Interprocedural Analysis and Context Sensitivity
Announcements

- Graded HW2
 - Fix issues before moving on to HW3
 - You can submit HW2 in Submitty

- One issue in virtual call **y.m()**
 - **static_type_of_y**
 - It is not `target.getDeclaringClass()`
 - It is `((RefType) args.get(0).getType()).getSootClass()` in `virtualCallStmt`

CSCI 4450/6450, A Milanova
So Far

- Four classical dataflow problems
 - **Intra**procedural
 - Flow-sensitive
- Class analysis: RTA, XTA, 0-CFA, and PTA
 - **Inter**procedural
 - Flow-insensitive and context-insensitive analysis
- Interprocedural analysis and context sensitivity
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
 - Realizable paths
 - Meet over all realizable paths (MORP)
- Classical ideas in interprocedural analysis
 - Functional approach
 - Call string approach

- Reading
 - Chapter 12.1-3 Dragon book
Outline of Today’s Class

- Context-sensitive analysis in practice
 - Notion of calling context
 - Call-string-based context sensitivity
 - Summary-based context sensitivity

Reading
- Chapter 12.1-3 Dragon book
Interprocedural Control Flow Graph (ICFG)

- Add procedure **entry** node and **exit** node
- At each procedure call add
 - A **call** node and a **call-entry** edge
 - A **return** node and an **exit-return** edge
Context-Insensitive Analysis

- Add explicit assignments at call and return
 - E.g., \(x = \text{id}(y) \)
 - \(p = y \) models flow from actual argument \(y \) to formal parameter \(p \)
 - \(x = \text{ret} \) models flow from return to left-hand-side

- Treat ICFG as one big CFG
 - Can be flow-sensitive or
 - Flow-insensitive \(\text{KTA, O-CFA, PTA, RTA} \)
 - E.g., Andersen’s points-to analysis for C
int id(int p) {
 return p;
}

a = 5;
c1: b = id(a);
x = b*b;
c = 6;
c2: d = id(c);
int id(int p) {
 return p;
}

a = 5;
c1: b = id(a);
 x = b*b;
 c = 6;
c2: d = id(c);
Context-Insensitive Analysis

- Problem with context-insensitive analysis: propagates data along “unrealizable paths”

- Goal of context-sensitive analysis is to propagate data along “realizable paths”
int id(int p) {
 return p;
}

a = 5;
c1: b = id(a);
x = b*b;
c = 6;
c2: d = id(c);
Another Example (p3 from HW3)

class A {
 main() {
 B b = new B();
 b.m();
 A a = b.n();
 a.m();
 }
 A n() { return this; }
}

class B extends A {
 void m() {
 A a = new A();
 A a2 = a.n();
 }
}

O-CFA: a: {A, B3}
GT: a: {B3}

O-CFA propagates A to a.m() in main along the unrealizable orange path.
Another Example

int fib(int z, int u) {
 if (z<3) {
 return u+1; /* ret = u+1; */
 } else {
 c2: v = fib(z-1,u); /* auxiliary variable ret holds the return values */
 c3: return fib(z-2,v)
 }
}

... c1: y = fib(x,0);

What does fib compute? Here z and u are formal parameters; ret is the special variable holding the return value.
Another Example

main:
1. call
2. call
3. return
4. entry
5. z < 3
6. ret = u + 1
7. exit

fib:
8. call
9. return
10. call
11. return

T
F

CSCI 4450/6450, A Milanova
Realizable Paths (RP)

- Context-free grammar!
- Grammar describes same-level path (SLP):

 \[M ::= e \]
 \[e \text{ denotes intra-procedural edge} \]
 \[(c_i M)_{c_i} \text{ path from call to return} \]
 \[M_1 M_2 \]

 - An intra-procedural edge is annotated with \(e \)
 - Call-entry edge that originates at call site \(c_i \) is \((c_i \)
 - Corresponding exit-return edge is \()_{c_i} \)

 A path \(p \), from \(m \) to \(n \), is in \(\text{SLP}_{m,n} \) iff string along \(p \) is in language described by \(M \)
Realizable Paths (RP)

- What about paths with outstanding calls (calls that have not yet returned)?
- Another grammar:

\[
C ::= (c_i \mid M (c_i \mid C (c_i \mid C M
\]

- A path from entry node 1 to node \(n \) is in \(\text{RP}_{1,n} \) iff the string from 1 to \(n \) is in the language generated by either \(M \) or \(C \)

- E.g., in Constant prop example, \(1,2,7,8,9,3 \) is in \(\text{RP}_{1,3} \) but \(1,2,7,8,9,3,4,5,7,8,9,3 \) is NOT in \(\text{RP}_{1,3} \)
Is \(p_1 = 1, 2, 4, 5, 6, 7 \) in \(\text{RP}_{1,7} \)? \(\text{YES} \)

Is \(p_2 = 1, 2, 4, 5, 8, 4, 5, 6, 7, 3 \) in \(\text{RP}_{1,3} \)? \(\text{No} \)

CSCI 4450/6450, A Milanova
Meet Over All Realizable Paths (MORP)

- \(\text{MORP}(n) = \bigvee f_{n_k} \circ f_{n_{k-1}} \circ \ldots \circ f_{n_2} \circ f_1(\text{init}) \)

 - \(p=(1,n_2\ldots n_k,n) \) is a path in RP\(_{1,n}\)

 (\(\circ \) denotes function composition)

- Also called MVP (meet over all valid paths) or just MRP

- \(\text{MORP}(n) \leq \text{MOP}(n) \). Why?

