Simply Typed Lambda Calculus,

!'_ cont. Simple Type Inference

Announcements

Ex/w
Var Mawe @ X
s HW5? Lawbda f)au e EX/N : >\><. £

/4'/0/) Ek/’r £X/7f : E L,
= Will post HW6 next time

= | am still grading HW4

Program Analysis CSCI 4450/6450, A Milanova

i Type Unsafe C and C++

c b(.u(O'MS/ CQL"F
qmbl she 3 u:éma ha i § fqam()
Lploat JE loat f, / &%«ﬁes ()
thart {; 5 {Zm 0; | 2bgtes R ﬁ o)
4 %3

. f«i-”z;' Asa = new A():
"ML*L« a - .

Lg-—(mo(:kae)u M = (@*5:(@_’_")4'
rg—?ﬂ = .. T [ﬁ—a%o(loo)/:}

foRB DDEN FORBIDDGN ERROR.

<
Program Analysis CSCI 4450/6450, A Milanova 3

i Outline

= The simply typed lambda calculus
= Syntax 7L [pax
= Static semantics /ypiy neles
= Dynamic semantics [, -, — [, —
= Stuck states

Rar———ea

= [ype safety = progress + preservation

P~

L £ He f €3¢ and LoC'
fSchess 27'{&"5 1= vale (due) thoy £'3%
or £ =

= Introduction to simple type inference

Program Analysis CSCI 4450/6450, A Milanova 4

i Putting It All Together, Formally

= Simply typed lambda calculus (System F,)
= Syntax

= The type system: type expressions, environment,
and type judgments

= The dynamic semantics
= Stuck states

= Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 5

i Type Expressions

= Syntax of simply typed lambda calculus:

« Ex=x| (M 1]E) [(E Ep) | c

= Introducing type expressions

. T ::Zflcp | TM—>J
= A typeg is 2 basic type b (we will only consider

int, for simplicity), or a function type
s Examples it infoiunb | b Mk oL, Gl o)

int

int > (int - int) // — is right-associative, thus can
write just Iint —» int — int 6

Type Environment and Type
i Judgments

= A term in the simply typed lambda calculus is
= Type correcti.e., well-typed, or - = g, 4 510,
= Type incorrect F= O,y bl 2.]

= The rules that judge type correctness are given
in the form of type judgments in an environment

= Environment FFE:7 (fisthe turnstile)
= Read: environment I' entails that E has type 7

, Premises

= Type judgment FHEiieot TEE o
FH(E1By) 7 = Conclusion

Semantics e s

(\ looks up the type of x in environment I’
rm cr vo- (Variable)
Fx:t F7 - (Axc:nd.x) & debosiut L7 =3:04
7 l»((;:mt,x) 3) 2 T=nud
N-Ei:6>1t TFE;: o (Application)
N-(E1Ex): =

binding: augments environment I’

[" with binding of x to type o

xic E;:1 X1k € [x: 0t
: bstraction
Mk (Ax:6.E\):6>7 EK.;M/]AX 3%)1‘/. ion)

NzL/—(>ng;‘a,l-.x): RS
rJ Pf = it

Program Analysis CSCI 4450/6450, A Milanova

i Examples

= Deduce the type for
AX: Int.Ay: bool. x in the nil environment

XMk € [yibool, 0t] X = it
- =
[y:bool, w:ied | = K 2 = it

™\

[-X.'ﬁu‘-jf— /\b’:bw/,)(: T = 6006«9 ‘E‘—/-: éooléihﬁ
E]f" Xllfdﬁxyféoo/ox, St - JL

T Fof -—’(bao/—: /"l«#)

Program Analysis CSCI 4450/6450, A Milanova = flfo boo[> At 9

i Examples

= Deduce the type for

AX: Int.Ay: bool. x in the nil environment
Me [=(7 Il#—?ifgo(—w'hlz

h :‘:L \MDS F;L_XSMYM
/TN /—‘:L_b‘-'"“’,x’/”*j
E E&’MI >‘33fml)—i@

[=0xsma] ~ - (x: 4]
E. €,

33
Y,

Program Analysis CS%L%5%§450& Milanova

10

Extensions (of Language and
i Static Semantics)

[|E, : int [|-E, : int

Nc:int |- E4+E; : int (brithue bc)
N'E,;:int FE;:int (Comparison)
I = E,=E; : bool

= it Cow pacison Mor ooy ieT

" =b: bool F|-E1;LF|-E2:T

INf-ifbthen E;else E, : 1 (Ef(ﬂ.,u_.ajm)

Program Analysis CSCI 4450/6450, A Milanova 11

Abs =7
~~ [=x:M]

AX/'.'r Abs
| Examples o R
7 9(

= Is this a valid type?
Nil = Ax: int.Ay: bool. x+y : int - bool — int
TYPG (NCORPECT

= |s this a valid type? \/

fNu—l-j» bool.Ay: int. 'if x then y else y+1:
(ol 1d-=ni| pbs T bool — int — int

hx! b,o/ \/H, I=[x: b«ol]l/u#-)/uq
fu L»}—ﬂsu-elsr“ Nk, x: booI] Zm{-? (é’f‘jAh{)

