Abstract Interpretation, cont.

Announcements

HW3 and HW4?

- HW5
 - Abstract interpretation and
 - Haskell
 - Download and get started with Haskell

Overview

- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections

Applications of abstract interpretation

Concretization Function

Definition:

Concretization function $\gamma : A \rightarrow C$ (if it exists) maps $\mathbf{a} \subseteq A$ to the largest (most general) element $\mathbf{c} \subseteq C$ such that $\mathbf{c} \vdash \mathbf{a}$

Note: $\gamma(\mathbf{a})$ "covers" all concrete elements that are represented by \mathbf{a}

γ(a) returns the most general element c such that c is represented by a. This is called concretization

Gamma Examples

Abstraction Function

Definition:

Abstraction function $\alpha : C \rightarrow A$ (if it exists) maps $c \in C$ to the smallest (most precise) element $a \in A$ such that $c \vdash a$

• α maps c to the most precise a such that a represents c. This is called best abstraction

Alpha Examples

Galois Connection

- A Galois Connection links α and γ. It captures
 that they represent the abstraction relation —!
- Definition

A Galois connection is defined by concrete lattice (C,\subseteq) , abstract lattice (A,\le) , an abstraction function $\alpha:C\to A$ and concretization function $\gamma:A\to C$ such that

for every $\mathbf{a} \subseteq \mathbf{A}$ and every $\mathbf{c} \subseteq \mathbf{C}$ $\mathbf{c} \subseteq \gamma(\mathbf{a})$ if and only if $\alpha(\mathbf{c}) \le \mathbf{a}$

Galois Connection

Galois Connection

Galois Connection Example

Constants lattice

$$C \subseteq \chi(a) \Longrightarrow \chi(c) \leq a$$

$$\alpha_{\mathbf{C}}(\mathbf{c}) \rightarrow \perp \text{ if } \mathbf{c} = \{\}$$

$$\alpha_{C}(c) \rightarrow \underline{n}$$
 if $c = \{n\}$

$$\alpha_{\mathbf{C}}(\mathbf{c}) \rightarrow \mathsf{T}$$
 otherwise

$$\gamma_{C}(T) \rightarrow Z$$

$$\gamma_{\mathcal{C}}(\underline{\mathbf{n}}) \rightarrow \{\mathbf{n}\}$$

$$\gamma_{\mathcal{C}}(\perp) \rightarrow \{\}$$

For each c and a CA s.t C=y(a). We have to show $x(c)\leq a$ Case 1: $c=\S\S$. For each $a\in A$ $c=\S\S$ $\subseteq y(a)$. We have $x(\S\S)=1\leq aV$

$$a = u$$
 $c = su3 = s(u) = 2 \times (su3) = u = u$
 $a = u$ $c = su3 = s(t) = 2 \times (su3) = u = u$
 $a = t$
 $c = su3 = s(t) = 2 \times (su3) = u = u$

Galois Connection Example

Signs lattice

$$\alpha_{C}(\mathbf{c}) \rightarrow \underline{+}$$
 if for every **n** in **c**, **n>0**

$$\alpha_{C}(\mathbf{c}) \rightarrow \underline{}$$
 if for every **n** in **c**, **n<0**

$$\alpha_C(\mathbf{c}) \rightarrow \underline{\mathbf{0}}$$
 if $\mathbf{c} = \{\mathbf{0}\}$

$$\alpha_{\mathbf{C}}(\mathbf{c}) \rightarrow \perp \text{ if } \mathbf{c} = \{\}$$

$$\alpha_{\mathbf{C}}(\mathbf{c}) \rightarrow \mathsf{T}$$
 otherwise

$$\gamma_{c}(T) \rightarrow Z$$

$$\gamma_{c}(\underline{+}) \rightarrow \{1,2,...\}$$

$$\gamma_{c}(\underline{0}) \rightarrow \{0\}$$

$$\gamma_{c}(\underline{-}) \rightarrow \{...,-2,-1\}$$

$$\gamma_{c}(\underline{1}) \rightarrow \{\}$$

Galois Connection Example

Galois Connection Properties

for every $\mathbf{a} \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$

$$\mathbf{c} \subseteq \gamma(\mathbf{a})$$
 if and only if $\alpha(\mathbf{c}) \leq \mathbf{a}$

$$c \subseteq \gamma(a)$$
 if and only if $\alpha(c) \le a$
 $s \ne c = \gamma(a)$
 $\gamma(a) \le \gamma(a) = \gamma \alpha(\gamma(a)) \le a$

