Types and Type Based Analysis:

!'_ Lambda Calculus, Intro to Haskell

i Announcements

= Quiz 4 on Abstract Interpretation

= HW5 Is out

= Moving on to Types and Type-based
Analysis

= Have a great Spring break!

Program Analysis CSCI 4450/6450, A Milanova

i Overview

Program Ewnalysis:
x>1,y>-1,2>2 X2>+y>-z>+
Lattice 27 Signs Lattice
I[x=y+z]|(<x=>1,y=>-1,z22>,<...>...)][x/=y+\z][(<axéi-, ay,2-, a,2+>)

(<x>1,y>-1,y>2><...>...) (<a,~>T, a,~>- a,20>) ;

i Outline

s Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Rules (alpha rule, beta rule)
= Normal forms
= Reduction strategies

= Interpreters for the Lambda calculus
= Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

Lambda Calculus

theory of functions
= Theory behind functional programming

= Turing-complete: any computable function can
be expressed and evaluated using the calculus

= Lambda (1) calculus expresses function
definition and function application

« f(X)=x*Xx becomes Ax.x*x

« g(x)=x+1 becomes Ax. x+1
= f(5) becomes (AX. x*x) & > 5*5 > 25

Program Analysis CSCI 4450/6450, A Milanova

i Syntax of Pure Lambda Calculus

= A-calculus formulae (e.g., Ax. x y) are called
expressions or terms

s E:= x|(AX.E;)]|(E{E;)
= A A-expression is one of

= Variable: x

= Abstraction (i.e., function definition): Ax. E,
« Application: E4 E,

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder

i Syntactic Conventions

= Parentheses may be dropped from “stand-
alone” terms (E, E,) and (Ax. E)

« E.g., (fXx) may be written as f x

= Function application groups from left-to-right
(i.e., it is left-associative)
= E.g., Xy zabbreviates ((xy) z)
« E.9.,,E{ E;, E5; E;, abbreviates (((E; E;) E3) Ey)
= Parentheses in x (y z) are necessary! Why?
Xyzz (xy)x F# « (Y 2)

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder

i Syntactic Conventions

= Application has higher precedence than
abstraction

= Another way to say this is that the scope of the
dot extends as far to the right as possible

s Eg,AX. Xz =AX.(xz2)=(AX.(x2)) =
(Ax. (x2))F((Ix.x)2z)

= WWARNING: This is the most common
syntactic convention (e.g., Pierce 2002).
However, some books give abstraction
higher precedence; you might have seen that
different convention

8

i Semantics of Lambda Calculus

= An expression has as its meaning the value
that results after evaluation is carried out

= Somewhat informally, evaluation is the
process of reducing expressions
E.g., A xAy.x+y)32> (Ay.3+y)2>3+2=5

(Note: this example is just an informal illustration.
There is no + in the pure lambda calculus!)

i Free and Bound Variables

= Abstraction (Ax. E) is also referred as binding
= Variable x is said to be bound in Ax. E

s [he set of free variables of E is the set of
variables that appear unbound in E

= Defined by cases on E
= Var x: free(x) = {x}
« App E, E,: free(E, Ey) = free(E4) U free(E,)
= Abs Ax. E: free(AX.E) = free(E) - {x}

Program Analysis CSCI 4450/6450, A Milanova 10

i Free and Bound Variables

= A variable x is bound if it is in the scope of a

lambda abstraction: as in Ax. E ¥
. . . xd
s Variable is free otherwise g
/’f’j’ L, Ex,a;
1. (AX. X) y Abs 75 y %5 o 3%
» e R e 352 3y 3
2. (A\z.z 2) (kx X) 55 AA& '4"‘?5

3. AXAy.Az.[x z (y (Au. u))é‘

Program Analysis CSCI 4450/6450, A Milanova 11

i Free and Bound Variables

» WWe must take free and bound variables into
account whe INg expressions

E.g., (AX.Ay. Xy) (yw) Y. Qé:/

= First, rename boundy inAy.xytoz:Az. x z
(AX.Ay. xy) (y W) 2 (Ax.Az. X 2) (y W)

= Second, apply the reduction rule that substitutes
(y w) for x in the body (Az. x z)

