!'_ Abstract Interpretation, cont.

i Announcements

= HW3 and HW47?
= | will extend deadline and adjust schedule

= Office hours tomorrow:
= Linh: 1-3pm in GREENE 120

« Ana: 4-5pm on Webex

= HWS
= Abstract interpretation and Haskell
= Download and get started with Haskell

Program Analysis CSCI 4450/6450, A Milanova

i Outline

s Overview

= Semantics

s Notion of abstraction

= Concretization and abstraction functions
= Galois Connections

= Applications of abstract interpretation

Program Analysis CSCI 4450/6450, A Milanova

i Abstraction Example 1: signs

= Concrete values: sets of integers
= Abstract values: signs
Lattice of signs:

T » 1 represents the empty set
| * + represents any set of positive integers
+ 0 * O represents set {0}
— = - - represents any set of negative integers
l‘ T represents any set of integers
1

Program Analysis CSCI 4450/6450, A Milanova 4

i Abstraction Example 1: signs

Concrete space: Abstract space:

A lattice! ttice!
T
(-2,-1,0} ﬂ
{0,1) + 0 -
{'2’_1})

Program Analysis CSC{)4-50/6450, A Milanova

i Abstraction Example 1: signs

Concrete space: Abstract space:
A lattice! A lattice!
{...-2,-1,0,1,...}
{0,1,2,...} T
{-2,-1,0}
{0,1) + 0 -
{-2,-1} | 1.2} ~
{0} 1

Program Analysis CSC{)4-50/6450, A Milanova

i Abstraction Example 1: signs

s Concrete elements: elements of the concrete
lattice ¢ & 27

s Abstract elements: elements of abstract
lattice of signs

s Abstraction relation relates concrete

elements to abstract ones: c I a (i.e., a
represents ¢, or conversely ¢ is represented by a)

{1 52$3} —S +

{123} —s T

Program Analysis CSCI 4450/6450, A Milanova

i Abstraction Example 1: signs

= \We can refine the abstract space

T * | represents the empty set

+ represents any set of positive integers
O represents set { 0 }
- represents any set of negative integers
T represents any set of integers

20 0

IA
O

» 20 represents any set of non-negative
iIntegers

» =0 represents any set of non-positive
iIntegers

1 « #0 represents any set of non-zero

integers
Program Analysis CSCI 4450/6450, A Milano 8

| +

0

i Abstraction Example 2: constants

s Concrete elements: elements of concrete
lattice, ¢ & 24

s Abstract elements: L, T, n, where n& Z
T

= Flat lattice: N
.2 101 2 ..
= Abstraction relation: 1

—>= {n} is represented by nand by T
= empty setis represented by | ,anyn,and by T
= an arbitrary set of integers is represented by T

Program Analysis CSCI 4450/6450, A Milanova

i Abstraction Example 2: constants

= Abstract semantics, works on abstract
elements (the elements of the flat lattice)
= [fXisn;andy is n, then x+yis ny+n,
= N, represents integer ny,
= N, represents ny,
= then ny+n, ng+n,
= Ifxisn;andyis T, then whatisx +y? T

Program Analysis CSCI 4450/6450, A Milanova 10

L
i Abstraction Example 3: intervals

s Concrete elements: S& 24

-

= Abstract elements: 1, T, intervals [a,b] where
a & ZU{-«~} and b& ZU{~} andra <b

- ?

= Is it a lattice? o~
= Yes!
c—-l,Dj EO(i'j e~
i3 o [f[oszg PPN
m Abstr}a“&tgon‘rdation: o, (-3 [p03 72,47 L2,27 ---
?5 /"’I i ~ | //

S —2 T [(oug S refrae«kdl-
S /—'1[0-,67 wé_&,bJ Z—D/é)s o< aféa 11

i Abstraction Example 3: intervals

s Concrete elements: elements of S&E24
= Abstract elements: |, T, intervals [a,b] where

ac

ZU{-~} and b&cZU{~}anda<bh

= IS it a lattice?
= Yes!

s Abstraction relation:

«J
« S
« S

IJ
_IT

— [a,b] iff for every n&S, asn<b

Program Analysis CSCI 4450/6450, A Milanova 12

Abstraction Example 3: intervals
N7atziddh

= Abstract semantics a ¢ 4 *bl
\ (] 1 L

« If X4 is [@4,b4] and X, is [@5,b,] then x4 + X, iS?

[o_i»la,_) b, +b, |

« If X4 is [@4,b4] and X, is [@5,b5] then x4 U X, is?

Ki//(wéz [W'tu (a,,c)) Wax (b, 51_)7

« If X4 is [a4,b4] @and x5 is [a,,b,] then x4 (X, iS?
—L Z/ﬁ égé-az or bbéai

[tuax (a,_,at)’ Uik (b,,b;)] ofberwite

Program Analysis CSCI 4450/6450, A Milanova 13

i Abstraction Relation

Concrete lattice:

{...2-1,01,..}

{0,1,2,...}
{-2,-1,0)

{0,1}

(211 {1,2}

{0}

Program Analysis CSC{k50/6450, A Milanova

Abstract lattice:

| +
IO
11

14

Towards Concretization and
i Abstraction Functions

s Abstraction relation is consistent with order!

s Concrete order:

= If & ¢4 and ¢, is represented by a, then ¢, is
represented by a c,——Q

C |
’co/
s Abstract order:

« If ag <a; and c is represented by a,, then c is
represented by a, T

Program Analysis CSCI 4450/6450, A Milanova 15

Abstraction Relation is Consistent
i with Partial Orders!