- Contractive and expansive: $\alpha(x(a)) \leq a$
- α ° γ contracts: for every $\mathbf{a} \in \mathbf{A} : \alpha$ ° γ (\mathbf{a}) $\leq \mathbf{a}$
- γ ° α expands: for every $\mathbf{c} \in \mathbf{C}$: γ ° α (\mathbf{c}) \supseteq \mathbf{c}

Proof: from definition of Galois Connection:

 $\gamma(\mathbf{a}) \subseteq \gamma(\mathbf{a})$ implies $\alpha(\gamma(\mathbf{a})) \leq \mathbf{a}$

Galois Connection Properties

for every $\mathbf{a} \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$ $\mathbf{c} \subseteq \gamma(\mathbf{a})$ if and only if $\alpha(\mathbf{c}) \le \mathbf{a}$

Monotonicity:

 α is monotone γ is monotone

Proof: homework

Galois Connection Properties

for every $\mathbf{a} \in \mathbf{A}$ and every $\mathbf{c} \in \mathbf{C}$ $\mathbf{c} \subseteq \gamma(\mathbf{a})$ if and only if $\alpha(\mathbf{c}) \le \mathbf{a}$

Repetition:

Proof: exercise

Outline

Overview

- Semantics
- Notion of abstraction
- Concretization and abstraction functions
- Galois Connections

Applications of abstract interpretation

Applications of Abstract Interpretation

- Deriving and reasoning about static analysis!
- Deriving a static analysis
- The hard (ad-hoc) way...

- Starting from some concrete space and semantics
- Define abstract space and abstract semantics (i.e., transfer functions)
- Guess an invariant implying correctness conclusion
- Make an inductive argument that each transfer function preserves the invariant

Applications of Abstract Interpretation

- An easier (principled) way...
 - Formalize concrete domain (C,⊆) and semantics
 - Construct an abstract space (A,≤)
 - Set up α and γ , Galois Connection, if it exists
 - Derive abstract semantics
 - "Principled" transfromration:
 - Use a when it exists
 - Use γ otherwise (more advanced abstract interpretation)
 - Correctness (soundness) holds!

An Example

 We will derive a static analysis that computes signs (+,-,0) using a collecting semantics and the signs abstraction:

- Correctness property (simplified):
 - x at ℓ is \pm only if $\sigma(x) > 0$ for every σ collected at ℓ
 - x at ℓ is $\underline{}$ only if $\sigma(x) < 0$ for every σ collected at ℓ
 - x at ℓ is $\underline{0}$ only if $\sigma(x) = 0$ for every σ collected at ℓ

The Collecting Semantics

- [x=y](o) TRACE
 [x=y](s) COLEGING
- Collecting semantics (partial)
 - Assume fixed set of integer variables: x,y,z
 - $\sigma = (n_x, n_y, n_z) \qquad \qquad \text{if } \int \left[x \rightarrow u_x, y \rightarrow u_y, z \rightarrow u_z \right]$
 - σ is a mapping from integer variables to values in Z
 - Concrete state **S** is a set of σ 's
 - $[x=n] (S) = { \sigma[x \leftarrow n] | \sigma \in S }$
 - $[x=y+z] (S) = { \sigma[x\leftarrow [[y]](\sigma)+ [[z]](\sigma)] | \sigma \in S }$
 - [[$x=y \cdot z$]] (S) = { $\sigma[x\leftarrow [[y]](\sigma)\cdot [[z]](\sigma)$] | $\sigma \in S$ }

$$\alpha(S) \rightarrow S$$

$$\alpha((1,0,-1),(2,3,-1)) \rightarrow S$$

$$(\pm,T,\pm)$$

Qx Qy Q2

- lacktriangle α is a composition of two abstractions
 - Collecting abstraction: collects the values of a variable across all σ's into one set
 - Signs abstraction: our running example

•
$$\alpha: S \rightarrow (\alpha_s(\{n_x | (n_x,_,_) \in S\}), \alpha_s(\{n_y | (_,n_y,_) \in S\}), \alpha_s(\{n_z | (_,_n_z) \in S\}), \alpha_s(\{n_z | (_,_n_z) \in S\}))$$

$$\alpha: S \rightarrow (\alpha_{S}(\{ n_{x} | (n_{x},_,_) \in S \}),$$

$$\alpha_{S}(\{ n_{y} | (_,n_{y},_) \in S \}),$$

$$\alpha_{S}(\{ n_{z} | (_,_n_{z}) \in S \}))$$

• E.g. $S = \{ (1,2,0), (-1,3,0) \} \ \alpha(S) = (T, \pm, 0)$

$$\alpha(S) = (\alpha_S(\{1,-1\}), \alpha_S(\{2,3\}), \alpha_S(\{0\})) = (T,\underline{+},\underline{0})$$

l.e., in the abstract, **x** is **T**, **y** is $\underline{+}$, \overline{z} is $\underline{0}$

