Abstract Interpretation, cont.

Announcements

- HW3 and HW4?
- I will extend deadline and adjust schedule
- Office hours tomorrow:
- Linh: 1-3pm in GREENE 120
- Ana: 4-5pm on Webex
- HW5
- Abstract interpretation and Haskell
- Download and get started with Haskell

Outline

- Overview
- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections
- Applications of abstract interpretation

Abstraction Example 1: signs

- Concrete values: sets of integers
- Abstract values: signs

Lattice of signs:

- \perp represents the empty set
- \pm represents any set of positive integers
- $\underline{0}$ represents set $\{0$ \}
- - represents any set of negative integers
- T represents any set of integers

Abstraction Example 1: signs

Concrete space: Abstract space:
A lattice!

$$
\{\ldots-2,-1,0,1, \ldots\}
$$

A lattice!
$\{-2,-1\}$
$\{0,1,2, \ldots\}$
$\{-2,-1,0\}$

Program Analysis CSC $\{$ \& $450 / 6450$, A Milanova

Abstraction Example 1: signs

Concrete space:
A lattice!

$$
\{\ldots-2,-1,0,1, \ldots\}
$$

Abstract space:

A lattice!

Abstraction Example 1: signs

- Concrete elements: elements of the concrete lattice $\mathbf{c} \in \mathbf{2}^{\text {Z }}$
- Abstract elements: elements of abstract lattice of signs
- Abstraction relation relates concrete elements to abstract ones: $\mathbf{c} \vdash_{s}$ a (i.e., a represents \mathbf{c}, or conversely \mathbf{c} is represented by a)

$$
\begin{array}{ll}
\{1,2,3\} & \vdash s \\
\{1,2,3\} & \vdash^{\top}
\end{array}
$$

Abstraction Example 1: signs

- We can refine the abstract space

- \perp represents the empty set
- \pm represents any set of positive integers
- $\underline{0}$ represents set $\{0\}$
- - represents any set of negative integers
- T represents any set of integers
- $\geqq 0$ represents any set of non-negative
integers
- ≤ 0 represents any set of non-positive integers
- $\neq 0$ represents any set of non-zero integers

Abstraction Example 2: constants

- Concrete elements: elements of concrete lattice, $\mathbf{c} \in \mathbf{2}^{\mathbf{z}}$
- Abstract elements: \perp, $\mathbf{T}, \underline{\mathbf{n}}$, where $\mathbf{n} \in \mathbf{Z}$
- Flat lattice:
- Abstraction relation:

\rightarrow : $\mathbf{n}\}$ is represented by $\underline{\mathbf{n}}$ and by T
- empty set is represented by \perp, any $\underline{\mathbf{n}}$, and by \mathbf{T}
- an arbitrary set of integers is represented by T

Abstraction Example 2: constants

- Abstract semantics, works on abstract elements (the elements of the flat lattice)
- If \mathbf{x} is $\underline{\mathrm{n}}_{1}$ and \mathbf{y} is $\underline{\mathbf{n}}_{\mathbf{2}}$ then $\mathbf{x}+\mathbf{y}$ is $\underline{\mathbf{n}}_{1} \underline{\mathbf{n}_{2}}$
- \underline{n}_{1} represents integer n_{1},
- \underline{n}_{2} represents \mathbf{n}_{2},
- then $\underline{n}_{1} \underline{+n_{2}} \quad n_{1}+n_{2}$
- If \mathbf{x} is \underline{n}_{1} and \mathbf{y} is T, then what is $\mathbf{x + y}$? T

I Abstraction Example 3: intervals

- Concrete elements: $S \in \mathbf{2}^{Z}$
- Abstract elements: \perp, T, intervals $[\mathbf{a}, \mathrm{b}]$ where $\mathbf{a} \in \mathbf{Z} \cup\{-\infty\}$ and $\mathbf{b} \in \mathbf{Z} \cup\{\infty\}$ and $\mathbf{a} \leq \mathbf{b}, \infty, \infty$
- Is it a lattice?
- Yes!
$\{s\} \vdash_{I}[5, s]$ \{\} $\vdash_{I} \perp$
$S \vdash I T \quad$ (any S is represented \perp
$S \vdash I[a, b]$ when by $\quad \underset{u}{ }(0))_{S} \quad a \leq u \leq b$ 。

Abstraction Example 3: intervals

- Concrete elements: elements of $\mathrm{S} \in \mathbf{2}^{\mathrm{Z}}$
- Abstract elements: \perp, T , intervals $[\mathbf{a}, \mathrm{b}]$ where
$\mathbf{a} \in \mathbf{Z U \{ - \infty \}}$ and $\mathbf{b} \in \mathbf{Z U \{ \infty \}}$ and $\mathbf{a} \leq \mathbf{b}$
- Is it a lattice?
- Yes!
- Abstraction relation:
- \varnothing ト, \perp
- Sト, \mathbf{T}
- $\mathbf{S} \vdash^{\prime}[\mathbf{a}, \mathrm{b}]$ iff for every $\mathbf{n} \in \mathbf{S}, \mathbf{a} \leq \mathbf{n} \leq b$

