Abstract Interpretation, cont.

Announcements

HW3 and HW4?

- I will extend deadline and adjust schedule
- Office hours tomorrow:
 - Linh: 1-3pm in GREENE 120
 - Ana: 4-5pm on Webex

HW5

- Abstract interpretation and Haskell
- Download and get started with Haskell

- Overview
- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections

Applications of abstract interpretation

Abstraction Example 1: signs

- Concrete values: sets of integers
- Abstract values: signs
- Lattice of signs:

- \perp <u>represents</u> the empty <u>set</u>
- <u>+ represents</u> any set of positive integers
- <u>0</u> represents set { 0 }
- <u>- represents</u> any set of negative integers
- T <u>represents</u> any <u>set</u> of integers

Abstraction Example 1: signs

- Concrete elements: elements of the concrete lattice c = 2^z
- Abstract elements: elements of abstract lattice of signs
- Abstraction relation relates concrete elements to abstract ones: c ⊢_s a (i.e., a represents c, or conversely c is represented by a)

Abstraction Example 1: signs

We can refine the abstract space

- \bot represents the empty set
- <u>+</u> represents any set of positive integers
- <u>0</u> represents set { 0 }
- <u>-</u> represents any set of negative integers
- T represents any set of integers
- <u>≥0</u> represents any set of non-negative integers
- <u>≤0</u> represents any set of non-positive integers
- <u>≠0</u> represents any set of non-zero

Abstraction Example 2: constants

- Concrete elements: elements of concrete lattice, c
 2^z
- Abstract elements: ⊥, T, <u>n</u>, where n∈Z
 Flat lattice:
- Abstraction relation:
- - empty set is represented by ⊥, any <u>n</u>, and by T

an arbitrary set of integers is represented by T

Abstraction Example 2: constants

- Abstract semantics, works on abstract elements (the elements of the flat lattice)
- If x is $\underline{n_1}$ and y is $\underline{n_2}$ then x + y is $\underline{n_1 + n_2}$
 - $\underline{\mathbf{n}}_1$ represents integer \mathbf{n}_1 ,
 - <u>n</u>₂ represents n₂,
 - then $\underline{n_1 + n_2}$ $n_1 + n_2$
- If x is \underline{n}_1 and y is T, then what is x + y? T

Abstraction Example 3: intervals

- Concrete elements: S ∈ 2^z
- Abstract elements: \underline{I} , \overline{T} , intervals [a,b] where $a \in \mathbb{Z} \cup \{-\infty\}$ and $b \in \mathbb{Z} \cup \{\infty\}$ and $a \leq b$
 - Is it a lattice?
 - Yes!

Abstraction Example 3: intervals

- Concrete elements: elements of S∈2^z
- Abstract elements: ⊥, T, intervals [a,b] where a ∈ ZU{-∞} and b∈ZU{∞} and a ≤ b
 - Is it a lattice?
 - Yes!
- Abstraction relation:
 - ∎Ø⊢,⊥
 - ∎ S⊢,T
 - S⊢, [a,b] iff for every n∈S, a≤n≤b

Abstraction Example 3: intervals

Abstract semantics

• If \mathbf{x}_1 is $[\mathbf{a}_1, \mathbf{b}_1]$ and \mathbf{x}_2 is $[\mathbf{a}_2, \mathbf{b}_2]$ then $\mathbf{x}_1 + \mathbf{x}_2$ is? $\begin{bmatrix} \alpha_1 + \alpha_2 \\ b_1 + b_2 \end{bmatrix}$

Concrete lattice:

Abstract lattice:

Towards Concretization and Abstraction Functions

- Abstraction relation is consistent with order!
- Concrete order:
 - If $\mathbf{c}_0 \subseteq \mathbf{c}_1$ and \mathbf{c}_1 is represented by \mathbf{a} , then \mathbf{c}_0 is represented by \mathbf{a} $c_1 \leftarrow c_2 \in \mathbf{c}_1$
 - \mathbf{C}

- Abstract order:
 - If $\mathbf{a}_0 \leq \mathbf{a}_1$ and \mathbf{c} is represented by \mathbf{a}_0 , then \mathbf{c} is represented by \mathbf{a}_1

Towards Concretization and Abstraction Functions

- Previous slides, more formally
- Concrete lattice C, ⊆ and abstract lattice A, ≤
- Abstraction relation is consistent with ordering:
 - For every $c_0, c_1 \in C$ and every $a \in A$,
 - $\mathbf{c}_0 \subseteq \mathbf{c}_1$ and $\mathbf{c}_1 \vdash \mathbf{a} \Rightarrow \mathbf{c}_0 \vdash \mathbf{a}$
 - For every $\mathbf{a}_0, \mathbf{a}_1 \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$,
 - $\mathbf{a}_0 \leq \mathbf{a}_1$ and $\mathbf{c} \vdash \mathbf{a}_0 => \mathbf{c} \vdash \mathbf{a}_1$
- The abstraction relation makes sense but easier to have functions
 - Concretization function: $A \rightarrow C$
 - Abstraction function: $C \rightarrow A$