S-hat is standard notation for abstract state

- Abstract state \hat{S} is a tuple (a_x, a_y, a_z) (a_x, a_y, a_z)
- $\gamma : \hat{S} \rightarrow \{ (n_x, n_y, n_z) \mid n_x \in \gamma_S(a_x), n_y \in \gamma_S(a_y), n_z \in \gamma_S(a_z) \}$

S-hat is standard notation for abstract state

$$\gamma: \hat{S} \rightarrow \{ (n_x, n_y, n_z) \mid n_x \in \gamma_S(a_x),$$

$$n_y \in \gamma_S(a_y), n_z \in \gamma_S(a_z)$$

E.g., from previous slide:

$$S = \{ (1,2,0), (-1,3,0) \}$$

$$\alpha(S) = (\alpha_S(\{1,-1\}), \alpha_S(\{2,3\}), \alpha_S(\{0\})) = (T,\underline{+},\underline{0})$$

$$\gamma(\hat{\mathbf{S}}) = ?$$

$$\hat{S}=(T,+,\underline{0}),\gamma(\hat{S})=\{(1,2,0),(-1,2,0),(-2,3,0),\text{etc.}\}$$

Exercise: Prove $\widehat{\alpha, \gamma}$ form Galois connection

- - Consider concrete transfer function [Stmt] (S)
 - We derive a corresponding <u>abstract transfer</u>
 <u>function</u> [Stmt](Ŝ)
 - We then show $\alpha([[Stmt]](S)) = [[Stmt]](\alpha(S))$
 - Implies static analysis is correct (i.e., overapproximation of all sigmas)
 - Exact α-based transformation does not always work

$$S = (T, T, T)$$

Abstracting result of concrete transfer function:

$$\begin{array}{l} \alpha \ (\ [\ Stmt] \ (S) \) = (\alpha_S (\{ \ n_x \ | \ (n_x,_,_) \in [\ Stmt] \ (S) \ \}), \\ \alpha_S (\{ \ n_y \ | \ (_,n_y,_) \in [\ Stmt] \ (S) \ \}), \\ \alpha_S (\{ \ n_z \ | \ (_,_n_z) \in [\ Stmt] \ (S) \ \}) \) \end{array}$$

Read: apply concrete transfer function [[Stmt]](S) resulting in a new set of $\sigma = (n_x, n_v, n_z)$'s. Then

(1) apply collecting abstraction: collect all values of x, all values of y, and all values of z into respective sets
(2) apply sign abstraction on each set

```
Concreate transfer function: [[x=n]](S)
\alpha(I[x=u](S)) = (ds(\{u_x|(u_x,u_y,u_z)\in S'\}),
                                   d_{\mathcal{S}}(\{u_{\mathcal{Y}} \mid (u_{x}, u_{\mathcal{Y}}, u_{z}) \in \mathcal{S}^{\prime}\mathcal{G}),
                                       ds ( { uz | (ux, uz, uz) (5 13))
11 Juportant: values for Y and Z
are the same in S and m S'.
                                       ds ( { uy | ( ux, uy, uz) Es})
                                             = ds \left( \{ u_y \mid (u_x, u_y, u_z) \in S \right)
                             Sign(u), d_s(\xi... \in S_g), d_s(\xi... \in S_g)
```

