
Interprocedural Analysis and Context
Sensitivity

Announcements

n Graded HW2
n Fix issues before moving on to HW3
n You can submit HW2 in Submitty

n One issue in virtual call y.m()
n static_type_of_y

n It is not target.getDeclaringClass()
n It is ((RefType) args.get(0).getType()).getSootClass()

in virtualCallStmt

CSCI 4450/6450, A Milanova 2

So Far

n Four classical dataflow problems
n Intraprocedural
n Flow-sensitive

n Class analysis: RTA, XTA, 0-CFA, and PTA
n Interprocedural
n Flow-insensitive and context-insensitive analysis

n Interprocedural analysis and context
sensitivity

CSCI 4450/6450, A Milanova 3

Outline of Today’s Class

n Interprocedural control-flow graph (ICFG)
n Realizable paths
n Meet over all realizable paths (MORP)

n Classical ideas in interprocedural analysis
n Functional approach
n Call string approach

n Reading
n Chapter 12.1-3 Dragon book

4

Outline of Today’s Class

n Context-sensitive analysis in practice
n Notion of calling context
n Call-string-based context sensitivity
n Summary-based context sensitivity

n Reading
n Chapter 12.1-3 Dragon book

5CSCI 4450/6450, A Milanova

n Add procedure entry node and exit node
n At each procedure call add

n A call node and a call-entry edge

n A return node and an exit-return edge

2.call 7.entry

3.return 9.exit

Interprocedural Control Flow
Graph (ICFG)

CSCI 4450/6450, A Milanova 6

Context-Insensitive Analysis

n Add explicit assignments at call and return
n E.g., x = id(y)
n p = y models flow from actual argument y to

formal parameter p
n x = ret models flow from return to left-hand-side

n Treat ICFG as one big CFG
n Can be flow-sensitive or
n Flow-insensitive

n E.g., Andersen’s points-to analysis for C

7CSCI 4450/6450, A Milanova

Context Insensitivity

int id(int p) {
return p;

}
a = 5;

c1: b = id(a);
x = b*b;
c = 6;

c2: d = id(c);
CSCI 4450/6450, A Milanova 8

1. a = 5

2. p = a
call id

3. return id
b = ret

5. p = c
call id

6. return id
d = ret

4. x = b*b
c = 6

7. entry id

8. ret = p

9. exit id

Unrealizable Paths

int id(int p) {
return p;

}
a = 5;

c1: b = id(a);
x = b*b;
c = 6;

c2: d = id(c);
CSCI 4450/6450, A Milanova 9

1. a = 5

2. p = a
call id

3. return id
b = ret

5. p = c
call id

6. return id
d = ret

4. x = b*b
c = 6

7. entry id

8. ret = p

9. exit id

Context-Insensitive Analysis

n Problem with context-insensitive analysis:
propagates data along “unrealizable paths”

n Goal of context-sensitive analysis is to
propagate data along “realizable paths”

10CSCI 4450/6450, A Milanova

Realizable Paths
int id(int p) {
return p;

}
a = 5;

c1: b = id(a);
x = b*b;
c = 6;

c2: d = id(c);
CSCI 4450/6450, A Milanova 11

1. a = 5

2. p = a
call id

3. return id
b = ret

5. p = c
call id

6. return id
d = ret

4. x = b*b
c = 6

7. entry id

8. ret = p

9. exit id

(c1

)c1

(c2

)c2

Another Example (p3 from HW3)
class A {
main() {
B b = new B();
b.m();

A a = b.n();
a.m();

}

A n() { return this; }
}

class B extends A {
void m() {
A a = new A();
A a2 = a.n();

}

CSCI 4450/6450, A Milanova 12

Another Example

int fib(int z, int u) {
if (z<3) {

return u+1; /* ret = u+1;
} else { auxiliary variable ret

c2: v = fib(z-1,u); holds the return values */
c3: return fib(z-2,v)

}
}
…

c1: y = fib(x,0);
…

What does fib compute? Here z and u are formal parameters;
ret is the special variable holding the return value.
CSCI 4450/6450, A Milanova 13

