Types and Type Based Analysis:

!'_ Lambda Calculus, Intro to Haskell

i Announcements

x Welcome back!

= HWS is out
= Rainbow grades

= Moving on with Types and Type-based
Analysis

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Pure lambda calculus, a review
= Syntax and semantics (last time)
= Free and bound variables (last time)
= Substitution (last time)
= Rules (last time)
= Normal forms (last time)
= Reduction strategies

m Interpreters for the Lambda calculus
s Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

i Syntax of Pure Lambda Calculus

= A-calculus formulae (e.g., Ax. x y) are called
expressions or terms

s E:= x|(AX.E;)]|(E{E;)
= A A-expression is one of

= Variable: x

= Abstraction (i.e., function definition): Ax. E,
« Application: E4 E,

Program Analysis CSCI 4450/6450, A Milanova/BG Ryder

. xx) (X
i Syntactic ConventloQ 2 22)

= Parentheses may be dropped from “stand-
alone” terms (E, E,) and (Ax. E)

« E.g., (fXx) may be written as f x

= Function application groups from left-to-right
(i.e., it is left-associative)
= £E.9.,, Xy z abbreviates ((xy) z)
« E.9.,,E{ E;, E5; E;, abbreviates (((E; E;) E3) Ey)
« Parentheses in x (y z) are necessary! Why?
(Mxxx)Qyy)(D222) = ?e AX.)"‘)[AV\Y))[/\z 2
Program Analysis CSCI 4450/6450, A Milanova/BG Ryder ?()sx X X) (()&y \)/)(,\2.25'2D

i Syntactic Conventions

= Application has higher precedence than
abstraction

= Another way to say this is that the scope of the
dot extends as far to the right as possible

s Eg,AX. Xz =AX.(xz2)=(AX.(x2)) =
(Ax. (x2))F((Ix.x)2z)

= WWARNING: This is the most common
syntactic convention (e.g., Pierce 2002).
However, some books give abstraction
higher precedence; you might have seen that
different convention

6

Rules (Axioms) of Lambda

i Calculus

= o rule (a-conversion): renaming of parameter
(choice of parameter name does not matter)

« AX. E 2> Az. (E[z/x]) provided z is not free in E
= €g.,AX.XxXisthesameasiAz.zz

= 3 rule (B-reduction): function application
(substitutes argument for parameter)

= (AX.E) M 24 E[M/x]
Note: E[M/x] as defined in class last time
= e.9., (AX.X)z 252

Program Analysis CSCI 4450/6450, A Milanova

Rules of Lambda Calculus:

i Exercises

s Reduce

(AX.X)y 2> ?

(Ax. x) (AY. y) = ?
I |

(Axdyaz. x z (y 2)) . W v) > 21,
Nz vy Oyos 2 (y=)) (xvv)
22, 7

Program Analysis CSCI 4450/6450, A Milanova 8

i Reductions

= An expression (AX.E) M is called a redex
(for reducible expression)

= An expression is in normal form if it cannot
be (B-reduced

= The normal form is the meaning of the term,
the "answer”

Program Analysis CSCI 4450/6450, A Milanova

i Definitions of Normal Form

= Normal form (NF): a term without redexes
= Head normal form (HNF)

= XIsin HNF

= (AX. E) is in HNF if E is in HNF

« (XE,E, ... E,)is in HNF L%y y) (r2-2))
= Weak head normal form (WHNF) =

= X Isin WHNF

« (Ax. E) is in WHNF
« (XE, E, ... E,)is in WHNF

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 10

i Questions (M@y)) (Qw)y)

s A2.z zis in NF, HNF, or WHNF? NF=>HNF =Dk
s (AZ. 2 2Z) (AX. X) is in? o Her
= AXAY.AZ. X Z (Y (Au. u)) is in? NF

Ey 2 Ez

- m;@»x. z x) (AX. Z x))' is in? Meikur

s Z ((AX. Z X) (AX. Z X)) is in? HUF aud WithF
= (Az.(Ax.Ay. X) Z ((AX. Z X) (AX. Z x))) is in?
WHNF

Program Analysis CSCI 4450/6450, A Milanova 11

i Simple Reduction Exercise

s C=AXAyAf. fXy

= H=J\f f (AX.Ay. X) T =AM f (AX.Ay. y)
= Whatis H (C a b)?

> (AMf. f (AXx.Ay. X)) (C ab)

> (C ab) (Ax.Ay. X)

> ((AX.Ay.Af. T xy)ab) (AX.Ay. X)

> (AMf.fab) (Ax.Ay. X)

> (AX.Ay.X)ab

-> a CSCl 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

12

An expression with no free

. variables is called combinator.
| Exe rcise S, I, C, H, T are combinators.

