!'_ Simple Type Inference

i Announcements

m Quiz 5

= No class on April 8%

= | have graded HW4

» HWG6 Is a team homework

= | will work on paper list, guidelines and
presentation schedule over weekend

i So far

= Introduction to types and type systems

= Simply typed lambda calculus (System F,)
= Language syntax, type expression syntax
« Static semantics
= Dynamic semantics

= Type soundness: Safety = Progress +
Preservation
= Proved for the simply typed lambda calculus

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Simple type inference
= Equality constraints
= Unification
= Substitution
« Strategy 1: Constraint-based typing
« Strategy 2: On-the-fly typing: Algorithm W,
almost
= Parametric polymorphism (next time...)

= Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova

i Reading

= "Types and Programming Languages”, by
Benjamin Pierce, Chapter 22, 23

= Lecture notes based partially on MIT 2015
Program Analysis OCW

Program Analysis CSCI 4450/6450, A Milanova

i Core Typing Rules

Type expressions:
T:=int| o7

B I, c:int [x:n“m‘/g)""“““’“‘f]
.z €

X:T r (Var 7

Nex:7

J +x:a

I'xic ,E;:7

N-(Axi6.E{):0>7

Environment:
" ;= Nil | Xt

(#4<)

N-E;:0->1t MNlEs: o /47/7)

N-(E1Ep):7

Program Analysis CSCI 4450/6450, A Milanova

i Extensions to Core Typing Rules

r+E,:int Nk E,:int
Nc:int I} E+E; : int

ME,:int |- E,:int
I+ E,=E, : bool

(Comparison)

kb:bool T [E, :-L N=E,: 7
N-ifbthen E else E;: 7

Program Analysis CSCI 4450/6450, A Milanova

i Type Inference, Strategy 1

= We can figure out all types even without
explicit types for variables
« (M. f5) (Ax. x+1) : ?
= Type inference

= Type inference, Strategy 1
= Use typing rules to define type constraints
= Solve type constraints
= Aka constraint-based typing (e.g., Pierce)

Program Analysis CSCI 4450/6450, A Milanova

Wil l——(>\f 7(’9 [>\>< X+—.L) 24
J'éf.p rf] ﬁz fg?ﬁ(

UI ‘é,f""tgl;a /4,55 f[] \4 A’b /—'[j [‘6‘5 tul-—-wul-z

fW?/ N
>‘a(£7f Ap 08 \gibe 5t (an'j

LLitf, x: 4] ;/@"‘*"’ﬂl /N

5
Iy t/-

/'—763 faf—fé_f 575"/&7‘—-9/&# F1= L
é;,"f_z[,_ré fs z‘i

LR WIES
—/’L/——)Mj 'ng =Wk

Program Analysis CSCI 4450/6450, A Milanova

i We Can Infer All Types!

r|- E1 int I|-E,:int
I |- E,+E, : int
] (}\uf- f 5) (7\..)(. X+1) . ? N-g,:o-1 N-E;:o
1. App =] M- (E Ep):t
| t,=1,Ht, M =1]
[=
2. Abs l 4. Abs t=t—ots
t,=t—ot; ,
— [f:tf] r — [X'tx]
Af: t; 3. App AX: t, 5.+ t;=int
t:= intot; o te=int
="[f:t] I =x:t,]
Var f Const 5 Var x Const 1

Program Analysis CSCI 4450/6450, A Milanova (Example term from MIT 2015 Program Analysis OCW) 10

i Type Constraints

= \We constructed a system of type constraints
= Let's solve the system of constraints

t,= 4ot t=intot;=t,=int>int We inferred all t's!

— t1 int
= ot L;=int L,=t=int t, = (int—int)—int
t,=tot: t, = int—int t, = int

_ t, = int—int
t= Int>t, t. = intoint

t:=int, t, = int
s (Afiint—int. f §) (Ax:int. x+1) : int (t,)

Program Analysis CSCI 4450/6450, A Milanova 11

[ll)laz = XOP)\x ,ﬁ(,ﬂx
Another Example

= What is the tyﬁ% of tW|ce’?