Abstraction Example 3: intervals

- Abstract semantics

- If x_{1} is $\left[a_{1}, b_{1}\right]$ and x_{2} is $\left[a_{2}, b_{2}\right]$ then $x_{1}+x_{2}$ is?

$$
\left[a_{1}+a_{2}, b_{1}+b_{2}\right]
$$

- If x_{1} is $\left[a_{1}, b_{1}\right]$ and x_{2} is $\left[a_{2}, b_{2}\right]$ then $x_{1} \cup x_{2}$ is?

$$
\left[\min \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]
$$

- If x_{1} is $\left[a_{1}, b_{1}\right]$ and x_{2} is $\left[a_{2}, b_{2}\right]$ then $x_{1} \cap x_{2}$ is?

$$
\perp \text { if } b_{1} \leqslant a_{2} \text { or } k_{2}<a_{1}
$$

$$
\left[\max \left(a_{1}, a_{2}\right), \text { min }\left(b_{1}, b_{2}\right)\right] \text { otherwise }
$$

Abstraction Relation

Concrete lattice:

Abstract lattice:

$$
\{\ldots-2,-1,0,1, \ldots\}
$$

Towards Concretization and Abstraction Functions

- Abstraction relation is consistent with order!
- Concrete order:
- If $\mathbf{c}_{0} \subseteq \mathbf{c}_{1}$ and \mathbf{c}_{1} is represented by \mathbf{a}, then \mathbf{c}_{0} is represented by a

- Abstract order:
- If $a_{0} \leq a_{1}$ and c is represented by a_{0}, then c is represented by \mathbf{a}_{1}

Abstraction Relation is Consistent

 with Partial Orders!
Concrete lattice: + Abstract lattice:

Abstraction Relation is Consistent

. with Partial Orders!

$\{0,1,2, \ldots\}$
$\{-100,-2,-1\}$

$$
\{\ldots-2,-1,0,1, \ldots\}
$$
 $\{\ldots-2,-1,0,1, \ldots\}$

Towards Concretization and Abstraction Functions

- Previous slides, more formally
- Concrete lattice \mathbf{C}, \subseteq and abstract lattice \mathbf{A}, \leq
- Abstraction relation is consistent with ordering:
- For every $\mathbf{c}_{0}, \mathbf{c}_{1} \in \mathbf{C}$ and every $\mathbf{a} \in \mathbf{A}$,
$\mathbf{c}_{0} \subseteq \mathbf{c}_{1}$ and $\mathbf{c}_{1}-\mathbf{a}=>\mathbf{c}_{0} \vdash \mathbf{a}$
- For every $\mathbf{a}_{0}, \mathbf{a}_{1} \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$, $a_{0} \leq a_{1}$ and $c \vdash a_{0}=>c \vdash a_{1}$
- The abstraction relation makes sense but easier to have functions
- Concretization function: $A \rightarrow C$
- Abstraction function: $C \rightarrow A$

Concretization Function

- Definition:

Concretization function $\gamma: \mathbf{A} \rightarrow \mathbf{C}$ (if it exists) maps $\mathbf{a} \in \mathbf{A}$ to the largest (most general) element $\mathbf{c} \in \mathbf{C}$ such that $\mathbf{c} \vdash \mathbf{a}$
Note: $\gamma(\mathbf{a})$ "covers" all concrete elements that are represented by a

- $\gamma(\mathbf{a})$ returns the most general element \mathbf{c} such that \mathbf{c} is represented by \mathbf{a}. This is called concretization

Gamma Examples

Concrete lattice: $\quad \gamma$ Abstract lattice:
$\{\ldots-3,-2,-1\}$
$\{-2,-1\}$

\{0\}

Abstraction Function

- Definition:

Abstraction function $\boldsymbol{\alpha}: \mathbf{C} \rightarrow \mathbf{A}$ (if it exists) maps
$\mathbf{c} \in \mathbf{C}$ to the smallest (most precise) element
$\mathbf{a} \in \mathbf{A}$ such that $\mathbf{c} \vdash \mathbf{a}$
$c \mapsto a^{\prime} \Rightarrow$
$\alpha(c) \leq a^{\prime}$

- $\boldsymbol{\alpha}$ maps \mathbf{c} to the most precise a such that a represents \mathbf{c}. This is called best abstraction

Alpha Examples

Concrete lattice:

$\{-100,-2,-1\}$

Concretization Function Examples

- Concretization of lattice of signs

$$
\begin{aligned}
& \gamma(T)=\chi \\
& \gamma(\pm)=\{1,2,3, \ldots\} \\
& \gamma(\pm)=\{\ldots-3,-2,-1\} \\
& \gamma(0)=\{0\} \\
& \gamma(1)=\{ \}
\end{aligned}
$$