(AMz.xz)[(yw)x] 2> (Az.(yw)z)=Az.ywz

i Substitution, formally O"‘-EJ[H/G

= (Ax.E) M > E[M/x] replaces all free occurrences
of xin Eby M

= E[M/X] is defined by cases on E:
« Var: y[M/x] = Mifx=y
y[M/x] = vy otherwise
= App: (E4 E,)[M/x] = (E4[M/x] E,[M/x])
= Abs: (Ay.E{)[M/x] = (Ay.Eq) if X =y
(Ay.E4()[M/x] = Az.((E4[2z/y])[M/X]) otherwise,
where z NOT in free(E4) U free(M) U {x}

Program Analysis CSCI 4450/6450, A Milanova 13

i Substitution, formally

(AX.Ay. xy) (y W)

> (Ay. x y)[(y w)ix]

> M_. ((x y)[1_lyDI(y w)ix])

> M_. ((x 1)y w)ix])

>M . ((yw)1))

>AM _.yw1l_

You will have to implement precisely this
substitution algorithm in Haskell

Program Analysis CSCI 4450/6450, A Milanova

14

Rules (Axioms) of Lambda

i Calculus

= o rule (a-conversion): renaming of parameter
(choice of parameter name does not matter)

« AX. E 2> Az. (E[z/x]) provided z is not free in E
= €g.,AX.XxXisthesameasiAz.zz

= 3 rule (B-reduction): function application
(substitutes argument for parameter)
« (AX.E) M >4 E[M/x]
Note: E[M/x] as defined on previous slide!
= e.9., (AX.X)z 252

Program Analysis CSCI 4450/6450, A Milanova 15

Rules of Lambda Calculus:

i Exercises

s Reduce

(AX.X)y 2> ? y

(Ax. f() ‘(ky‘. y) > ? "V
(b»x.?»y.?»z. x z (y z)) (Au. u))(?»v. v) 2> ?

Program Analysis CSCI 4450/6450, A Milanova

16

Rules of Lambda Calculus:

Exercises

(kx Ay.Az. xrz (y 2)) (ku j)(?»v V) 24

Z y)sz (Auu)k(y%) [va) —_
(3)2 z(yk)Z(z\vv) -

e, & ((Wv) %) —

’

Dok %

T =

———— >

Program Analysis CSCI 4450/6450, A Milanova

17

i Reductions

= An expression (AX.E) M is called a redex
(for reducible expression)

= An expression is in normal form if it cannot
be (B-reduced

= The normal form is the meaning of the term,
the "answer”

Program Analysis CSCI 4450/6450, A Milanova

18

i Definitions of Normal Form

= Normal form (NF): a term without redexes

= Head normal form (HNF)
= X is in HNF Ay (AW) 4
= (AX. E) is in HNF if E is in HNF
= (XE{E, ... E,)is in HNF
= Weak head normal form (WHNF)
= X Is in WHNF
=« (AX. E) is in WHNF
= (XE{E, ... E.)is in WHNF

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW)

19

i Questions

« Az. 2z is in NF, HNF, or WHNF? F

s (Az. Z Z) (AX. X) is in? Vei Hay

s AXAY.AZ. X Z (y (Au. u))isin? MF
£ t. Ex

—r

= (xAy. X) z (Ax. z X) (AX. z X)) is in? Neither
s Z ((AX. ZX) (AX. ZX))isin? fHead oud Wllead

s (Az. (Ax. ky Z ka z x) (Ax. Z x))) is e
= W I

Program Analysis CSCI 4450/6450, A Milanova 20

i Simple Reduction Exercise

s C=AXAyAf. fXy

= H=J\f f (AX.Ay. X) T =AM f (AX.Ay. y)
= Whatis H (C a b)?

> (AMf. f (AXx.Ay. X)) (C ab)

> (C ab) (Ax.Ay. X)

> ((AX.Ay.Af. T xy)ab) (AX.Ay. X)

> (AMf.fab) (Ax.Ay. X)

> (AX.Ay.X)ab

-> a CSCl 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

21

An expression with no free

. variables is called combinator.
| Exe rcise S, I, C, H, T are combinators.

