
Program Analysis
(CSCI-4450/CSCI-6450)
Spring 2024

www.cs.rpi.edu/~milanova/csci4450/

Ana Milanova
Office: Lally 314

Email: milanova@cs.rpi.edu
Office hours: Wednesdays Noon-2pm, Mondays after class

or by appointment

http://www.cs.rpi.edu/~milanova/csci4430/
mailto:milanova@cs.rpi.edu

Introductions

n Ana Milanova

n You
n Tell us

n Your name
n Graduate or undergraduate student
n Concentration, interests, research area

CSCI 4450/6450, A Milanova 2

3

Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4450/

n Program analysis, introduction

n Course topics, tools and homework

n Introduction to Dataflow analysis
CSCI 4450/6450, A Milanova

http://www.cs.rpi.edu/~milanova/csci2600/

CSCI 4450/6450, A Milanova 4

Logistics

n Course webpage
http://www.cs.rpi.edu/~milanova/csci4450

n Schedule, Notes, Reading
n Schedule, lecture slides and assigned reading

n Submitty
n All homework submission and grades, forum
n Check forum regularly for announcements

http://www.cs.rpi.edu/~milanova/csci4450

5

Logistics

n Recommended reading
n Compilers: Principles, Techniques and Tools,

by Alfred Aho, Monica Lam, Ravi Sethi, and
Jeffrey Ullman (the Dragon Book)

n Types and Programming Languages, by
Benjamin C. Pierce

n MIT’s Open Courseware Program Analysis
n Principles of Program Analysis by Flemming

Nielson, Hanne Riis Nielson, and Chris Hankin
n Papers and lecture notes

CSCI 4450/6450, A Milanova 6

Logistics

n Syllabus
www.cs.rpi.edu/~milanova/csci4450/syllabus.htm
Topics, outcomes, policies and grading

n In-class quizzes (6-8): 20%
n Homework assignments: 35%
n Paper presentation and critique: 12%
n Take-home final: 25%
n Attendance and participation: 8%

http://www.cs.rpi.edu/~milanova/CSCI4430/syllabus.htm

Logistics

n Assignments and take-home exam are to be
completed individually unless otherwise
specified

n Quizzes are in-class, open-notes, and may
be completed individually or in small groups

n We will drop the lowest quiz

7CSCI 4450/6450, A Milanova

CSCI 4450/6450, A Milanova 8

Logistics

n Graduate students enrolled in CSCI-6450
n Grade breakdown:

n In-class quizzes (6-8): 15%
n Homework assignments: 38%
n Paper presentation: 12%
n Take-home final: 27%
n Attendance and participation: 8%

n Some assignments will have additional
problems

Late Homework

n Homework assignments must be submitted in
Submitty by 12pm on the due date

n You have 10 late days for the semester, with
a max of 5 late days per assignment

n Exceptions to policy may be granted in rare
cases

CSCI 4450/6450, A Milanova 9

New This Term!

n Communication Intensive (CI) Designation
(Pending)

n Paper presentation
n Two written assignments
n Participation

CSCI 4450/6450, A Milanova 10

Academic Integrity

n Trust

n Discussion is allowed, even encouraged

n Taking written notes out of discussion is not
allowed. Actual work should be your own

n Posting solutions on public forums (e.g.,
Discord, Github) is not allowed

CSCI 4450/6450, A Milanova 11

Program Analysis

n Tools and techniques that help us reason
about the run-time behavior of the program
n Dynamic analysis – during program execution

n Static instrumentation
n Dynamic (binary) instrumentation (DBI)

n Static analysis – before program execution
n E.g., Java compiler’s definite-assignment-check
n E.g., Type checking and type inference are forms of

static analysis
n E.g., Dafny-style verification
n And many, many more! 12

Program Analysis in Security

n E.g., is there uninitialized memory?
n char buf[64]; -> definition-free path -> use of buf

n or char * buf = malloc(64); -> definition-free path
-> use of buf

n E.g., is there an information leak?
void * fp = &exit // sensitive source

…

x->f = fp;
y = x;