4.entry

5.z<3

6. ret=u+1

7.exit

8.call

9.return

10.call

11.return

2.call

3.return

fib:main:
1

z=x
u=0

y=ret

z=z-1
u=u

v=ret

z=z-2
u=v

ret=ret

T

F

Another Example

CSCI 4450/6450, A Milanova 14

(c1

)c1

(c2

)c2
(c3

)c3

Realizable Paths (RP)

n Context-free grammar!
n Grammar describes same-level path (SLP):
M ::= e e denotes intraprocedural edge

| (ci M)ci path from call to return
| M M

n An intraprocedural edge is annotated with e
n Call-entry edge that originates at call site ci is (Ci
n Corresponding exit-return edge is) Ci

n A path p, from m to n, is in SLPm,n iff string
along p is in language described by M 15

Realizable Paths (RP)

n What about paths with outstanding calls
(calls that have not yet returned)?

n Another grammar:
C ::= (ci | M (ci | C (ci | C M
n A path from entry node 1 to node n is in RP1,n

iff the string from 1 to n is in the language
generated by either M or C
n E.g., in Constant prop example, 1,2,7,8,9,3 is in

RP1,3 but 1,2,7,8,9,3,4,5,7,8,9,3 is NOT in RP1,3
16

4.entry

5.z<3

6. ret=u+1

7.exit

8.call

9.return

10.call

11.return

2.call

3.return

fib:main:
1

z=x
u=0

y=ret

z=z-1
u=u

v=ret

z=z-2
u=v

ret=ret

T

F

CSCI 4450/6450, A Milanova 17

(c1

)c1

(c2

)c2
(c3

)c3

Is p1 = 1,2,4,5,6,7 in RP1,7?

Is p2 = 1,2,4,5,8,4,5,6,7,3 in RP1,3?

Meet Over All Realizable Paths
(MORP)

n MORP (n) = V fnk° fnk-1°… fn2° f1(init)

(°denotes function composition)
n Also called MVP (meet over all valid paths) or just MRP

n MORP(n) ≤ MOP(n). Why?
n May be undecidable, even for lattices of finite

height
n Goal: encode context and restrict flow over

realizable paths, as much as possible

p=(1,n2…nk,n) is a path in RP1,n

18

Outline of Today’s Class

n Interprocedural control-flow graph (ICFG)
n Realizable paths
n Meet over all realizable paths (MORP)

n Classical ideas in interprocedural analysis
n Functional approach
n Call string approach

n Reading
n Chapter 12.1-3 Dragon book

19

Sharir and Pnueli Example
(Available Expressions)

CSCI 4450/6450, A Milanova 20

1. read a, b
t = a*b

2. call p

3. return p

4. t = a*b
print t

5. entry p

6. if a == 0 then
else a = a - 1

7. call p

8. return p
t = a*b

9. exit p

(c1

)c1

(c2

)c2

c1:

c2:

T

Functional Approach

n Operates on unchanged property space
n Computes summary transfer functions Φp that

summarize the effect of procedure p

n Reduces problem to intraprocedural case:
n in(return p) = Φp(in(call p))
n thus, avoids propagation from callee along the

exit p return p edge!

CSCI 4450/6450, A Milanova 21

Functional Approach

CSCI 4450/6450, A Milanova 22

1. read a, b
t = a*b

2. call p

3. return p

4. t = a*b
print t

5. entry p

6. if a == 0 then
a = a - 1

7. call p

8. return p
t = a*b

9. exit p

(c1

)c1

(c2

)c2

Phase 1:
Compute summary
transfer functions Φp
that capture effect of p.
In example Φp is the
identity function: nothing
gets generated and
nothing gets killed
(simplifying a bit)

Φp

Φp

Functional Approach

CSCI 4450/6450, A Milanova 23

1. read a, b
t = a*b

2. call p

3. return p

4. t = a*b
print t

5. entry p

6. if a == 0 then
a = a - 1

7. call p

8. return p
t = a*b

9. exit p

Phase 2:
Dataflow analysis:
•At return p
in(return p) = Φp(in(call p))
out(return p) = in(return p)
AVOIDS PROPAGATION
along exit-return edges!

