!'_ Abstract Interpretation

i Announcements

s Will conclude with dataflow and abstract
interpretation this week and move on

X ::rfl.m(rz)
! < resolve (4, k)

o H\QjB—an HW47? (@ reher r')bL m’(#ws {oamm/.e_fo)

—_— I w()
X[if = S A,D/X' /
PRIpS R wQ)

)‘ X [/ KOt vt re, r2 ¢ T

-—

OPCPA' r{ 2 Sr(y re: S’rz, r2: &&_

Program Analysis CSCI 4450/6450, A Milanova

i Abstract Interpretation

s Patrick Cousot and Radhia Cousot, POPL’77

= A general framework

= Combines ideas from dataflow analysis
(monotone frameworks and fixpoint iteration) and
formal verification (axiomatic semantics)

= Building static analyses
= Reasoning about correctness of static analysis

= Comparing static analyses

Program Analysis CSCI 4450/6450, A Milanova 3

i Lecture Notes Based On

= "Principles of Program Analysis” by Nielsen,
Nielsen and Hankin, Chapter 3

= Alex Salcianu’s friendlier account of Chapter 3:
https://web.eecs.umich.edu/~bchandra/courses/papers/
Salcianu_Abstractinterpretation.pdf

= Lecture notes by Xavier Rival, ENS
= https://www.di.ens.fr/~rival/semverif-2017/sem-11-ai.pdf

Program Analysis CSCI 4450/6450, A Milanova

i Outline

s Overview

s Semantics

= Notion of abstraction

= Concretization and abstraction functions
= Galois Connections

= Applications of abstract interpretation

Program Analysis CSCI 4450/6450, A Milanova

h; created at site i into a single o;

] Points-to analysis is an abstraction.
| Ove rview Abstracts infinitely many heap objects

Program EW sis (PTA):
X 2 hj:A X =2 0;:A

X =vy.n(z) X = y.n(z)

passes value of z to pts(z) £ pts(p)

parameter p
Program Analysis CSCI 4450/6450, A Milanova 6

i Operational Semantics

s Also called trace semantics, or concrete
semantics, models a trace of execution

= Memory state maps variables (V) to values (£):
o:V>2Z 0= [x=1 y»2,2-5]
= Control state describes where we are
label ¢ (note: we used the term program point)
= Describes transition (¢,, 04) =2 (¢, 05)

(read: program executes statement at label ¢ in
state o, transitioning to label ¢, in state o,)

Program Analysis CSCI 4450/6450, A Milanova

A Simple Imperative Language:
i Syntax (We've Seen This Before!)

E . =x|n simple expression
S:=x= E| x=E Op E assignment
while (b) Seq loop
if (b) Seqg else Seq conditional
Seq .={S;...S;} sequence

= V is the set of program variables, x&V
s Z is the set of values variables take, n&Z

Program Analysis CSCI 4450/6450, A Milanova

A Simple Imperative Language:

i Operational Semantics [EB(@)

= Operational semantics of expressions:
= [[n]J(o) =n // constant n evaluates to n

= [[x]|(o) = o(x) // variable x evaluates to the
value nthat x mapstoin o

€ Cr:[)(ﬁ?l,y.—?lj
Z)(=41 "‘ s S
= Assignment: ¢ X =E;¢:...) y=2 OLL" 1, 9+4]
= K~>1, V-
(40) 2> (4 a[xé[[E]](a) ¥4

= Assignment: ¢ G’—'x E,OpE,;¢: ...
(0] = (&, Oxw [ET0) 4 16T |

A Simple Imperative Language:
Operational Semantics

= Loop: ¢: while (b){¢:S:..}&: .
1P [6]]{0‘ =True ey (J,cr)——a (@UO‘>

1) [b)(0)==False flo (0;,q) — (b, o)

= Conditional: ¢:if (b){¢: ... }else{¢: ...}
Iﬁ [!97[0‘) == /rue fhen [@,,(T)——?(& G)
1 [6](0) == Falx He (6,0)— (be,0)

Sfor
= Sequence: {¢: S l .. }([°’T);*/6’5’)eff‘ﬁ\o

dhe
= Transition deflned by composition of |nd|V|duJ/€r
transition relations

10

o: empty map | 4

Example (10)- (z o’

b%O

2. if (b=0)

0: b>0 T ~_F

3. x=1

5. x=2

o: b0, x>1 |

|

4.y=

2

6. y=1

o: b>0, x>1, yM

(%,07)~ (8,6 [z xT (o)