(%~ >) (%)

t‘fL t‘]f ‘ '6x">é>< ’:’{2(
= twice fx = f(f X) L >t = £

@* -t 4&(~;>i‘

12

i Another Example

= twice f x =f (f x)
= What is the type of twice?
« tiste> t, > t, (t,is the type of f (f x))
= Based on the syntax tree of f (f x) we have:
t.=t,Ht,
t.=t ot
Thus, t, =t =t,, t;=t, >t _and
type of twice is (t,—t,)>t, >t
Note: t, is a free type variable! Polymorphism! i

Type Constraints from Typing
i Rules, as Attribute Grammar

= Syntax: E::=x|c|Ax.E|E, E,|E; + E,

Grammar rule: Attribute rule:

E. =X ={tg=Tg(x)}

E:=c ={te=Int}

E ;= AX.E, F = [g;x:t,
Ce= CE1U{tE t,— teq }
Ce=Cg1UCg U {tg = tgrte}

Type Constraints from Typing

i Rules, as Attribute Grammar

I" is inherited. Propagates

I top-down the tree.
E*®

E .= }\,X.E»I >°</ \ge:“(rE1 - rE;X:tx
1

Ce, Ce=CgU {te=t,> g}

te is “fresh” type variabie for
term represented %y E's subtree.

E::= E1 Ezé \Qfez r =rE rE2=rE
be) Co=Cpq U CppU {teq = teyote).
CtL \

C collects constraints. It is synthesized.
Propagates bottom-up the tree. 15

Program Analysis CSCI 4450/6450, A Milanova

16

i Solving Constraints

= Two key concepts

= Equality
= What does it mean for two types to be equal?
= Structural equality (aka structural equivalence)

s Unification

=« Can two types be made equal by choosing
appropriate substitutions for their type variables?

= Robinson’s unification algorithm (which you
already know from Prolog!)

Program Analysis CSCI 4450/6450, A Milanova (based on slide from MIT 2015 Program Analysis OCW) 17

i Equality and Unification

= What does it mean for two types 1, and 1, to
be equal?

= Structural equality
= Suppose 1, =t;ot,
T = 13—ty
= Structural equality entails
T,= T, Means t ot =t ifft,=t;and t,=1t,

Program Analysis CSCI 4450/6450, A Milanova (based on MIT 2015 Program Analysis OCW) 18

i Equality and Unification

= Can two types be made equal by choosing
appropriate substitutions for their type
variables?

= Robinson’s unification algorithm
= Suppose 1, =/int—t,
Tp = t,>bool
= Can we unify T, and 1,7 Yes, if bool/t; and int/t,
= Suppose 1, = int| >t
T, = bool—bool

= Can we unify 1, and 1,7 No.
Program Analysis CSCI 4450/6450, A Milanova (based on MIT 2015 Program Analysis OCW)

19

i Example

t, — bool

(int > t,) > t;

-——— L
- - - -

- ~~ -

- -

’,”” ’,”” 9 \\\
t bool , ts

int t,
Yes, if int—>t,/t; and bool/t,

Program Analysis CSCI 4450/6450, A Milanova

Simple Type Substitution
(essential to define unification)

= Language of types
T..=b Il primitive type, e.g., int, bool
| t Il type variable
| T = t [/l function type
= A substitution is a map
= S : Type Variable - Type
« S =[1/t,, ... 1,/t,] /] substitute type T, for type var t;
= A substitution instance v’ =S 7t
s S=[t,—obool/t;] T=t,>t, then
= S(1) = S(t—»t4) = (t,—>bool) —» (t,—~>bool)

Program Analysis CSCI 4450/6450, A Milanova (based on MIT 2015 Program Analysis OCW) 21

Simple Type Substitution
(essential to define unification)

= Substitutions can be composed
= S;=[t,—~bool /]
= S,=[int/ty]
s T =t
= 5;54(1) =S,2(Sq(toty)) =

Program Analysis CSCI 4450/6450, A Milanova (based on MIT 2015 Program Analysis OCW) 22

i Examples

= Substitutions can be composed
= S1 = [tx / t1]
= Sy =4 /1]

m T=— tz—)t1
| SZ S1 (T) =7

Program Analysis CSCI 4450/6450, A Milanova

23

i Examples

= Substitutions can be composed
= S1 = [t1 /t2]
n Sy =[ts /4]
C S3 = [t4—)|nt / t3]

m T=— t1—)t2
| 838231 (T) =7

Program Analysis CSCI 4450/6450, A Milanova

24

i Some Terminology...

