
Abstract Interpretation

Announcements

n Will conclude with dataflow and abstract
interpretation this week and move on

n HW3 and HW4?

Program Analysis CSCI 4450/6450, A Milanova 2

Abstract Interpretation

n Patrick Cousot and Radhia Cousot, POPL’77

n A general framework
n Combines ideas from dataflow analysis

(monotone frameworks and fixpoint iteration) and
formal verification (axiomatic semantics)

n Building static analyses
n Reasoning about correctness of static analysis
n Comparing static analyses

Program Analysis CSCI 4450/6450, A Milanova 3

Lecture Notes Based On

n “Principles of Program Analysis” by Nielsen,
Nielsen and Hankin, Chapter 3
n Alex Salcianu’s friendlier account of Chapter 3:

https://web.eecs.umich.edu/~bchandra/courses/papers/
Salcianu_AbstractInterpretation.pdf

n Lecture notes by Xavier Rival, ENS
n https://www.di.ens.fr/~rival/semverif-2017/sem-11-ai.pdf

Program Analysis CSCI 4450/6450, A Milanova 4

Outline

n Overview

n Semantics
n Notion of abstraction
n Concretization and abstraction functions
n Galois Connections

n Applications of abstract interpretation
Program Analysis CSCI 4450/6450, A Milanova 5

Overview

Program Analysis CSCI 4450/6450, A Milanova 6

Program Execution: Points-to Analysis (PTA):

x à hj:A

x = y.n(z)
passes value of z to
parameter p

x à oi:A

Points-to analysis is an abstraction.
Abstracts infinitely many heap objects
hj created at site i into a single oi

x = y.n(z)
pts(z) pts(p)

Operational Semantics

n Also called trace semantics, or concrete
semantics, models a trace of execution

n Memory state maps variables (V) to values (Z):
σ : V à Z

n Control state describes where we are
label l (note: we used the term program point)

n Describes transition (l1, σ1) à (l2, σ2)
(read: program executes statement at label l1 in
state σ1 transitioning to label l2 in state σ2)

7Program Analysis CSCI 4450/6450, A Milanova

A Simple Imperative Language:
Syntax (We’ve Seen This Before!)

E ::= x | n simple expression
S ::= x = E | x = E Op E assignment

| while (b) Seq loop
| if (b) Seq else Seq conditional

Seq ::= { S; … S; } sequence

n V is the set of program variables, x V
n Z is the set of values variables take, n Z
Program Analysis CSCI 4450/6450, A Milanova 8

∈
∈

A Simple Imperative Language:
Operational Semantics

9

n Operational semantics of expressions:
n |[n]|(σ) = n // constant n evaluates to n
n |[x]|(σ) = σ(x) // variable x evaluates to the

value n that x maps to in σ

n Assignment: lj : x = E; li : …
(lj,σ) à (li, σ[xß|[E]|(σ)])
n Assignment: lj : x = E1 Op E2 ; li : …

A Simple Imperative Language:
Operational Semantics

10

n Loop: lj : while (b) { li : S; … } lk : ...

n Conditional: lj : if (b) { lT : … } else { lF : ... }

n Sequence: { l0 : S; l1 … }
n Transition defined by composition of individual

transition relations

Example

Program Analysis CSCI 4450/6450, A Milanova 1111

3. x=1

7. z=x+y

2. if (b≥0)

8. x=10*z

1.
b = 0;

4. y=2

5. x=2

6. y=1

σ: empty map

σ: bà0

σ: bà0

σ: bà0, xà1, yà2

σ: bà0, xà1, yà2, zà3

σ: bà0, xà30, yà2, zà3

T F

σ: bà0, xà1

Collecting Semantics

n Collects states (i.e., σ’s) along all possible
traces of execution at a given label (i.e.,
program point)

n Given a label, we are interested in a function
n C : Labels à 2Σ
n The set of all states a program can have at li

