!'_ Abstract Interpretation, cont.

i Announcements

= HW3 and HW47?

= HWS

= Abstract interpretation and
= Haskell

= Download and get started with Haskell

Program Analysis CSCI 4450/6450, A Milanova

i Outline

s Overview

= Semantics

= Notion of abstraction

= Concretization and abstraction functions
s Galois Connections

= Applications of abstract interpretation

i Concretization Function /ﬁfﬁ
_

¢ — 0
& a

a Definition:

Concretization function y : A>C (if it exists)
maps a €A to the largest (most general)
element c&C suchthatc —a

Note: y(a) “covers” all concrete elements that
are represented by a

= y(a) returns the most general element ¢ such
that c is represented by a. This is called
concretization

Program Analysis CSCI 4450/6450, A Milanova 4

i Gamma Examples

Concrete lattice: Abstract lattice:

{...-2,-1,0,1,...
{0,1,2,... } T
{...-3,-2,-1}
{0,1) + 0 -
5 1 {1,2} ”
{-2,-1} V4 Y ocishs Hear

{0} d@,f C /_f," wJZ kove ¢ € p(a)

e

Program Analysis CSC{)4-50/6450, A Milanova 5

i Abstraction Function

a Definition:

Abstraction function a : C>A (if it exists) maps
c € C to the smallest (most precise) element
aS A suchthatchH a

= ¢ maps c to the most precise a such that a
represents c. This is called best abstraction

Program Analysis CSCI 4450/6450, A Milanova

i Alpha Examples

Concrete lattice: stract lattice:

{...2-101,..

1,2,...) :
{-100,-2,-1} A
{0,1) + 0 -

-2,-1 , ;)
{ } (0)]j K exnfs

Program Analysis CSC{)4-50/6450, A Milanova =

i Galois Connection

= A Galois Connection links a and y. It captures
that they represent the abstraction relation !

s Definition

A Galois connection is defined by concrete lattice
(C,2), abstract lattice (A,<), an abstraction
function a : C2> A and concretization function vy :
A->C such that

foreverya& A and everyc €C

c Cvy(a) if ang_o_naly if a(c) < a

e

Program Analysis CSCI 4450/6450, A Milanova

i Galois Connection

C lattice: A lattice:

Program Analysis CSCI 4450/6450, A Milanova

i Galois Connection

C lattice: g

Program Analysis CSCI 4450/6450, A Milanova

A lattice:

10

i Galois Connection Example

—
= Constants lattice .2 1012 ..
C S y(a) o¥L(e) W
ac(c) D Lifc={ ve(T) D Z
oc(c) 2 nif c ={n} Ye(n) 2 {n}
ac(c) 2 T otherwise volD) 2> {}

T FPr ok ¢ ond aeh sk CEYQ). We bave bk d()Za
Caac 12 C= 9} . For tack A€ C=§F S)(a) . Wehae <(F5) L=\

o = ?UY. a:g o d &:T.
Qave 2: €= 3Fu] - Cosupep(n) => o([;,d)_/i,fg_\/

LT e=YdS y(T) => L($e§)=u < TV
Cawe 37 €= “ofrunc, auy seh of 2orwore. G=T w(e)= TET V'

Galois Connection

T
i Example
= Signs lattice = 0 -
aq(c) 2 +if for every nin c, n>0
aq(c) 2 -if for every nin ¢, n<0
ac(c) > 0 if ¢ = {0) 1
ac(c) > Lifc={} Ye(T) 2
ac(c) 2 T otherwise V() 2 {1 2,...}
1¢(0) = {0}
Yelz) 2 {...,-2,-1}
ve(D =2 {}