•At entry p
in(entry p) = V in(call p)
(propagates facts from all
callers to callee)

Φp

Φp

(c1 (c2

Call String Approach

n A call string
records outstanding
calls in a path

n E.g., call string (c1(c2
denotes that “we
got there” on a path
with outstanding calls
at c1 and at c2
CSCI 4450/6450, A Milanova 24

1. read a, b
t = a*b

2. call p

3. return p

4. t = a*b
print t

5. entry p

6. if a == 0 then
a = a - 1

7. call p

8. return p
t = a*b

9. exit p

(c1

)c1

(c2

)c2

c1:

c2:

Call String Approach

n Tags solutions per program point with
corresponding call string

n Multiple tagged solutions per program point j
in p:
n Sharir and Pnueli Example:
n We have < { a*b }, (c1 >, < { }, (c1(c2 > at 6
n Meaning: a*b is available at 6 on paths with

outstanding call string c1, but it is not available
on paths with outstanding call string c1 c2

25CSCI 4450/6450, A Milanova

Call String Approach

n Apply original transfer functions point-wise on
elements of the original, i.e., “intraprocedural”
dataflow lattice
n Elements: { a*b }, { a*b, a+b }, {}, etc.

n Extend to handle call-entry and exit-return
n At call-entry, simply append (ci
n At exit-return, propagate only if)ci matches!

26CSCI 4450/6450, A Milanova

Call String Approach

1. Extend in/out
sets to sets of
“tagged” lattice
elements.
2. Apply orig.
transfer funcs.
point-wise.
3. Extend to
handle call-entry,
exit-return edges.

27

1. read a, b
t = a*b

2. call p

3. return p

4. t = a*b
print t

5. entry p

6. if a == 0 then
a = a - 1

7. call p

8. return p
t = a*b

9. exit p

(c1

)c1

(c2

)c2

c1:

c2:

<{a*b},_>

<{a*b},(c1>

<{a*b},(c1>

<{},(c1>

<{},(c1 (c2>

<{},(c1 (c2>

<{a*b},(c1> <{},(c1 (c2>

<{a*b},_>
<{},(c1 >

Sharir and Pnueli, Key Result

n SFA(j) is the solution at j computed by the
functional approach

n SCS(j) is the solution at j computed by the call
string approach

n For (certain) distributive functions and finite
lattices

SFA(j) = SCS(j) = MORP(j)
n Caveats?

CSCI 4450/6450, A Milanova 28

Sharir and Pnueli, Key Result

n Caveats
n Summary functions Φp difficult to compute
n With recursion, infinite call strings, SCS is infinite
n Even for distributive functions and finite lattices,

SFA and SCS cannot be computed in general

n Simple programming model
n Only distributive analysis

CSCI 4450/6450, A Milanova 29

Outline of Today’s Class

n Context-sensitive analysis in practice
n Call-string-based context sensitivity
n Summary-based context sensitivity

n We’ll continue next time

n Reading
n Chapter 12.1-3 Dragon book

30CSCI 4450/6450, A Milanova

Context-Sensitive Analysis In
Practice

n Transfer functions are not distributive
n Local variables, flow of values from actual

arguments to formal parameters, and from
return to left-hand-side

n Procedures have side effects!
n Sometimes there is no call graph!

n Function pointers, virtual calls, functions as first-
class values

n Parameter passing mechanisms
31CSCI 4450/6450, A Milanova

Context-Sensitive Analysis In
Practice

n Ad-hoc adaptation of Sharir and Pnueli’s call
string or functional approach

n Call-string-based approaches
n More intuitive than functional one
n Nearly universally applicable, widely used

n Functional approaches
n More difficult to implement
n Not always applicable
n Better precision and better scalability, in general

32CSCI 4450/6450, A Milanova