S =AXAY.AZ. X Z (Y 2)

n = AX. X Reducible expression is underlined
= WhatisS 1117 at each step.
(AxXAy.Az.xz(yz))III

> (Ay.Az. lz(y2z))II

> (AMz.1z(lz))l

ST =(Ax.x) 1 (1)

> (D) =(Ax.x) (1)

sH=Ax.x)12>1

Program Analysis CSCI 4450/6450, A Milanova 22

Aside: Trace Semantics

= Models a trace of program execution

= In the imperative world
= Basic operation: assignment statement

= Execution (transition system) is a sequence of
state transitions

= Assignment: ¢ :x=E;¢: ...
= Assignment: :x=E, OpE,;¢: ...
(4,0) 2 (6, o[x<€[[Eq]l(o) Op [[E.]|(0)])

Program Analysis CSCI 4450/6450, A Milanova 23

i Aside: Trace Semantics

= In the functional world
= Basic operation is function application

= Execution (transition system) is a sequence of
B-reductions

(AxAy.Az.xz(yz)) Il

>(Ay.Az. lz(yz))IlI
>(Az. 1lz(12))1

AX. X

24

i Outline

s Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Rules (alpha rule, beta rule)
= Normal form
= Reduction strategies

= Lambda calculus interpreters
= Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

25

Reduction Strategy

= Let us look at (Ax.Ay.Az. x z (y 2)) (Au. u) (Av. V)

= Actually, there are (at least) two “reduction paths”:

Path 1: (AX.Ay.Az. x z (y 2)) (Au. u) (Av. V) 24
(Ay.Az. (Au. u) Z (y 2)) (AV. V) D¢

(Az. (Au. u) z ((Av. V) 2)) 24 (AZz. Z ((Av. V) Z)) 24
AZ.ZZ

Path 2: (AX.Ay.Az. x Z (y 2)) (Au. u) (Av. V) 24
(Ay-Az. (Au. u) z (y 2)) (Av. V) D¢

(Ay.Az. z (y 2)) (Av. V) D (Az. z ((Av. V) 2)) D
AZ.Z2Z

26

i Reduction Strategy

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at the normal form (answer)?

= Applicative order reduction chooses the
leftmost-innermost redex in an expression
= Also referred to as call-by-value reduction

= Normal order reduction chooses the leftmost-
outermost redex in an expression
= Also referred to as call-by-name reduction

Program Analysis CSCI 4450/6450, A Milanova 27

i Reduction Strategy: Examples

= Evaluate (Ax. x x) ((Ay.y) (Az. 2))
= Using applicative order reduction:
(Ax. x x) ((Ay.Yy) (Az. 2))

> (AX. X x) (Az. 2)

> (Az. 2) (Az. 2) 2 (Az. 2)

= Using normal order reduction

(Ax. x x) ((Ay.VY) (Az.Z))

> (Ay.y) (Az. z) ((Ay. y) (Az. Z))

> (AMz.2) ((Ay.y) (Az.2))
> (Ay.y) (Az. z) 2 (Az. 2)

28

i Reduction Strategy

= In our examples, both strategies produced
the same result. This is not always the case

= First, look at expression (Ax. x x) (AX. x x). What
happens when we apply B-reduction to this
expression?

=« Then look at (Az.y) ((Ax. x xX) (AX. X X))

= Applicative order reduction — what happens?
= Normal order reduction — what happens?

Program Analysis CSCI 4450/6450, A Milanova 29

i Church-Rosser Theorem

= Normal form implies that there are no more
reductions possible

= Church-Rosser Theorem, informally

= If normal form exists, then it is unique (i.e., result
of computation does not depend on the order
that reductions are applied; i.e., no expression
can have two distinct normal forms)

= |[f normal form exists, then normal order will find it

Program Analysis CSCI 4450/6450, A Milanova 30

i Reduction Strategy

= Intuitively:

= Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

= Normal order (call-by-name) is a lazy
evaluation strategy

s What order of evaluation do most PLs use?

Program Analysis CSCI 4450/6450, A Milanova 31

i Exercises

= Evaluate (AX.Ay. xy) ((Az. Z) w)
= Using applicative order reduction

= Using normal order reduction

Program Analysis CSCI 4450/6450, A Milanova

32

i Interpreters

= An interpreter for the lambda calculus is a
program that reduces lambda expressions to
“answers’

= We must specify
= [he definition of “answer”. Which normal form?

= [he reduction strategy. How do we choose
redexes in an expression?