12

i Galois Connection Example

13

2, B4,
i Galois Connection Properties

foreverya& Aandeveryc& C I ¢

c Cy(a)ifand only if a(c) < a «fp(a))
Jef ¢= fla)

y(a)s y(6) => o(yla))< a

= Contractive and expansive: y(ya)) < a

a ° y contracts: foreveryacA:a°y(a)<a

v ° a expands: foreveryccC:y°a(c)2c

o

v(a)C y(a) implies a(y(a)) < a

Program Analysis CSCI 4450/6450, A Milanova 14

i Galois Connection Properties

foreverya& Aandeveryce C
cCy(a) ifand only if a(c) < a

= Monotonicity:
a IS monotone

v IS monotone

Proof: homework

Program Analysis CSCI 4450/6450, A Milanova

15

i Galois Connection Properties

foreverya& Aandeveryce C
cCy(a) ifand only if a(c) < a

= Repetition:
woyoamg =3l (¥ (X)) = «(e)
'YO(IO’Y='Y

Proof: exercise

Program Analysis CSCI 4450/6450, A Milanova

16

i Outline

s Overview

= Semantics

= Notion of abstraction

= Concretization and abstraction functions
= Galois Connections

= Applications of abstract interpretation

Program Analysis CSCI 4450/6450, A Milanova

17

Applications of Abstract
i Interpretation

= Deriving and reasoning about static analysis!

= . . . #
Deriving a static analysis Qe b CMM:HW

= The hard (ad-hoc) way... Fropod =

= Starting from some concrete space and semantics

" Define abstract space and abstract semantics (i.e.,
transfer functions)

= Guess an invariant implying correctness conclusion

= Make an inductive argument that each transfer
function preserves the invariant

Program Analysis CSCI 4450/6450, A Milanova

Applications of Abstract
i Interpretation

= An easier (principled) way...
= Formalize concrete domain (C,%~) and semantics
= Construct an abstract space (A,<)
= Set up a and y, Galois Connection, if it exists

= Derive abstract semantics

= “Principled” transfromration:
Use a when it exists
Use y otherwise (more advanced abstract interpretation)

= Correctness (soundness) holds!

Program Analysis CSCI 4450/6450, A Milanova 19

i An Example

= \We will derive a static analysis that computes
signs (+,-,0) using a collecting semantics and
the signs abstraction: T

+ 0

L
= Correctness property (simplified):
= Xateis + only if o(x) > 0 for every o collected at ¢
= Xateis - only if o(x) < 0 for every o collected at ¢

= X ateis 0 only if o(x) = O for every o collected at ¢

20

i The Collecting Semantics

[x=yJ(c) TRAE
[x=yT(s) tousdiné

= Collecting semantics (partial)
= Assume fixed set of integer variables: x,y,z
s 0= (nx,ny,nz) O= [x— ts, Yooty 2 Uz |
= 0 IS a mapping from integer variables to values in Z
= Concrete state S is a set of 6’s

= [x=n] (S)={o[x€n]|ocES}
» [x=y + 2] (S) = { olx€[lyll(0)+]z]l(0)] | cE S }
» [x=y ¢ 2] (S) = { o[x€lyll(0)°[IZ]l(0)] | cES }

21

(s)—§

The Abstraction d(&f:j),(z,z,izi) - |
g +,7 =

,‘

Cx Cy @

o a IS a composition of two abstractions

o Collectlng abstraction: collects the values of a
variable across all o’s into one set

= Signs abstraction: our running example
= 0:8> (s ({n| (n,__)ES))

Og ({ ny | (_!nya_) €S })v
as({n.|(L,_n)ES}))

22

i The Abstraction

a:S 2> (os{ng|(Ng_,_)ES})),

Og ({ ny | (_!ny!_) SRS })5
as({n; | (L_n)ES})

= E.g.$={(1,2,0), (-1,3,0)} «(s) = (T, #,0)

o(S) = (as({1,-1}).a5({2,3}).05({0})) = (T,+,0)

l.e., in the abstract, xis T, y is +, z is 0

23

S-hat is standard
i The AbStraCt|On notation for abstract}
state
p:8 =8

= Abstract state S is a tuple (a,,ay,a,) (0,001
. S - { (nX! ny! nz) | anyS(ax),
nyE VS(ay)v an VS(az) }