Concretization Function

Definition:

- Concretization function $\gamma : A \rightarrow C$ (if it exists) maps $a \in A$ to the largest (most general) element $c \in C$ such that $c \vdash a$
- Note: $\gamma(a)$ "covers" all concrete elements that are represented by a
- γ(a) returns the most general element c such that c is represented by a. This is called concretization

Abstraction Function **Definition:** Abstraction function α : C \rightarrow A (if it exists) maps $\mathbf{c} \in \mathbf{C}$ to the smallest (most precise) element $C \vdash a' =>$ $\mathbf{a} \in \mathbf{A}$ such that $\mathbf{c} \vdash \mathbf{a}$ $d(c) \leq a'$

α maps c to the most precise a such that a represents c. This is called best abstraction

Concretization Function Examples

Concretization of lattice of signs

- $\begin{array}{l} y'(T) = Z \\ y'(\pm) = \sum_{i=1}^{2} 1_{i} 2_{i} 3_{i} \dots 3_{i} \\ y'(\pm) = \sum_{i=1}^{2} \dots -3_{i} -2_{i} -1 \\ y'(\pm) = \sum_{i=1}^{2} 0 \\ y'(\pm) = \sum_{i=1}^{2} 0 \\ y'(\pm) = \sum_{i=1}^{2} 3 \end{array}$
- Concretization of lattice of intervals $\chi_{I}(\tau) = \chi$ $\chi_{I}(L) = \xi$ $\chi_{I}(L) = \xi$ $\chi_{I}([a,b]) = \xi a_{a+1,000}b^{-1}, b \xi$

Abstraction Function Examples

• Signs abstraction $\alpha_s(c)$ $\mathcal{L}(\{2\}) = \mathcal{L}$ $\mathcal{L}(\{20\}) = \mathcal{L}$ $\mathcal{L}(\{20\}) = \mathcal{L}$ $\mathcal{L}(c) = \pm if \ c \ contains \ only \ positive \ nts$ $\mathcal{L}(c) = \pm if \ c \ contains \ only \ negative \ nth$ $\mathcal{L}(c) = T \ otherwise$

• Constants abstraction $\alpha_{c}(c)$ $\alpha(23) = \bot$ $\alpha(23) = \underline{M}$ $\alpha(c) = T$ otherwise

Abstraction Function Examples Signs abstraction • $\alpha_{s}(c) \rightarrow \perp$ if $c = \{\}$ • $\alpha_{s}(c) \rightarrow \underline{0}$ if $c = \{0\}$ • $\alpha_{s}(c) \rightarrow +$ if for every $n \in c, n > 0$ • $\alpha_{s}(c) \rightarrow -if$ for every $n \in c, n < 0$ • $\alpha_{s}(c) \rightarrow T$ otherwise Constants abstraction • $\alpha_{c}(c) \rightarrow \bot$ if $c = \{\}$

- $\alpha_{C}(\mathbf{c}) \rightarrow \underline{\mathbf{n}}$ if $\mathbf{c} = \{\mathbf{n}\}$
- $\alpha_{c}(c) \rightarrow T$ otherwise

- Overview of Abstract interpretation
- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections

Applications of abstract interpretation

Galois Connection

- A Galois connection is defined by concrete lattice (C,\subseteq) , abstract lattice (A,\leq) , an abstraction function $\alpha : C \rightarrow A$ and concretization function $\gamma : A \rightarrow C$ such that

for every $\mathbf{a} \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$ $\mathbf{c} \subseteq \gamma(\mathbf{a})$ if and only if $\alpha(\mathbf{c}) \leq \mathbf{a}$

Galois Connection Example

Constants lattice

 $\begin{aligned} \alpha_{C}(\mathbf{c}) & \rightarrow \bot \text{ if } \mathbf{c} = \{\} \\ \alpha_{C}(\mathbf{c}) & \rightarrow \underline{n} \text{ if } \mathbf{c} = \{\mathbf{n}\} \\ \alpha_{C}(\mathbf{c}) & \rightarrow T \text{ otherwise} \end{aligned}$

Galois Connection Example Signs lattice $\alpha_{c}(\mathbf{c}) \rightarrow +$ if for every **n** in **c**, **n>0** $\alpha_{c}(\mathbf{c}) \rightarrow \underline{-}$ if for every **n** in **c**, **n**<0 $\alpha_{\rm C}({\rm c}) \rightarrow 0$ if ${\rm c} = \{0\}$ $\alpha_{C}(\mathbf{c}) \rightarrow \perp \text{ if } \mathbf{c} = \{\}$ $\gamma_{C}(T) \rightarrow Z$ $\alpha_{C}(\mathbf{c}) \rightarrow T$ otherwise $\gamma_{c}(\underline{+}) \rightarrow \{1, 2, ...\}$ $\gamma_{C}(\underline{0}) \rightarrow \{0\}$ $\gamma_{C}(\underline{-}) \rightarrow \{\ldots, -2, -1\}$ $\gamma_{C}(1) \rightarrow \{\}$