Simply Typed Lambda Calculus,

!'_ Progress and Preservation

i Announcements

= HWS on Submitty
= Questions?

= Grading HW4

= Check your Rainbow grades

Program Analysis CSCI 4450/6450, A Milanova

@
=

i Outline

= Applied lambda calculus
= Introduction to types and type systems

= Simply typed lambda calculus (System F,)
= Syntax

= Dynamic semantics

= Static semantics

= [ype safety

Program Analysis CSCI 4450/6450, A Milanova

i Reading

= "Types and Programming Languages” by
Benjamin Pierce, Chapters 8 and 9

= Lecture notes based on Pierce and notes by
Dan Grossman, UW

Program Analysis CSCI 4450/6450, A Milanova

Applied Lambda Calculus (from
Sethi)

s E:i=c|x|(AX.E;)]| (E{E5)
Augments the pure lambda calculus with constants.

An applied lambda calculus defines its set of
constants and reduction rules. For example:

Constants: Reduction rules:
if, true, false Ttrue MN 25 M

if false MN 25 N
(all these are A terms, .
iIszero 0 -5 true

e.g., true=Ax.Ay. x) iszero (succk 0) 25 false, k>0

0, iszero, pred, succ iszero (predk 0) 25 false, k>0
succ (pred M) 25 M

Program Analysis CSCI 4450/6450, A Milanova pred (succ M) 25 M

From an Applied Lambda Calculus to
i a Functional Language

Construct Applied A-Calculus A Language (ML)
Variable X X
Constant C C
Application MN MN \Xx. M
Abstraction AX.M funx =>M
Integer succk0, k>0 k

predk 0, k>0 -k
Conditional ifPMN if P then M else N

Let (Ax.M) N letval x =N in M end

Program Analysis CSCI 4450/6450, A Milanova 6

i The Fixed-Point Operator

= One more constant, and one more rule:
fix fix M 25 M (fix M)

M(M(M...))

s Needed to define recursive functions:
y ifx=0

plus xy =
plus (pred x) (succ y) otherwise

x-1 y+1

= Therefore:
plus = AX.Ay. if (iszero x) y (plus (pred x) (succ y))

Program Analysis CSCI 4450/6450, A Milanova

i The Fixed-Point Operator

= But how do we define plus?

Define plus = fix M, where
M = Af. AX.Ay. if (iszero x) y (f (pred x) (succ y))
Then show that
fix M =54

AX.Ay. if (iszero x) y ((fix M) (pred x) (succ y))
fic) = (fir) =
Ckf, Ax. &‘7:) (7@# M) = eee

Program Analysis CSCI 4450/6450, A Milanova

i The Fixed-Point Operator

Define times =
fix AF.AXAy. if (iszero x) 0 (plus y (f (pred x) y))

Exercise: define factorial = ?

Program Analysis CSCI 4450/6450, A Milanova

i The Y Combinator

= fix Is, of course, a lambda expression!
= One possiblility, the famous Y-combinator:

Y = Af. (AX. f (x X)) (AX. f (X X))

(Ym~—>?[4(‘/ﬂ4])

M. (kx.qf(xx)) (Xy.f(xx)> g —
<o M (£ %)) (Xxo u (xx)) 72 7

= M (O i (<)) (he M (x)Y = M (Pu)
Show that Y M indeed reducesinito M (Y M)

ngzg—»/a&o:i‘f—@/a(mOS‘saE\/

Program Analysis CSCI 4430/6450, A Milanova 10

i Types!

= Constants add power

= But they raise problems because they permit
“bad” terms such as

« if (AX.X) yz (arbitrary function values are
not permitted as predicates,

only true/false values)
= (0 x) (0O does not apply as a function)
= succ true (undefined in our language)
= plus true 0 etc.

Program Analysis CSCI 4450/6450, A Milanova 11

i Types!

= Why types?
= Safety. Catch semantic errors early WW*Q
= Data abstraction. Simple types and ADTs

= Documentation (statically-typed languages only)
= Type signature is a form of specification!

= Statically typed vs. dynamically typed
languages

= [ype annotations vs. type inference
= Type safe vs. type unsafe

Program Analysis CSCI 4450/6450, A Milanova 12

i Types!

= Important subarea of programming
languages and program analysis

= Related to abstract interpretation, although...

= Al is framework of choice for reasoning about
imperative languages

= Type systems is framework of choice for
reasoning about functional languages

Program Analysis CSCI 4450/6450, A Milanova 13

i Type System

B Syntax PL%
= Dynamic semantics (aka concrete
semantics!). In type theory, it is

= A sequence of reductions E—E, = L,— - &

= Static semantics (aka abstract semantics!). In
type theory, it is defined in terms of
= Type environment
= Typing rules, also called type judgments
= This is typically referred to as the type system

Program Analysis CSCI 4450/6450, A Milanova 14

Example, The Static Semantics.
More On This Later!

(\ looks up the type of x in environment I’
xit &1 [=[x: i, Y M->pgfariable)

NE-x:1
[= [K-"E,,()/; ’a,k:‘t}j
rFEi:o1 TFE): o (Application)
MNe=(E1E):7

binding: augments environment I’

[" with binding of x to type o

'X:c E;: 7T
N (A\x:6.Ey):06>7

(Abstraction)
[T~ %x:ihé,ky;éoo/.x

Program Analysis CSCI 4450/6450, A Milanova

i Type System

= A type system either accepts a term (i.e.,
term is well-typed), or rejects it

= [ype soundness, also called type safety

= Well-typed terms never “go wrong”
= More concretely: well-typed terms never reach a
stuck state (a “bad” term) during evaluation
« We must give a definition of stuck state
=« Each programming language defines its own set of

stuck states True + 5

Program Analysis CSCI 4450/6450, A Milanova 16

i Stuck States

= Informally, a term is “stuck” if it cannot be further
reduced, and it is not a value
B Eg, 0x TMQ +5

= In real programming languages stuck states
correspond to forbidden errors which is
execution of operation on illegal arguments

= We will define stuck states formally for the simply
typed lambda calculus, in just awhile

Program Analysis CSCI 4450/6450, A Milanova 17

i Stuck States Examples
. E.g.@where c is an int constant, is a
stuck state; I.e., a meaningless state

= E.g.,if c E; E, where c is an int constant, is
a stuck state
= Clearly not a value and clearly no rule applies!
= Because the evaluation rules for if-then-else are
if true E, E, 25 E;
if false E{ E;,2>5 E,

Program Analysis CSCI 4450/6450, A Milanova 18

i Type Soundness

= Remember, a type system either accepts a
term M or rejects M

= A sound type system never accepts a term
that can get stuck E—E,—E, .-

= A complete type system never rejects a term
that cannot get stuck

= Typically, whether a term gets stuck is
undecidable

= Type systems choose type soundness
Program Analysis CSCI 4450/6450, A Milanova 19

ot
Type Soundness — ﬁzsﬂ

M fees

Program Analysis CSCI 4450/6450, A Milanova 20

i Safety = Progress + Preservation

= Progress: A well-typed term is not stuck (i.e., either
it is a value, or there is an evaluation step that

applies)
= Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is well-typed
= Soundness follows:

= Each state reached by program is well-typed (by
Preservation)

= A well-typed state is not stuck (by Progress)
= Thus, each state reached by the program is not stuck

Program Analysis CSCI 4450/6450, A Milanova 21

i Putting It All Together, Formally

= Simply typed lambda calculus (System F,)

= Syntax of the simply typed lambda calculus

= The type system: type expressions,
environment, and type judgments

= The dynamic semantics
= Stuck states

= Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 22