24

S-hat is standard
i The AbStraCt|On notation for abstract}
state
S SA O-bat

v :S 2 {(ny Ny, N;) | Nyevs(ay),
n,cvs(ay), n,evs(a,) }
= E.g., from previous slide:
S ={(1,2,0), (-1,3,0) }
a(S) = (as ({1,-1}),as ({2,3}),05 ({0})) = (T,%,0)
¥(S) =

N

S= (T,i,O),v() =1(1,2,0), (-1,2,0), (-2,3,0).etc. }
= Exercise: Prove a, y form Galois connection

25

i Deriving the Abstract Semantics

= WWe can derive an abstract semantics by
“principled” transformation: Lx=y+2](s)
= Consider concrete transfer function [[Stmt][(S)

= We derive a corresponding abstract transfer
function [Stmt]](S)

= We then show a([[Stmt]|(S)) = [Stmt]|(a(S))

= Implies static analysis is correct (i.e., over-
approximation of all sigmas)

= Exact a-based transformation does not always

work
Program Analysis CSCI 4450/6450, A Milanova 26

i Deriving the Abstract Semantics
&= (T.7,7)

= Abstracting result of concrete transfer function:

o ([Stmt]|(S)) = (as ({ ny| (ny._,_) S[Stmt][(S) }),
Os ({ ny (_!ny!_)E IStmtI (S) })s

as({ .| (L_n,) € [Stmt]|(S) }))

Read: apply concrete transfer function [[Stmt]|(S)
resulting in a new set of o = (n,,n,,n,)’s. Then

(1) apply collecting abstraction: collect all values of x,
all values of y, and all values of z into respective sets

(2) apply sign abstraction on each set

Program Analysis CSCI 4450/6450, A Milanova 27

i Deriving the Abstract Semantics

= Concreate transfer function: [[x=n[|(S) . .)

= Abstract transfer function ;J\[T=F]|(§) = S[x€
(D= (3)) =2 [x=u] («(s))
wew et of Jz?uc! S/ A (;,,,5) — S’égu(n)
o ([Lx=ul (S)) - [Ao [E ux | (M, “y;"Z)GS”f))
ols (Fuy [(U, by, bz €<y),
[Jupetot s woer foe Youd 7 O (fral (uc iy uz) c5'}))

one fle Sawe v 0 ond n S, 0(9(?“(7/(1" ,QJ,Mz)GS})
:Olg(SUy / (“x,”;'/ht)so
= (90, (.. €55), % (- &)
a7// a\)(Qﬁz 28

i Deriving the Abstract Semantics

= Concreate transfer function: |[[x=n]|(S) g ()

= Abstract transfer function: |[7=?]|(§) = S[x€n]
WO J[wwed 0[[[)(;”][3‘)) = (S';Ju(h)' o[g[fnél [Mz,hJ,Mz) é.g\}')/
DQ(EIA;_ /[hx,MJ,”Z)ésj)) ,(__li_)

_~
We wow cogider [x=u] L(c))
I@ﬂ(d(s)) —:l){:w][Ms[f”z/[”""“a'"z)egj)}
O(g(gby/[uw,ha,h,') é‘Sj)/
ols (Sus [(e, ty, kz) st))

= (g?]“(“); ods (S| (e, Uz, #2) € 3§)/o(,[{nz/(ﬂx.uy,”z)éff)) é]

/| Juasb applied /%< s ()], N
(1) aZ)/’ () a[r; /fﬁhuat | T L([xuTE)) = B0T(46)).