Program Analysis CSCI 4450/6450, A Milanova 33

Haskell syntax:
letIn

i An Interpreter case of

->

= Definition by caseson E ::=x| Ax. E, | E4 E,
interpret(x) = x
interpret(Ax.E4) = AX.E;
interpret(E4 E,) = let f = interpret(E,)
in case f of
AX.E5 -> interpret(E3[E,/X])

- >fE,

= WWhat normal form: Weak head normal form

= \What strategy: Normal order

Program Analysis CSCI 4450/6450, A Milanova (modified from MIT 2015 Program Analysis OCW) 34

i Another Interpreter

= Definition by caseson E ::=x| Ax. E, | E4 E,
interpret(x) = x
interpret(Ax.E4) = AX.E;
interpret(E4 E,) = let f = interpret(E,)

a = interpret(E,)

in case f of
AX.E; =2 interpret(Es[alx])
- >fa

= What normal form: Weak head normal form
= \What strategy: Applicative order 35

i Outline

s Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Rules (alpha rule, beta rule)
= Reduction strategies
= Normal form

= Lambda calculus interpreters
s Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

36

i Coding them in Haskell

= In HWS you will code an interpreter in Haskell

= Haskell
= A functional programming language

= Key ideas
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching

= Monads ... and more
Program Analysis CSCI 4450/6450, A Milanova 37

i Lazy Evaluation

= Unlike Scheme (and most programming languages)
Haskell does lazy evaluation, i.e., normal order
reduction

= It won't evaluate an argument expr. until it is needed
>fx =[]/ ftakes x and returns the empty list
> f (repeat 1) // returns?
> 1
> head (tail [1..]) // returns?
> 2 /] [1..] is infinite list of integers

= Lazy evaluation allows us to work with infinite

38
structures!

i Static Typing and Type Inference

= Unlike Scheme, which is dynamically typed,
Haskell is statically typed!

= Unlike Java/C++ we don’t always have to
write type annotations. Haskell infers types!
= A lot more on type inference later!

> f x = head x // f returns the head of list x

> f True // returns?

« Couldn't match expected type ‘[a]’ with actual type ‘Bool’
* In the first argument of f', namely ‘True’
In the expression: f True ...

39

i Algebraic Data Types

= Algebraic data types are tagged unions (aka
sums) of products (aka records)

data Shape = Line Point Point
| Triangle Point Point Point union
| Quad Point Point Point Point

Haskell keyword | new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary ...

the neW type

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 40

i Algebraic Data Types in HW5

= Constructors create new values
= Defining a lambda expression
type Name = String
data Expr = Var Name
Lambda Name Expr
App Expr Expr

> e1 = Var “x” /| Lambda term x
> e2 = Lambda “x” e1 // Lambda term Ax.x #

Examples of Algebraic Data
i Types Polymorphic types.

a is a type parameter!

data Bool = True | False
data Day = Mon | Tue | Wed+{Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)

data Maybe a = Nothing | Just a

Maybe type denotes that result of computation can
be a or Nothing. Maybe is a monad.

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 42

Data Constructors vs Type
i Constructors

= Data constructor constructs a "program
object”
« E.g., Var, Lambda, and App are data constructs

= Type constructor constructs a “type object”
=« E.9., Maybe is a unary type constructor

Program Analysis CSCI 4450/6450, A Milanova 43

Type signature of anchorPnt: takes

i Patte rn MatCh | ng a Shape and returns a Pnt.

= Examine values-of an algebraic data type

anchorPnt :: Shape - Pnt

anchorPnt s = case s of
Line p1 p2 =2 p1
Triangle p3 p4 p5 =2 p3
Quad p6 p7 p8 p9 = pb

= Two points
= [est: does the given value match this pattern?

= Binding: if value matches, bind corresponding

values of s and pattern
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 44

i Pattern Matching in HW5

iIsFree::Name - Expr - Bool
iIsSFree ve=
case e of
Var n = if (n == v) then True else False

Lambda - = = | Type signature of isFree. In Haskell, all functions
are curried, i.e., they take just one argument.

isFree takes a variable name, and returns a function
that takes an expression and returns a boolean.

Of course, we can interpret isFree as a function
that takes a variable name name and an expression
E, and returns true if variable name is free in E.

Program Analysis CSCI 4450/6450, A Milanova 45

i Haskell Resources

s http://www.seas.upenn.edu/~cis194/spring13/

= https://www.haskell.org/

Program Analysis CSCI 4450/6450, A Milanova 46

http://www.seas.upenn.edu/~cis194/spring13/