+ Iy[()]

),

o:b-20,x2>1,y=>2,z>3

. Z=xty

8. x=10*z

o: b0, x>30, y=>2, z>3

Program Analysis CSCI 4450/6450, A Mllanova

11

i Collecting Semantics

= Collects states (i.e., ’s) along all possible
traces of execution at a given label (i.e.,
program point)

s Given a label, we are interested in a function
« C:Labels 25 2 & #of ald T
= The set of all states a program can have at ¢

Program Analysis CSCI 4450/6450, A Milanova 12

X i=n C[L2] = {o][x - n]| o € C[L1]}

§ C|Lt] ={o | o € C|L1], [e]o = true}
‘ "I C[Lf]l ={o |0 € C[L1],[e]o = false)
Lt Lf

\?/ C[L3] = C[L1] U C[L2]

L3

Program Analysis CSCI 4450/6450, A Milanova. 13
Slide from MIT’s 2015 Program Analysis course on OpenCorseWare

i Collecting Semantics

s “Ground truth”

= We base reasoning about correctness (soundness)
of static analysis off of it

s Undecidable
s Relation to MOP solution?
s Define abstraction of state and semantics

= Goal: show that abstraction “accounts for” all
values computed by the collecting semantics

Program Analysis CSCI 4450/6450, A Milanova 14

i Outline

s Overview

= Semantics

s Notion of abstraction

= Concretization and abstraction functions
= Galois Connections

= Applications of abstract interpretation

Program Analysis CSCI 4450/6450, A Milanova

15

i Abstraction Example 1: signs

= Concrete values: sets of integers
= Abstract values: signs
Lattice of signs:

T » 1 represents the empty set
| * + represents any set of positive integers
+ 0 * O represents set {0}
— = - - represents any set of negative integers
l‘ T represents any set of integers
1

Program Analysis CSCI 4450/6450, A Milanova 16

i Abstraction Example 1: signs

Concrete space: Abstract space:
A lattice! A lattice!
{...-2,-1,0,1,...}
{0,1,2,...} T
{-2,-1,0}
{0,1) + 0 -
{-2,-1} | 1.2} ~
{0} 1

Program Analysis CSC{)4-50/6450, A Milanova 18

i Abstraction Example 1: signs

s Concrete elements: elements of the concrete
lattice ¢ & 27

s Abstract elements: elements of abstract
lattice of signs

s Abstraction relation relates concrete
elements to abstract ones: c I a (i.e., a

represents ¢, or conversely ¢ is represented by a)

{1 52$3} —S +

{123} —s T

Program Analysis CSCI 4450/6450, A Milanova 19

i Abstraction Example 1: signs

s We use the abstraction relation to define
abstract semantics, i.e., the execution of
program statements over abstract elements

s lfXis+andyis +thenx+yis +
= X’s value is a positive integer
= y’s value is a positive integer

= Therefore, the concrete value of x +y is a
positive integer too, thus represented by +

Program Analysis CSCI 4450/6450, A Milanova 20

i Abstraction Example 1: signs

s lfXis+andyis +thenx+yis +
= Analysis computes over abstract elements

= Correctness conclusion, informally: if analysis

(works on abstract elements a) determines
that x at label ¢is a, then a represents the set

of concrete values ¢ collected by the
collecting semantics at ¢

Program Analysis CSCI 4450/6450, A Milanova 21

i Abstraction Example 1: signst

= We can also use U and [
fxis+andyis+thenxUyis +
low about if xis +and y is 07
thenxUyis T

because only {0,1,2,3,...} g T holds

No other relation holds

In the abstract, we include negative integers
in x Uy (we lose precision!)

Program Analysis CSCI 4450/6450, A Milanova. Example from Xavier Rival’s lecture notes on Al 22

+ 0 -

1

i Abstraction Example 1: signs

= Refine the abstract space

T * | represents the empty set

+ represents any set of positive integers
O represents set { 0 }
- represents any set of negative integers
T represents any set of integers

20 0

IA
O

» 20 represents any set of non-negative
iIntegers

» =0 represents any set of non-positive
iIntegers

1 « #0 represents any set of non-zero

integers
Program Analysis CSCI 4450/6450, A Milano 23

| +

0

i Abstraction Examples

= Will continue next time

CSCI 4450/6450, A Milanova

24

