Outline of Today's Class

- Context-sensitive analysis in practice
- Call-string-based context sensitivity
 - Summary-based context sensitivity
 - We'll continue next time

Reading

Chapter 12.1-3 Dragon book

Context-Sensitive Analysis In Practice

- Transfer functions are not distributive
- Local variables, flow of values from actual arguments to formal parameters, and from return to left-hand-side
- Procedures have side effects!
- Sometimes there is no call graph!
 - Function pointers, virtual calls, functions as firstclass values
- Parameter passing mechanisms

Context-Sensitive Analysis In Practice

- Ad-hoc adaptation of Sharir and Pnueli's call string or functional approach
- Call-string-based approaches
 - More intuitive than functional one
 - Nearly universally applicable, widely used
- Functional approaches
 - More difficult to implement
 - Not always applicable
 - Better precision and better scalability, in general