9

i Deriving the Abstract Semantics

= Concreate transfer function: |[x=n]|(S) s
= Abstract transfer function: [ix=n]|($) = é[xé/gr]cf{;(i/”)
a (|x=n]|(S)) =

(as({ nk| (Nuny,n;) {o[x€En] | 0ES })),

as(i Ny | (Neny,n;) € { o[xEN] [0S })),
as({ n;| (ny,ny,n;) E{o[x€n] [cES}})) =

(as({n}), as({ ny | (Liny,_) €8 }), as({ n,| (L,_n,) =S 1))
=u/(SE(éaS({n})] which is

[x=n]|(S) = S[x<€as({n})]

30

i The Abstract Semantics

- /\n(§)=8xén]
= 15=y*21I(8) = Six<liyll(8) @[z1I(S)]
= x-y'Z]I() = S[x<[[yll(S) ® |[2]|(S)]
@ L + 0 - T
1 1 1 1 1 1
+ 1 + + T T
0 1 * 0 T
- 1 T - - T
T 1 T T T T

Prove: applying abstract transfer function on abstract value
a(S) yields same result as applying congrete transfer function
on S, then applying a on the result: [[Stmt]]° o=a" [[Stmt]]
Guarantees soundness!

s Factorial
N Lx: T
T 0 -
1

s Define transfer
functions, then
apply fixpoint iteration

i Dataflow Analysis

(T,T,T)

1.

x=n /In>0

(+,T.T)

Program Analysis CSCI 4450/6450, A Milanova (Example program from Xavier Rival)

i The Abstract Semantics

= Abstract interpretation does better than that: it
symbolically executes abstract transfer functions

s Defines abstract semantics for
= |[if (b) then Seq, else Seq,]|(S)
= |[[while (b)) Seq]|(S)

= Compositional semantics

—

= |[Seq]| is a composition of abstract transfer
functions

s [akes into account conditionals

—

=« E.g., inif-then-else applies |[Seq,]| on abstract state
augmented with b = true 33

Abstract Interpretation Does

i Better —
1. x=n //n>0

= Factorial +TT) |
_ Lx: T 2. y=1

’ z=1
+ 0 - (+,+,%)

“ (T4*) 13, if (x>0)

1 T
= E.g., applies f,0on '”(4)(1%’5’1 4. y="x*y
("') out(4)= (T,+,+) ——
. |n()=(T,+,+) 5 s,

Program Analysis CSCI 4450/6450, A Milanova

34

Abstract Interpretation,

i Conclusion

= A general framework
= Building static analyses
= Reasoning about correctness of static analysis
= Comparing static analyses

= Has applications in different areas, including
reasoning about robustness of neural networks

= A lot more, it is an active area of research

Program Analysis CSCI 4450/6450, A Milanova 35

Abstract Interpretation is Even

i More General!
— —
s [[Stmt]] s.t. a® |[Stmt]| = [[Stmt]|° o may

not exist for some [[Stmt]]
= For some abstract domains, a does not exist

= Abstract Interpretation allows building analyses
even in cases like thesg, Uses v:
« [[Stmt]| ° v (S) C v °|[Stmt]|(S)
= Sound (over-approximation) but less precise

Program Analysis CSCI 4450/6450, A Milanova 36

i Widening

s What if the abstract lattice does not have
finite height?

= E.g., lattice of intervals, a popular abstract
domain 2

. [-3,-1] [-2,0] [-1,1] [0,2] [1,3] ...
.. [-3,-2] [-2,-1] [-1,0] [0,1] 11,2] ...

.. [2,-2] [-1,-1] [0,0] [1,1] 2,2] ...

—

CSCI 4450/6450, A Milanova 0 37

i Widening V
= Widening:

= Over-approximates join V (for correctness)

= Guarantees termination and faster convergence
on programs with loops

X =0;

Typical widening:

while (true) { _
£ (x < 9999) [2,00] V[a,b;] = [a,+OO] if by<b.
[a,bg]VIa,b4] = [a,bg] otherwise
X = x+1; (Read: if interval grows with next iteration
else through the loop, widen to infinity.)

X = =X;

}SCI 4450/6450, A Milanova (Example program due to Xavier Rival) 38

Abstract Interpretation,

i Conclusion

= A general framework

= Building static analyses!
= Reasoning about correctness of static analysis
= Comparing static analyses

CSCI 4450/6450, A Milanova

39

Abstract Interpretation,

i Conclusion

s Active area of research

= New applications of abstract interpretation
= Proof assistants

= New abstract domains

= Faster analysis techniques

CSCI 4450/6450, A Milanova

40