S =AXAY.AZ. X Z (Y 2)

n = AX. X Reducible expression is underlined
= WhatisS 1117 at each step.
(AxXAy.Az.xz(yz))III

> (Ay.Az. lz(y2z))II

> (AMz.1z(lz))l

ST =(Ax.x) 1 (1)

> (D) =(Ax.x) (1)

sH=Ax.x)12>1

Program Analysis CSCI 4450/6450, A Milanova 13

Aside: Trace Semantics

= Models a trace of program execution

« In the imperative world ~ (%0%)— (6,0) =
. I : — (EX{T/ GEX(T)
= Basic operation: assignment statement

= Execution (transition system) is a sequence of
state transitions

= Assignment: ¢ :x=E;¢: ...

(¢,0) > (4, o[x€[[E]l(0)])

= Assignment: :x=E, OpE,;¢: ...
(40) > (4, olx€[E]I(o) Op |[E.ll(o)])

Program Analysis CSCI 4450/6450, A Milanova 14

Aside: Trace Semantics

. g~? é’;_'_D Ez_ —

= In the functional world c R
= Basic operation is function application /

= Execution (transition system) is a sequence of
B-reductions

(AxAy.Az.xz(yz)) Il

>(Ay.Az. lz(yz))IlI
>(Az. 1lz(12))1

AX. X

15

i Outline

s Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Substitution
= Rules (alpha rule, beta rule)
= Normal forms
= Reduction strategies

= Lambda calculus interpreters
= Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

16

Reduction Strategy

= Let us look at (Ax.Ay.Az. x z (y 2)) (Au. u) (Av. V)

= Actually, there are (at least) two “reduction paths”:

Path 1: (AX.Ay.Az. x z (y z)) (Au. u) (Av. V) 24
~— (Ay.AzZ. (A u) z (v 2)) (Av. V) g

(Az. (AU. u) z ((Av. V) 2)) 25 (Az. 2 ((Av. V) 2)) D¢
AZ.ZZ

Path 2: (Ax.Ay.Az. x Z (y 22) (Au. u) (Av. V) 2

e (AyAz. (Au. u) z (y 2)) (Av. V) >
(AyAz. z (y 2)) (Av. v) D5 (Az. z ((Av. V) Z)) D
ANZ.ZZ

17

i Reduction Strategy

= A reduction strategy (also called evaluation
order) is a strategy for choosing redexes
= How do we arrive at the normal form (answer)?

= Applicative order reduction chooses the
leftmost-innermost redex in an expression
= Also referred to as call-by-value reduction

= Normal order reduction chooses the leftmost-
outermost redex in an expression
= Also referred to as call-by-name reduction

Program Analysis CSCI 4450/6450, A Milanova 18

Reduction Strategy: Examples
Af(?caﬁ\/e:
b

X<.E & M. hr(E)

= Evaluate (Ax. x x) ((Ay. y) (Az. Z))

= Using applicative order reduction:

(Xx.xx) (A%¥%) —> E € ¢ €1"4'AP(51)

A Ez 4‘”(57,)

Oz} (A %)—» Xz.& f 5] 5 AxE!
= Using normal order reduction M’(E, [EL‘I’J)

(y-)0mz) () (der)) & e (5]
(i) (Bv.y) (Mex)) — Norual Order!
A\ V)(dzk) - yz. =
Qry)(oxt /@/

19

i Reduction Strategy

= In our examples, both strategies produced
the same result. This is not always the case

= First, look at expression (Ax. x x) (AX. x x). What
happens when we apply B-reduction to this
expression?

=« Then look at (Az.y) ((Ax. x xX) (AX. X X))

= Applicative order reduction — what happens?
= Normal order reduction — what happens?

Program Analysis CSCI 4450/6450, A Milanova 20

i Church-Rosser Theorem

= Normal form implies that there are no more
reductions possible

= Church-Rosser Theorem, informally

= If normal form exists, then it is unique (i.e., result
of computation does not depend on the order
that reductions are applied; i.e., no expression
can have two distinct normal forms)

= |[f normal form exists, then normal order will find it

Program Analysis CSCI 4450/6450, A Milanova 21

i Reduction Strategy

= Intuitively:

= Applicative order (call-by-value) is an eager
evaluation strategy. Also known as strict

= Normal order (call-by-name) is a lazy
evaluation strategy

s What order of evaluation do most PLs use?

Program Analysis CSCI 4450/6450, A Milanova 22

i Exercises

= Evaluate (AX.Ay. xy) ((Az. Z) w)
= Using applicative order reduction

= Using normal order reduction

Program Analysis CSCI 4450/6450, A Milanova

23

i Interpreters

= An interpreter for the lambda calculus is a
program that reduces lambda expressions to
“answers’

= We must specify @ WIHVE | e
= [he definition of “answer”. Which normal form?