Concrete lattice: - Abstract lattice:

Co {-2,-1}

(0} 1

Program Analysis CSC{)4-50/6450, A Milanova 16

Abstraction Relation is Consistent
with Partial Orders!

r-\

Concrete lattice: Abstract lattice:

{01,2,...}
{-100,-2,-1}

+ 0 -
{0,1} A -
{1,2) L~ *

{0} 1

{'2’_1}

{} Which abstraction is “best”?
Program Analysis CSCF4450/6450, A Milanova 17

Towards Concretization and
i Abstraction Functions

= Previous slides, more formally

s Concrete lattice C, & and abstract lattice A,<

= Abstraction relation is consistent with ordering:
= For every cy,¢c,& C and every a ©A,
co& ciandci—a=>cy|— a
= Forevery aj,a; &= A and every ¢ &C,
aps<a;and cl—a;,=>c I a;
= [he abstraction relation makes sense but easier to
have functions
= Concretization function: A = C

= Abstraction function: C 2 A 18

i Concretization Function ~ ,—&
Vs
= Definition: e o

Concretization function y : A>C (if it exists)
maps a €A to the largest (most general)
element c&C suchthatc —a

Note: y(a) “covers” all concrete elements that
are represented by a

= y(a) returns the most general element ¢ such
that c is represented by a. This is called
concretization

Program Analysis CSCI 4450/6450, A Milanova 19

i Gamma Examples

Concrete lattice: Y Abstract lattice:

{..-3,-2,-1}

{'2’_1}

{0} 1

Program Analysis CSék50/6450, A Milanova

20

i Abstraction Function

= Definition: \\/

Abstraction function a : C>A (if it exists) maps
c &= C to the smallest (most precnse) element

aS A suchthatct a C o' =>
A< a'

= ¢ maps c to the most precise a such that a
represents c. This is called best abstraction

Program Analysis CSCI 4450/6450, A Milanova 21

i Alpha Examples

Concrete lattice: stract lattice:

{...2-101,..

A
1,2,...} ,
{-100,-2,-1} A
{0,1) + 0 -

21 (1.2) |
() L

Program Analysis CSC{k50/6450, A Milanova

Concretization Function

i Examples
.

= Concretization of lattice of signs

v(T) =%
X(i)ﬁ-iilzle"'}

y(=)= 3. 324} + 0
y(0)= 207

r(L) = §3

- Concretlzatlon of lattice of intervals |

Yo (T) =
yr (L) =

3 <fa,b3)= 3 6,0+t 00eb-1, b

Program Analysis CSCI 4450/6450, A Milanova

23

i Abstraction Function Examples

= Signs abstraction ag(c)

oL(§5) =1
o (go§) =2
oL(e) = F i ¢ coudons ol pesifie N

fy (Codarns Jugj nvqﬁ'w s
ot(c) = T ofecwiy

= Constants abstraction a.(c)

10~
o(({g)':,_l. -~ "iQ »L""‘
A(3)= U I

o((¢c) = T 6fere e 4

24

Abstraction Function Examples
T

+

= Signs abstraction
= ag(c) >Lifc={}
= ag(c) > 0if c = {0} *
= ag(c) 2> +ifforeverynec,n>0
= ag(c) 2 -ifforeverynEc,n<0
= ag(c) 2 T otherwise 1
= Constants abstraction
= og(c) > Llife={}
= 0¢g(c) 2 nifc ={n}
= ag(c) =2 T otherwise

1O

25

i Outline

= Overview of Abstract interpretation

= Semantics

= Notion of abstraction

= Concretization and abstraction functions
s Galois Connections

= Applications of abstract interpretation

Program Analysis CSCI 4450/6450, A Milanova

26

i Galois Connection

= A Galois Connection links a and y. It captures
that they represent the abstraction relation !
= Definition

A Galois connection is defined by concrete lattice

(C,2), abstract lattice (A,<), an abstraction
function a : C=>A and concretization function vy :
A->C such that

foreverya& A and everyc €C
cCy(a) ifand only if a(c) < a

Program Analysis CSCI 4450/6450, A Milanova 27

_ D ceyl)=>le)ca
i Galois Connection w<a =>ce¥@

C lattice: v A lattice:

Program Analysis CSCI 4450/6450, A Milanova 28

i Galois Connection Example

—~——

s Constants lattice 2 -1 012
1
ac(c) D Lifc={ ve(T) D Z
ac(c) 2 nif c ={n} Ye(n) =2 {n}

ac(c) 2 T otherwise volD) 2>

29

Galois Connection

T
i Example
= Signs lattice = 0 -
aq(c) > +if for every nin c, n>0
aq(c) 2 -if for every nin ¢, n<0
ac(c) > 0 if ¢ = {0) 1
ac(c) > Lifec={} Ye(T) 2
ac(c) 2 T otherwise V() 2 {1 2,...}
1¢(0) = {0}
Yelz) 2 {...,-2,-1}
ve(D =2 {}

30