- Concreate transfer function: |[x=n]|(S)
- Abstract transfer function: |[x=n]|(Ŝ) = Ŝ[x←x]
 We showed \(\(\[\(\text{L} \text{x=n} \] \(\(\text{L} \text{x} \) = \(\(\text{sign}(h) \), \(\delta \text{s} \(\frac{\x}{2} \) \(\text{ux}, \(\text{uy} \), \(\text{ux}, \(\text{uy}, \(\text{ux}, \(\text{uy}, \(\text{uz} \) \) \(\delta \frac{\x}{2} \frac{\x}{2} \), $ds(\{h_2 | (u_x, n_y, n_z) \in S_3^2))$ (1)

```
We now consider [x=n](x(s))

[x=n](x(s)) = [x=n](x(s))
                                        ds(\{u_x/(u_x,u_y,u_z)\in S_f\}),
ds(\{u_z/(u_x,u_y,u_z)\in S_f\})
    = (sign(u), ds(suy)(ux, uy, uz) \in Sig), ds(suz)(ux, uy, uz) \in Sig)) (2)
11 Just applied S[x spu(u)].
(1) and (1) are the same! Thus \angle(\underline{l}[x=u](s)) = \underline{l}[x=u](a(s)).
```



```
Concreate transfer function: |[x=n]|(S)
■ Abstract transfer function: |\widehat{\mathbf{x}}| = \widehat{\mathbf{x}}| = \widehat{\mathbf{x}| = \widehat{\mathbf{x}}| = 
  \alpha (||x=n||(S)|) =
                             (\alpha_{S}(\{n_{x} | (n_{x},n_{y},n_{z}) \in \{\sigma[x \leftarrow n] | \sigma \in S\})),
                                                                 \alpha_{S}(\{ n_{v} | (n_{x},n_{v},n_{z}) \in \{ \sigma[x \leftarrow n] | \sigma \in S \} \}),
                                                                                   \alpha_{S}(\{ n_{z} | (n_{x},n_{y},n_{z}) \in \{ \sigma[x \leftarrow n] | \sigma \subseteq S \} \})) =
   (\alpha_{S}(\{n\}), \alpha_{S}(\{n_{y} | (\_,n_{y},\_) \subseteq S \}), \alpha_{S}(\{n_{z} | (\_,\_,n_{z}) \subseteq S \}))
  = \alpha(S)[x \leftarrow \alpha_S(\{n\})] which is
                     |[\mathbf{x}=\mathbf{n}]|(\hat{\mathbf{S}}) = \hat{\mathbf{S}}[\mathbf{x} \leftarrow \alpha_{\mathbf{S}}(\{\mathbf{n}\})]
```

The Abstract Semantics

$$|\widehat{[x=n]|}(\hat{S}) = \hat{S}[x \leftarrow \underline{n}]$$

$$|\widehat{\mathbf{x}=\mathbf{y}+\mathbf{z}}||(\mathbf{\hat{S}}) = \mathbf{\hat{S}}[\mathbf{x}\leftarrow|[\mathbf{y}]|(\mathbf{\hat{S}})\oplus|[\mathbf{z}]|(\mathbf{\hat{S}})]$$

$$|[x=y\cdot z]|(\hat{S}) = \hat{S}[x\leftarrow |[y]|(\hat{S}) \otimes |[z]|(\hat{S})]$$

(1	<u>+</u>	<u>o</u>	=	Т
1	_	_	T	_	T
<u>+</u>	1	<u>+</u>	<u>+</u>	Т	Т
<u>o</u>	1	<u>+</u>	<u>o</u>	-	Т
=	1	Т	=	=	Т
Т	_	Т	Т	Т	Т

Prove: applying abstract transfer function on abstract value $\alpha(S)$ yields same result as applying concrete transfer function on S, then applying α on the result: $|[Stmt]|^{\circ}$ $\alpha = \alpha^{\circ}$ $|[Stmt]|^{\circ}$ Guarantees soundness!

Dataflow Analysis

Factorial

Define transfer functions, then apply fixpoint iteration

The Abstract Semantics

- Abstract interpretation does better than that: it symbolically executes abstract transfer functions
- Defines abstract semantics for
 - |[if (b) then Seq_1 else Seq_2 ||(S)
 - |[while (b) Seq]|(S)
- Compositional semantics
 - | Seq | is a composition of abstract transfer **functions**
- Takes into account conditionals
 - E.g., in if-then-else applies | Seq₁ | on abstract state augmented with **b = true**

Abstract Interpretation Does Better

■ E.g., applies **f**₄ on

$$(+,+,+)$$

• in(5)=(T,+,+)

Abstract Interpretation, Conclusion

- A general framework
 - Building static analyses
 - Reasoning about correctness of static analysis
 - Comparing static analyses

 Has applications in different areas, including reasoning about robustness of neural networks

A lot more, it is an active area of research

Abstract Interpretation is Even More General!

- | [Stmt]| s.t. α° | [Stmt]| = | [Stmt]| ° α may not exist for some | [Stmt]|
 - For some abstract domains, α does not exist

- Abstract Interpretation allows building analyses even in cases like these. Uses γ:
 - $|[Stmt]| \circ \gamma (\hat{S}) \subseteq \gamma \circ |[Stmt]| (\hat{S})$
 - Sound (over-approximation) but less precise

Widening

- What if the abstract lattice does not have finite height?
- E.g., lattice of intervals, a popular abstract domain

Widening ∇

- Widening:
 - Over-approximates join V (for correctness)
 - Guarantees termination and faster convergence on programs with loops

Abstract Interpretation, Conclusion

- A general framework
 - Building static analyses!
 - Reasoning about correctness of static analysis
 - Comparing static analyses

Abstract Interpretation, Conclusion

Active area of research

- New applications of abstract interpretation
- Proof assistants
- New abstract domains
- Faster analysis techniques