= A substitution S, is less specific (i.e., more
general) than substitution S, If S, =S S, for
some substitution S
« E.g., S;=[t,—t,/t,]is more general than
S,=[int—int/t,] because S,=S §, for
S=[int/t,]
= A principal unifier of a constraint set C is a
substitution S, that satisfies C, and S, is
more general than any S, that satisfies C

Program Analysis CSCI 4450/6450, A Milanova 25

i Examples

= Find principal unifiers (when they exist) for
= { int—int = t,>t,}
= {int = int>t,}
= {t; = int>t,}

0 { t1 — int, tz — t1—)t1}
s { tot, = tot;, t3 = tot5)

Program Analysis CSCI 4450/6450, A Milanova

26

Unification
i (essential for type inference!)

= Unify: tries to unify T, and 1, and returns a principal
unifier for T, = 1, if unification is successful

def Unify(1r1,1:2) - This is the occurs check!
case (14,72)
T1,t2) = [T4/t,] provided t, does not occur in T4
t,,75) = [t,/t4] provided t, does not occur in T,
b,,b,) = if (eq? by b,) then [] else fail
T11>Tq2, T21>T22) = let 3¢ = Unify(144,724)
S; = Unify(S4(112),51(722))
In S, S4// compose substitutions
otherwise = fail 27

i Examples

=« Unify (int—int, t,—>t,) yields ?

« Unify (int, int—>t,) yields ?

=« Unify (t;, int>t,) yields ?

Program Analysis CSCI 4450/6450, A Milanova

28

i Unify Set of Constraints C

= UnifySet: tries to unify C and returns a principal
unifier for C if unification is successful

def UnifySet (C) =

if C is Empty Set then []

else let
C={1=1,}UC’
S = Unify (74,72) // Unify returns a substitution S

In

UnifySet (S(C’)) S
// Compose the substitutions

Program Analysis CSCI 4450/6450, A Milanova

29

i Examples

0 { t1 — int, tz — t1—)t1}

s { tot, = tot;, t; = 1ot}

s {t=tHt, =t ot)

s {tL=tot, L=tot;, t,=t ot t.= intot;, t;=

int, t, = int } »

i Type Inference, Strategy 1

= Aka constraint-based typing (e.g., Pierce)

= [raverse parse tree to derive a set of type
constraints C
= These are equality constraints
= (Pseudo code in earlier slides)

= Solve type constraints offline

= Use unification algorithm

= (Pseudo code in earlier slide)
Program Analysis CSCI 4450/6450, A Milanova

31

i Outline

= Simple type inference
= Equality constraints
= Unification
= Substitution
« Strategy 1: Constraint-based typing
» Strategy 2: On-the-fly typing: Algorithm W,
almost
= Parametric polymorphism (next time...)

= Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova 32

i Type Inference, Strategy 2

= Strategy 1 collects all constraints, then solves
them offline

= Strategy 2 solves constraints on the fly
= Builds the substitution map incrementally

Program Analysis CSCI 4450/6450, A Milanova 33

Add a New Attribute, Substitution

Map S
Te is the inferred type of E.
Sk is the substitution map

resulting from inferring Tk.

Grammar rule: Attribute rule: ;. are fresh type variables.

E:.=x Te=Tg(x) Sg=1]
E:=c Te=int Sg=]]
E ;= AX.E;4 e, =g x:t,

Te = Sgq(ty)—>Te1 Sg = Sgy

E:=EE, Me1=Te Tg2= Sgq(le)
S = Unify(Sgy(Tg), Tea— 1)
Te = S(tg) Sg = S Sg; Sgy

Program Analysis CSCI 4450/6450, A Milanova 34

i Example: (Af. f 5) (AX. X)

Steps at 1, finally:
1. unify((int>t;)>t;, (t,—t)—>ty)

returns S = [int/t,, int/t3, int/t,]
s (M. £3) (Ax.x) 12 _ =[] [281=58S;= SS,= S [intotst;]
1. App T1 = int 3. T1 = S(t1) = int
S, = [int/t,, int/t; , int/ty, int—>int/t;]

=1 'y =S,(M) =[]
2. Abs T2 = (int>t;3)>t; 4. Abs T4=t—ot,
SZ —_ |nt—)t3ltf] | S4 - []
r, = [f:t,] =[xt
Af: t; 3. App Ax: t, Var x
T3 - t3 T = tx
= [f:tf] S3 = [|nt—)t3/tfl- S — []

Varf 1 = t. Const5T=int
S =] S =] from Unify(t,int—t;)

35

i Example: AfAx. (f (f x))