= [he reduction strategy. How do we choose
redexes in an expression? @ o~ Moel,

Program Analysis CSCI 4450/6450, A Milanova 24

Haskell syntax:
letIn

i An Interpreter case of

->

= Definition by caseson E ::=x| Ax. E, | E4 E,
interpret(x) = x WHNE
interpret(AX.E4) = XX.%
interpret(E4 E,) = let f = interpret(E,)

in case f of Mor L ac ORDER:

AX.E; -> interpret(E3['Eélx])
- >f EZ

= What normal form: Weak head normal form

= \What strategy: Normal order

Program Analysis CSCI 4450/6450, A Milanova (modified from MIT 2015 Program Analysis OCW) 25

i Another Interpreter

= Definition by caseson E ::=x| Ax. E, | E4 E,
interpret(x) = x
interpret(AX.E4) = xx.E/.,_;\’\”"LM F

interpret(E4 E,) = let f = interpret(E,)
a = interpret(E,)

QE—

incase fof #PPULLCATIVE:
AX.E; =2 interpret(Es[alx])
—
- >fa

= What normal form: Weak head normal form
= \What strategy: Applicative order 26

i Outline

s Pure lambda calculus, a review
= Syntax and semantics
= Free and bound variables
= Substitution
= Rules (alpha rule, beta rule)
= Reduction strategies
= Normal form

= Lambda calculus interpreters
s Coding them in Haskell

Program Analysis CSCI 4450/6450, A Milanova

27

i Coding them in Haskell

= In HWS you will code an interpreter in Haskell

= Haskell
= A functional programming language

= Key ideas
= Lazy evaluation
= Static typing and polymorphic type inference
= Algebraic data types and pattern matching

= Monads ... and more
Program Analysis CSCI 4450/6450, A Milanova 28

i Lazy Evaluation

= Unlike Scheme (and most programming languages)
Haskell does lazy evaluation, i.e., normal order
reduction

= It won't evaluate an argument expr. until it is needed

>fx =[]/ ftakes x and returns the empty list
o)Ez J
> f (repeat 1) // returns? majp (\x. (show x) +¢
E"' u l '1 g b j

>] (2.7
> head (tail [1..]) // returns?
> 2 // [1..] is infinite list of integers

= Lazy evaluation allows us to work with infinite

29
structures!

i Static Typing and Type Inference

= Unlike Scheme, which is dynamically typed,
Haskell is statically typed!

= Unlike Java/C++ we don’t always have to
write type annotations. Haskell infers types!

= A lot more on type inference later!
> f x = head x // f returns the head of list x

> f True // returns? ° i?fe 7E ;?/5“7 ""‘L]

« Couldn't match expected type ‘[a]’ with actual type ‘Bool’
* In the first argument of f', namely ‘True’
In the expression: f True ...

30

i Algebraic Data Types

= Algebraic data types are tagged unions (aka
sums) of products (aka records)

data Shape = Line Point Point
| Triangle Point Point Point union
| Quad Point Point Point Point

Haskell keyword | new constructors (a.k.a. tags, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary ...

the neW type

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 31

i Algebraic Data Types in HW5

= Constructors create new values
= Defining a lambda expression
type Name = String
data Expr = Var Name
Lambda Name Expr
App Expr Expr

> e1 = Var “x” /| Lambda term x
> e2 = Lambda “x” e1 // Lambda term Ax.x

Examples of Algebraic Data
i Types Polymorphic types.

a is a type parameter!

data Bool = True | False
data Day = Mon | Tue | Wed+{Thu | Fri | Sat | Sun

data List a = Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)

Oph ~
[aata Maybe a = Nothing | Just a j 4 oual[inff

Maybe type denotes that result of computation can
be a or Nothing. Maybe is a monad.

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 33

Data Constructors vs Type
i Constructors

= Data constructor constructs a "program
object”
« E.g., Var, Lambda, and App are data constructs

= Type constructor constructs a “type object”
=« E.9., Maybe is a unary type constructor

/{10(7/:‘2 E’K//‘
Li S;L Boo/

Program Analysis CSCI 4450/6450, A Milanova 34

Type signature of anchorPnt: takes

i Patte rn MatCh | ng a Shape and returns a Pnt.

= Examine values-of an algebraic data type

anchorPnt :: Shape - Pnt

anchorPnt s = case s of
Line p1 p2 =2 p1
Triangle p3 p4 p5 =2 p3
Quad p6 p7 p8 p9 = pb

= Two points
= [est: does the given value match this pattern?

= Binding: if value matches, bind corresponding

values of s and pattern
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 35

Pattern Matching in HWS

= KGHT M0C 4TIVE
isFree::Name ééfxpr - Bool) (hee v) =L
isFree ve= (£ ¢)~ Bosl
case e of
Var n = if (n == v) then True else False

Lambda - = = | Type signature of isFree. In Haskell, all functions
are curried, i.e., they take just one argument.

isFree takes a variable name, and returns a function
that takes an expression and returns a boolean.

Of course, we can interpret isFree as a function
that takes a variable name name and an expression
E, and returns true if variable name is free in E.

Program Analysis CSCI 4450/6450, A Milanova 36

i Haskell Resources

s http://www.seas.upenn.edu/~cis194/spring13/

= https://www.haskell.org/

Program Analysis CSCI 4450/6450, A Milanova 37

http://www.seas.upenn.edu/~cis194/spring13/

