Simply Typed Lambda Calculus, cont. Simple Type Inference

Announcements

■ HW5?

```
Var Name: X
Lambda Name Expr: \lambda x. E

App Expr Expr: E_1 E_2
```

Will post HW6 next time

I am still grading HW4

Type Unsafe C and C++

```
struct str ?
  float f: short i;
Dut * i = la;
S = (Stuct 1 k x ) i;
FORBIDDEN
```

```
Cucions!
union hai }
 float f; 114bytes
short i; 112bytes
u.f=1.222;
```

FORBIDDEN ERROR.

Outline

- The simply typed lambda calculus
 - Syntax PL Syntax
 - Static semantics Typing rules
 - Dynamic semantics $\mathcal{E}_{\iota} \rightarrow \mathcal{E}_{\iota} \rightarrow \mathcal{E}_{\iota} \rightarrow \mathcal{E}_{\iota}$
 - Stuck states
 - Type safety = progress + preservation

/Sound hess if
$$E:\mathcal{C}$$
 then if $E:\mathcal{C}$ and $E\to E'$ either E is value (done) then $E':\mathcal{C}$

Introduction to simple type inference

Putting It All Together, Formally

- Simply typed lambda calculus (System F₁)
 - Syntax
 - The type system: type expressions, environment, and type judgments
 - The dynamic semantics
 - Stuck states
 - Progress and preservation theorem

Type Expressions

- Syntax of simply typed lambda calculus:
 - E ::= $x | (\lambda x : \tau . E_1) | (E_1 E_2) | c$
- Introducing type expressions

 - τ ::= b | τ → τ
 A type is a basic type b (we will only consider int, for simplicity), or a function type
- Examples int, int-sint, int-sint, (int-sint) -> net int
 - int \rightarrow (int \rightarrow int) // \rightarrow is right-associative, thus can write just $int \rightarrow int \rightarrow int$

Type Environment and Type **Judgments**

- A term in the simply typed lambda calculus is
 - Type correct i.e., well-typed, or 「「「x: ĩ,, y: î,, z:?, ブ 1 = Cx: m1, y: bool, 2: -- 7
 - Type incorrect
- The rules that judge type correctness are given in the form of type judgments in an environment
 - Environment $\Gamma \vdash E : \tau$ (\vdash is the turnstile)
 - Read: environment entails that has type type
 - Type judgment

Semantics

· looks up the type of ${f x}$ in environment ${f \Gamma}$

$$\mathbf{x}: \mathbf{\tau} \in \mathbf{\Gamma} \setminus \mathbf{\Gamma}$$

$$\Gamma \vdash E_1 : \sigma \rightarrow \tau \quad \Gamma \vdash E_2 : \sigma$$

$$\Gamma \models (\mathsf{E}_1 \; \mathsf{E}_2) : \tau$$

binding: augments environment Γ with binding of \mathbf{x} to type σ

$$\Gamma, x: \sigma \models E_1 : \tau$$

$$\Gamma \vdash (\lambda x : \sigma. \mathrel{\mathsf{E}}_1) : \sigma \rightarrow \tau$$

Examples

Deduce the type for

 λx : int. λy : bool. x in the nil environment

Examples

Deduce the type for

 λx : int. λy : bool. x in the nil environment

Abs
$$\Gamma = \Gamma$$
 int \Rightarrow bool \Rightarrow \Rightarrow

Extensions (of Language and Static Semantics)

```
\Gamma \models E_1 : int \qquad \Gamma \models E_2 : int \qquad (Comparison)
\Gamma \models E_1 = E_2 : bool
= is Comparison Nor Association
\Gamma \models b : bool \qquad \Gamma \models E_1 : \tau \qquad \Gamma \models E_2 : \tau
\Gamma \models if b \text{ then } E_1 \text{ else } E_2 : \tau \qquad (if \text{ then-else})
```

Examples

Is this a valid type?

Nil $\vdash \lambda x$: int. λy : bool. x+y: int \rightarrow bool \rightarrow int

TYPE INCORPECT

Is this a valid type?

-

Examples

Can we deduce the type of this term?

 $\lambda f. \lambda x. \text{ if } x=1 \text{ then } x \text{ else } (f(f(x-1))) : ?(The sint) \rightarrow The sint)$

 $\Gamma \models E_1 : int \qquad \Gamma \models E_2 : int$

 $\Gamma \models E_1 = E_2 : bool$

 $\Gamma \vdash E_1 : int \qquad \Gamma \vdash E_2 : int$

 $\Gamma \models E_1 + E_2 : int$

 $\Gamma \models b : bool \Gamma \models E_1 : \tau \Gamma \models E_2 : \tau$

 $\Gamma \models$ if b then E_1 else E_2 : τ

Abs int int

\(\lambda : \text{then-else} \)

\(\text{int} \)