- May be undecidable, even for lattices of finite height

- Goal: encode context and restrict flow over realizable paths, as much as possible
Outline of Today’s Class

- Interprocedural control-flow graph (ICFG)
 - Realizable paths
 - Meet over all realizable paths (MORP)
- Classical ideas in interprocedural analysis
 - Functional approach
 - Call string approach

- Reading
 - Chapter 12.1-3 Dragon book
Sharir and Pnueli Example
(Available Expressions)

1. read a, b
 t = a*b

2. call p

3. return p

4. t = a*b
 print t

5. entry p

6. if a == 0
 then
 else
 end if
 a = a - 1

7. call p

8. return p
 t = a*b

9. exit p

Q: Is a*b available at 4?
 GT: yes!
 CI: no!
 CS: yes!

unrealizable path:
1, 2, 5, 6, 7, 5, 6, 9, 3
Functional Approach

- Operates on unchanged property space
- Computes summary transfer functions Φ_p that summarize the effect of procedure p

- Reduces problem to intraprocedural case:
 - $\text{in(}\text{return } p\text{)} = \Phi_p(\text{in(}\text{call } p\text{)})$
 - thus, avoids propagation from callee along the exit p --- $\text{return } p$ edge!
Phase 1:
Compute **summary transfer functions** Φ_p that capture effect of p. In example Φ_p is the **identity function**: nothing gets generated and nothing gets killed (simplifying a bit)
Functional Approach

Phase 2: Dataflow analysis:

1. \textbf{At return }p \textbf{in}(\text{return }p) = \Phi_p(\text{in}(\text{call }p))
2. \textbf{out}(\text{return }p) = \text{in}(\text{return }p)
 AVERTS PROPAGATION along exit-return edges!

3. \textbf{At entry }p \text{ in}(\text{entry }p) = V \text{ in}(\text{call }p)
 \text{(propagates facts from all callers to callee)}

1. read a, b
 \(t = a \times b \)

2. call p

3. return p

4. \(t = a \times b \)
 \text{print } t

5. entry p

6. if \(a == 0 \) then
 \(a = a - 1 \)

7. call p

8. return p
 \(t = a \times b \)

9. exit p
Call String Approach

- A call string records outstanding calls in a path.
- E.g., call string \((c_1(c_2))\) denotes that “we got there” on a path with outstanding calls at \(c_1\) and at \(c_2\).

\[
1. \text{read } a, b \\
t = a \cdot b \\
2. \text{call } p \\
3. \text{return } p \\
4. t = a \cdot b \\
\text{print } t \\
5. \text{entry } p \\
6. \text{if } a == 0 \text{ then} \\
a = a - 1 \\
7. \text{call } p \\
8. \text{return } p \\
9. \text{exit } p
\]
Call String Approach

- Tags solutions per program point with corresponding call string
- Multiple tagged solutions per program point j in p:
 - Sharir and Pnueli Example:
 - We have $< \{ a*b \}, (c_1), < \{ \}, (c_1(c_2))$ at 6
 - Meaning: $a*b$ is available at 6 on paths with outstanding call string c_1, but it is not available on paths with outstanding call string $c_1 c_2$
Call String Approach

- Apply original transfer functions point-wise on elements of the original, i.e., "intraprocedural" dataflow lattice
 - Elements: \{ a*b \}, \{ a*b, a+b \}, {}, etc.

- Extend to handle call-entry and exit-return
 - At call-entry, simply append \(\left(c_i \right) \)
 - At exit-return, propagate only if \(\right(c_i \) matches!
1. Extend in/out sets to sets of “tagged” lattice elements.
2. Apply orig. transfer funcs. point-wise.
3. Extend to handle call-entry, exit-return edges.

1. read a, b
 \[t = a\times b \]

2. call p

3. return p

4. \(t = a\times b \)
 print t

5. entry p

6. if a == 0 then
 a = a - 1

7. call p

8. return p
 \(t = a\times b \)

9. exit p
Sharir and Pnueli, Key Result

- \(S_{FA}(j) \) is the solution at \(j \) computed by the functional approach
- \(S_{CS}(j) \) is the solution at \(j \) computed by the call string approach
- For (certain) distributive functions and finite lattices
 \[S_{FA}(j) = S_{CS}(j) = MORP(j) \]
- Caveats?
Sharir and Pnueli, Key Result

Caveats

- Summary functions Φ_p difficult to compute
- With recursion, infinite call strings, S_{CS} is infinite
- Even for distributive functions and finite lattices, S_{FA} and S_{CS} cannot be computed in general

- Simple programming model
- Only distributive analysis
Outline of Today’s Class

- Context-sensitive analysis in practice
 - Call-string-based context sensitivity
 - Summary-based context sensitivity

- We’ll continue next time

Reading
- Chapter 12.1-3 Dragon book
Context-Sensitive Analysis In Practice

- Transfer functions are not distributive
- Local variables, flow of values from actual arguments to formal parameters, and from return to left-hand-side
- Procedures have side effects!
- Sometimes there is no call graph!
 - Function pointers, virtual calls, functions as first-class values
- Parameter passing mechanisms
Context-Sensitive Analysis In Practice

- Ad-hoc adaptation of Sharir and Pnueli’s call string or functional approach

- Call-string-based approaches
 - More intuitive than functional one
 - Nearly universally applicable, widely used

- Functional approaches
 - More difficult to implement
 - Not always applicable
 - Better precision and better scalability, in general