Program Analysis CSCI 4450/6450, A Milanova

36

i The Let Construct

= In dynamic semantics, let x=E; In E, Is
equivalent to (Ax.E,) E,
= Typing rule
N-E,;:o Nxic|-E;: 7
MN-letx=E,IinE;:7
= |n static semantics let x = E; in E, is not equivalent

to (AXx.E,) E;

=« In let, the type of “argument” E, is inferred/checked
before the type of function body E,

= let construct enables Hindley Milner style polymorphism!
Program Analysis CSCI 4450/6450, A Milanova 37

i The Let Construct

= Typing rule

N-E,;:o Nxic|-E;: 7
rl'letx=E1 inEz:T

= Attribute grammar rule

E:=letx=E;InE, e, =T¢
[g2= Sgq(lg) + {X:Tg4}
Te = Tg, Sg = Sg2 Sgq

Program Analysis CSCI 4450/6450, A Milanova

38

i The Letrec Construct

= letrec x=E,InE,
= X can be referenced from within E;4

= Extends calculus with general recursion

= No need to type fix (we can’t!) but we can still type
recursive functions like plus, times, etc.

= Haskell's let is a letrec actually...
o E.g.,
letrec plus = Ax.Ay. if (x=0) then y else ((plus x-1) y+1)
written as
letrec plus x y = if (x=0) then y else plus (x-1) (y+1)

39

i The Letrec Construct

Extensions over let rule

s letrec x = E1 in E2 1. Tg,q is inferred in augmented

environment g + {x:t,}

2. Must unify SE1(tx) and TE1

3. Apply substitution S on top of Sg4
Note: Can merge let and letrec, in let
Unify and S have no impact

= Attribute grammar rule

E::=letrecx=E,IinE, e =T+ {x:t,}
S = Unify(Sg,(ty), Teq)
[e2=S Sgq(le) + {X:Tgq}
Te=Tgz Sg=Sg2 S Sg;

Program Analysis CSCI 4450/6450, A Milanova 40

i let/letrec Examples

letrec plus x y = if (x=0) then y else plus (x-1) (y+1)
= Typing plus using Strategy 1...

tous = ot oty

t, = int // because of x=0 and x-1

t, = int // because of y+1

Unify(t,,s, int—int—int) yields t, = int
= Haskell

plus :: int -> Int -> int

plus x y = if (x=0) then y else plus (x-1) (y+1)

Program Analysis CSCI 4450/6450, A Milanova 41

Algorithm W, Almost There!

def W(I', E) = case E of
c -> ([I, TypeOf(c))
) ¢ -> if (x NOT in Dom(I")) then fail
else let Tg = I'(x);
in (], Te)
AX.Eq -> let (Sgq,TEq) = W(IM+{x:t,},E4)
in (Sgq, Seq(ty)—>Te1)
Eq E; ->let (Sgq,Teq) = W(I,Ey)
(Se2, Te2) = W(SEg4(IN),E2)
S = Unify(Sg2(Tg1), Tea—t)
in (S Sga Sgq, S(t)) /1 S Sg; Sgq composes substitutions
let x = E; in E; -> let (Sg4,Teq1) = W(I,E4)
(Se2,Te2) = W(SEq(IMN)+{x:Te1},E2)
in (Sgz2 Sgq, Te2)

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

42

Algorithm W, Almost There!
(merges let and letrec)

def W(I', E) = case E of
c -> ([, TypeOf(c))
X -> if (x NOT in Dom(I')) then fail
else let Tg = I(x);
in ([]’ TE)
}\JX.E1 -> let (SE1,TE1) - W(r+{x:tx},E1)
in (Sg1, Sea(tx)>Ten)
EiE, ->let (Sgq,Tgq) = W(I,Ey)
(Se2,Te2) = W(Sgq(IN),E2)
S = Unify(Segx(Te1), Tez—t)
in (S Sga Sgq, S(t)) /' S Sg; Sgq composes substitutions
let x = E1 in Ez -> let (SE15TE1) - W(r+{x:tx},E1)
S = Unify(Sgq(t), Ted)
(Se2,Te2) = W(S Sgq(MN)+{x:Tg4},E>)

in (Sgz S Sgq, Te2)
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

i Outline

= Simple type inference
= Equality constraints
= Unification
= Substitution
« Strategy 1: Constraint-based typing
« Strategy 2: On-the-fly typing: Algorithm W,
almost
s Parametric polymorphism

= Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova

44