Program Analysis CSCI 4450/6450, A Milanova 12

Collecting Semantics

Program Analysis CSCI 4450/6450, A Milanova.
Slide from MIT’s 2015 Program Analysis course on OpenCorseWare

13

Collecting Semantics

n “Ground truth”
n We base reasoning about correctness (soundness)

of static analysis off of it
n Undecidable
n Relation to MOP solution?
n Define abstraction of state and semantics
n Goal: show that abstraction “accounts for” all

values computed by the collecting semantics

Program Analysis CSCI 4450/6450, A Milanova 14

Outline

n Overview

n Semantics
n Notion of abstraction
n Concretization and abstraction functions
n Galois Connections

n Applications of abstract interpretation
Program Analysis CSCI 4450/6450, A Milanova 15

Abstraction Example 1: signs

n Concrete values: sets of integers
n Abstract values: signs
Lattice of signs:

Program Analysis CSCI 4450/6450, A Milanova 16

T

T

+ 0 -

• represents the empty set
• + represents any set of positive integers
• 0 represents set { 0 }
• - represents any set of negative integers
• T represents any set of integers

T

Abstraction Example 1: signs

Concrete space: Abstract space:
A lattice! A lattice!

Program Analysis CSCI 4450/6450, A Milanova 17

T

T

+ 0 -

{ … -2,-1,0,1,... }

{}

{-2,-1,0}

{1,2}
{-2,-1}

{0,1}

{0}

{0,1,2,... }

Abstraction Example 1: signs

Concrete space: Abstract space:
A lattice! A lattice!

Program Analysis CSCI 4450/6450, A Milanova 18

T

T

+ 0 -

{ … -2,-1,0,1,... }

{}

{-2,-1,0}

{1,2}
{-2,-1}

{0,1}

{0}

{0,1,2,... }

Abstraction Example 1: signs

n Concrete elements: elements of the concrete
lattice c 2Z

n Abstract elements: elements of abstract
lattice of signs

n Abstraction relation relates concrete
elements to abstract ones: c S a (i.e., a
represents c, or conversely c is represented by a)

{1,2,3} S +
{1,2,3} S T

Program Analysis CSCI 4450/6450, A Milanova 19

T

T
T

∈

Abstraction Example 1: signs

n We use the abstraction relation to define
abstract semantics, i.e., the execution of
program statements over abstract elements

n If x is + and y is + then x + y is +
n x’s value is a positive integer
n y’s value is a positive integer
n Therefore, the concrete value of x + y is a

positive integer too, thus represented by +
Program Analysis CSCI 4450/6450, A Milanova 20

Abstraction Example 1: signs

n If x is + and y is + then x + y is +

n Analysis computes over abstract elements

n Correctness conclusion, informally: if analysis
(works on abstract elements a) determines
that x at label l is a, then a represents the set
of concrete values c collected by the
collecting semantics at l

Program Analysis CSCI 4450/6450, A Milanova 21

Abstraction Example 1: signs

n We can also use U and
if x is + and y is + then x U y is +
How about if x is + and y is 0?

then x U y is T
because only {0,1,2,3,…} S T holds
No other relation holds
In the abstract, we include negative integers
in x U y (we lose precision!)

Program Analysis CSCI 4450/6450, A Milanova. Example from Xavier Rival’s lecture notes on AI 22

∩

T

T

T

+ 0 -

Abstraction Example 1: signs

n Refine the abstract space

Program Analysis CSCI 4450/6450, A Milanova 23

• represents the empty set
• + represents any set of positive integers
• 0 represents set { 0 }
• - represents any set of negative integers
• T represents any set of integers

• ≥0 represents any set of non-negative
integers
• ≤0 represents any set of non-positive
integers
• ≠0 represents any set of non-zero
integers

≥0 ≠0 ≤0

T

T

+ 0 -
T

Abstraction Examples

n Will continue next time

CSCI 4450/6450, A Milanova 24