Program Analysis CSCI 4450/6@ Examples from MIT 2015 Program Analysis OCW) 12

i Examples

= Can we deduce the type of this_term?
M. Ax. if x=1 then x else (f (F (x-1))) : ?(uw>n) =™

[RE,:int [-E, : int P
[|- E,=E, : bool M:of /’%‘\ ik
>\¥'-'6(of- —£/1(
E,:int -E,:int _/),é@ Lit
. auE
[k E+E, : int o P /AIW;
FFb:bool MpE;it FFEjit f /’?f;f?
[Fif b then E, else E tp=ntot p” li
- T
1 2 éf:t-;t(x/ N

Program Analysis CSCI 4450/6450, A Milanova (example from MIT 2015 Program Analysis OCV\I& }u 13

i Examples |

=« How about this /

(Ax. x (Ay. y) (x 1)) (Az. 2) : 7 —
—» (%)04y (%) 1) —

o x QNG o A diffdidrE types

= (x 1) demands int > ?
= (X (Ay.y))demands(tT—>1t)—> ?
= Program does not reach a “stuck state” but is

nevertheless rejected. A sound type system
typically rejects some correct programs

14

i Putting It All Together, Formally

= Simply typed lambda calculus (System F,)
= Syntax of the simply typed lambda calculus

= The type system: type expressions, environment,
and type judgments

= The dynamic semantics
» Stuck states

= Progress and preservation theorem

Program Analysis CSCI 4450/6450, A Milanova 15

i Core Dynamic Semantics

s Syntax: E::=c|x|(Ax.E;) | (E{ E,)
= C IS integer constant
= Values: V::=Ax. E;| c

= A “call by value” semantics:

(Ax.x) 1—%1

E,>E, E,>E,
(\x.E)V->E[V/xX] E,E,>E,E, VE, > VE,

= Stuck states: terms that are syntactically valid
but aren’t values and cannot be reduced

. E.g.@x ((Ax. x) 1), ¢ ¢, ¢ (Ax. 1), etc. 3//_3

Program Analysis CSCI 4450/6450, A Milanova 16

Program Analysis CSCI 4450/6450, A Milanova

17

i Core Typing Rules (Again...)

M|-c:int

xt&r

MN-x:1

'x:e |-E;: 7

Type expressions:
T:=int| o7

Environment:
" ;= Nil | Xt

MN-(\x.Ey):6>1

rl'E1:G—)T rl'Ez:G

N-(E,Ey:~

Program Analysis CSCI 4450/6450, A Milanova

18

i Soundness Theorem, Formally

= Definition: E can get stuck if there exist an E’
such that E =2* E’ and E’ is stuck

= Theorem (Soundness): If Nil |- E : T and
E->"E’, then E’is avalue,orE’ 2> E”

« Lemma (Preservation): If Nil - E : T and
E->FE thenNil|FE’ : 7

= Lemma (Progress): If Nil |- E : T then E is a value
or there exist E’ such that E - FE’

Program Analysis CSCI 4450/6450, A Milanova 19

i Progress, Proof Sketch

= Induction on the structure of the term E (as usual).
Assuming Progress holds for component terms,
prove that it holds for composite term E

Program Analysis CSCI 4450/6450, A Milanova

20

i Progress, Proof Sketch

4. App: Nil |-E4 E; : 1. We have Nil |- E4: 6—T and
Nil |- E, : 6 or otherwise E wouldn’t have been well-
typed

1.

If E, is not a value, then E; = E;. (Progress holds for
E, by inductive hypothesis.) Thus, E; E; 2 E3 E,
If E4 is a value but E, is not a value, then E, 2 Es;.

(Again, Progress holds for E, by the inductive
hypothesis.) Thus, VE, 2 V E;

Finally, if E; and E, are both values, then E; must
be AXx. E; (this is actually by a lemma, the
Canonical Forms lemma). Thus, evaluation rule
(Ax. E;) V = E;[V/x] applies. Done! =

i Preservation, Proof Sketch

= Similarly, by induction on the structure of term E.
Assuming Preservation holds for component terms,
prove that it holds for term E

1. Var. x --- ...
2. Constant: Nil |-c : int —- ...
3. Abs: Nil |- (Ax. E4) : T - ...

a. App: Nil |- (E; E,) : T - ... Trickier because
need to properly account for substitution!

Program Analysis CSCI 4450/6450, A Milanova 22

i Soundness

= Soundness, worth restating

= For every state (i.e., term E) the program
reaches, E is well-typed (by Preservation)

= Since E is well-typed, then it is either a value,
or it can be further reduced (by Progress)

= Therefore, no state the program ever reaches
IS a “stuck” state

Program Analysis CSCI 4450/6450, A Milanova 23

i Extensions

= Dynamic semantics and static semantics for
= Arithmetic,
= Booleans,
= Records,
= Unions,
= Recursive types,
= Imperative features,
= etc., efc.

= Safety = Progress + Preservation

Program Analysis CSCI 4450/6450, A Milanova

24

i Outline

= The simply typed lambda calculus
= Syntax
= Static semantics

= Dynamic semantics
« Stuck states

= [ype safety = progress + preservation

= Next time: Simple type inference

CSCI 4450/6450, A Milanova

25