- Concretization of lattice of intervals \perp

$$
\begin{aligned}
& \gamma_{I}(T)=Z \\
& \gamma_{I}(\perp)=\{ \} \\
& \gamma_{I}([a, b])=\{a, a+1,000 b-1, b\}
\end{aligned}
$$

Abstraction Function Examples

- Signs abstraction $\alpha_{s}(\mathbf{c})$

$$
\begin{aligned}
& \alpha(\})=1 \\
& \alpha(\{0\})=0 \\
& \alpha(c)= \pm \quad \text { if } c \text { contains only positive ants } \\
& \alpha(c)= \pm \\
& \text { if } c \text { contains only negative nits } \\
& \alpha(c)=T
\end{aligned}
$$

- Constants abstraction $\alpha_{c}(\mathbf{c})$

$$
\begin{aligned}
& \alpha(\})=1 \\
& \alpha(\{u\})=\frac{n}{T} \text { otherwise } \\
& \alpha(c)=\frac{1}{} \quad
\end{aligned}
$$

Abstraction Function Examples

Signs abstraction

- $\alpha_{s}(c) \rightarrow \perp$ if $c=\{ \}$
$-\alpha_{s}(\mathrm{c}) \rightarrow \underline{0}$ if $\mathrm{c}=\{0\}$
$\pm \quad \underline{0}$
$-\boldsymbol{\alpha}_{\mathbf{s}}(\mathbf{c}) \rightarrow \pm$ if for every $\mathbf{n} \in \mathbf{c}, \mathbf{n}>\mathbf{0}$
- $\boldsymbol{\alpha}_{\boldsymbol{s}}(\mathbf{c}) \rightarrow$ - if for every $\mathbf{n} \in \mathbf{c}, \mathbf{n}<\mathbf{0}$
$-\alpha_{s}(\mathrm{c}) \rightarrow$ T otherwise
\perp
- Constants abstraction
- $\alpha_{c}(c) \rightarrow \perp$ if $c=\{ \}$
$-\alpha_{c}(c) \rightarrow \underline{n}$ if $c=\{n\}$
- $\alpha_{c}(c) \rightarrow T$ otherwise

Outline

- Overview of Abstract interpretation
- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections
- Applications of abstract interpretation

Galois Connection

- A Galois Connection links α and γ. It captures that they represent the abstraction relation \vdash !
- Definition

A Galois connection is defined by concrete lattice
(C, \subseteq), abstract lattice (\mathbf{A}, \leq), an abstraction function $\boldsymbol{\alpha}: \mathbf{C} \rightarrow \mathbf{A}$ and concretization function γ : $\mathrm{A} \rightarrow \mathrm{C}$ such that
for every $\mathbf{a} \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$
$\mathbf{c} \subseteq \gamma(\mathbf{a})$ if and only if $\boldsymbol{\alpha}(\mathbf{c}) \leq \mathbf{a}$
$\rightarrow c \leq \gamma(a) \Rightarrow \alpha(c) \leq a$

Galois Connection $\alpha(c) \leq a \Rightarrow c \leq y(a)$

C lattice:
A lattice:

Galois Connection Example

- Constants lattice

$$
\begin{aligned}
& \alpha_{c}(\mathbf{c}) \rightarrow \perp_{\text {if }} \mathbf{c}=\{ \} \\
& \boldsymbol{\alpha}_{c}(\mathbf{c}) \rightarrow \underline{n} \text { if } \mathbf{c}=\{\mathbf{n}\} \\
& \boldsymbol{\alpha}_{c}(\mathbf{c}) \rightarrow \text { Totherwise }
\end{aligned}
$$

Galois Connection

Example

- Signs lattice $\boldsymbol{\alpha}_{\boldsymbol{c}}(\mathbf{c}) \rightarrow \pm$ if for every \mathbf{n} in $\mathbf{c}, \mathbf{n}>\mathbf{0}$ $\boldsymbol{\alpha}_{\boldsymbol{c}}(\mathbf{c}) \rightarrow$ if for every \mathbf{n} in $\mathbf{c}, \mathbf{n}<\mathbf{0}$ $\alpha_{c}(\mathrm{c}) \rightarrow \underline{\mathbf{0}}$ if $\mathrm{c}=\{0\}$
$\alpha_{c}(c) \rightarrow \perp$ if $c=\{ \}$
$\alpha_{c}(\mathbf{c}) \rightarrow$ T otherwise

$$
\begin{aligned}
& \gamma_{c}(\mathrm{~T}) \rightarrow \text { Z } \\
& \gamma_{c}(\underline{ \pm}) \rightarrow\{1,2, \ldots\} \\
& \gamma_{c}(\underline{0}) \rightarrow\{0\} \\
& \gamma_{c}(=) \rightarrow\{\ldots,-2,-1\} \\
& \gamma_{c}(\perp) \rightarrow\{ \}
\end{aligned}
$$