\(\text{1} \

Examples

How about this

$$(\lambda x. x (\lambda y. y) (x 1)) (\lambda z. z) : ?$$

$$(\lambda x. x (\lambda y. y) (x 1)) (\lambda z. z) : ?$$

- x carnot have two "different" types
 - (x 1) demands int \rightarrow ?
 - (x (λ y. y)) demands ($\tau \rightarrow \tau$) \rightarrow ?
- Program does not reach a "stuck state" but is nevertheless rejected. A sound type system typically rejects some correct programs

Putting It All Together, Formally

- Simply typed lambda calculus (System F₁)
 - Syntax of the simply typed lambda calculus
 - The type system: type expressions, environment, and type judgments
 - The dynamic semantics
 - Stuck states
 - Progress and preservation theorem

Core Dynamic Semantics

- Syntax: $E := c | x | (\lambda x. E_1) | (E_1 E_2)$
 - c is integer constant
- Values: **V** ::= λ**x**. **E**₁ | **c**
- A "call by value" semantics:

$$\begin{array}{c|c} & E_1 \rightarrow E_2 & E_1 \rightarrow E_2 \\ \hline (\lambda x. \ E) \ V \rightarrow E[V/x] & E_1 \ E_3 \rightarrow E_2 \ E_3 & V \ E_1 \rightarrow V \ E_2 \end{array}$$

- Stuck states: terms that are syntactically valid but aren't values and cannot be reduced
 - E.g. (x, x ((λx. x) 1), c c, c (λx. 1), etc.

Extensions

Core Typing Rules (Again...)

$$\mathbf{x}$$
: $\mathbf{\tau} \in \Gamma$

$$\Gamma \mid -\mathbf{x} : \tau$$

$$\Gamma, x:\sigma \mid -E_1:\tau$$

$$\Gamma \mid -(\lambda x. E_1) : \sigma \rightarrow \tau$$

$$\Gamma \mid - \mathsf{E}_1 : \sigma \rightarrow \tau \quad \Gamma \mid - \mathsf{E}_2 : \sigma$$

$$\Gamma \mid - (E_1 E_2) : \tau$$

Type expressions: $\tau := int \mid \tau \rightarrow \tau$

$$\tau ::= int \mid \tau \rightarrow \tau$$

Environment:

$$\Gamma ::= Nil \mid \Gamma, x:\tau$$

Soundness Theorem, Formally

Definition: E can get stuck if there exist an E' such that E →* E' and E' is stuck

- Theorem (Soundness): If Nil ⊢ E : τ and E → E', then E' is a value, or E' → E"
 - Lemma (Preservation): If NiI ⊢ E : τ and
 E → E' then NiI ⊢ E' : τ
 - Lemma (Progress): If NiI ⊢ E : τ then E is a value or there exist E' such that E → E'

Progress, Proof Sketch

Induction on the structure of the term E (as usual). Assuming Progress holds for component terms, prove that it holds for composite term E

Progress, Proof Sketch

- 4. App: Nil |- $E_1 E_2 : \tau$. We have Nil |- $E_1 : \sigma \rightarrow \tau$ and Nil |- $E_2 : \sigma$ or otherwise E wouldn't have been well-typed
- If E_1 is not a value, then $E_1 \rightarrow E_3$. (Progress holds for E_1 by inductive hypothesis.) Thus, $E_1 E_2 \rightarrow E_3 E_2$
- If E₁ is a value but E₂ is not a value, then E₂ → E₃.
 (Again, Progress holds for E₂ by the inductive hypothesis.) Thus, V E₂ → V E₃
- Finally, if E_1 and E_2 are both values, then E_1 must be λx . E_3 (this is actually by a lemma, the Canonical Forms lemma). Thus, evaluation rule $(\lambda x. E_3) \lor \to E_3[\lor/x]$ applies. Done!

4

Preservation, Proof Sketch

- Similarly, by induction on the structure of term E.
 Assuming Preservation holds for component terms, prove that it holds for term E
- 1. Var: **x** --- ...
- 2. Constant: **Nil |- c : int ---** ...
- 3. Abs: Nil |- (λx . E₁) : τ --- ...
- App: Nil |- ($E_1 E_2$): τ --- ... Trickier because need to properly account for substitution!

Soundness

Soundness, worth restating

- For every state (i.e., term E) the program reaches, E is well-typed (by Preservation)
- Since E is well-typed, then it is either a value, or it can be further reduced (by Progress)
- Therefore, no state the program ever reaches is a "stuck" state

Extensions

- Dynamic semantics and static semantics for
 - Arithmetic,
 - Booleans,
 - Records,
 - Unions,
 - Recursive types,
 - Imperative features,
 - etc., etc.
- Safety = Progress + Preservation

Outline

- The simply typed lambda calculus
 - Syntax
 - Static semantics
 - Dynamic semantics
 - Stuck states
 - Type safety = progress + preservation

Next time: Simple type inference