fp1 = y->f;

printf(“libc exit function @ %p\n” fp1) // sink

CSCI 4450/6450, A Milanova 13

Program Analysis in Security

n E.g., is there an information leak?
gold += fight(&map[row*3+col]); // source
…
print_highscore(gold); // printf(param) leak, sink

n E.g., is there a TICTOU bug?
char * buf = malloc(bar->name_len);
...
modifies_bar(bar); // we can detect side-effects!
...
memcpy(buf, bar->name, bar->name_len);

n E.g., is there a buffer overflow? Many
analyses 14

Our focus will be Static Analysis

n Many techniques
n Decades of research and Turing Awards!

n Dataflow analysis and abstract interpretation
n Kildall ’73, Kam and Ullman ’77, Cousot & Cousot ’77

n Types and type-based analysis
n Following John Backus’ “Can Programming…” ‘78

n Axiomatic semantics (i.e., Hoare Logic)
n C.A.R. Hoare’s “An Axiomatic Basis for Computer

Programming”, ’69
15CSCI 4450/6450, A Milanova

Static Analysis

n What this course is mostly about
n How can we define the meaning of programs
n How can we model behavior of programs, and

prove theorems about programs

n How can we use tools and build tools that reason
about programs

n Many applications
CSCI 4450/6450, A Milanova 16

Applications

n Compiler optimization, traditional application
n We’ll start with dataflow analysis

n Finding bugs, verifying the absence of bugs
n Improving security and privacy

n Android, smart contracts, binary analysis
n Refactoring and testing
n Improving energy efficiency
n Education. Submitty uses static analysis! 17

Examples of Properties
Deducible by Static Analysis

n Can x ever be null at program point
i: x.m()

n Can y be different than 1 at program point
i: x = y*10?

n Can n at x[n] cause out-of-bounds access?
n Does an app leak private data (e.g., phone

number, phone identifier, location) to ad
networks?
n Answer: Yes!

CSCI 4450/6450, A Milanova 18

Examples of Properties
Deducible by Static Analysis

n What inputs avoid
divide-by-zero at x/y?

{x!=1 && x!=-2}
y = x + 4;
if (x > 0) {
y = x*x – 1;

}
else {
y = y + x;

}
{y!=0}
x = x/y; 19

n Formalism of Axiomatic
Semantics (Hoare logic)
n Different from dataflow

and types
n Allows us to specify

program behavior with
preconditions and
postconditions that form
logical assertions
n Support complex logics
n Enabiles reasoning about

correctness

Nature of Static Analysis

n To remain computable, static analysis must
approximate. It is undecidable to find exactly
what happens at runtime

n Typically, analysis errs on the safe (sound) side -
-- that is, it over-approximates

n Sometimes, analysis is unsafe (unsound) --- that
is, it under-approximates

20CSCI 4450/6450, A Milanova

Nature of Static Analysis, cont.

n A static analysis is said to be safe (also,
sound, correct) if it over-approximates in the
sense that it accounts for every possible
execution path
n E.g., suppose ground truth is x in {1,2}
n A value-flow analysis that reports x in

{1,2,21} is safe
n An analysis that reports x in {0,2} is unsafe

(unsound, incorrect)

CSCI 4450/6450, A Milanova 21

Analysis Safety

n Safety is crucial when analysis enables
compiler optimizations. Why?
n E.g., an unsafe analysis may report that y is 1 at
z = y*10 while there is an execution path that
sets y to 10
If the optimizing compiler changes z = y*10 to
z = 10, the program produces incorrect result
along the path when y is 10!

CSCI 4450/6450, A Milanova 22

Analysis Safety

n Safety is often relinquished when analysis is
used in static debugging tools. Why?

n E.g., suppose we have code that contains 10
“ground truth” null-pointer dereferences
n Safe analysis A reports 100 potential null-pointer

dereferences (all 10 “true” bugs and 90 “false-
positives”).

n Unsafe analysis B reports 10 potential null-
pointer dereferences (8 “true” and 2 false-
positives). Which one would you take?

CSCI 4450/6450, A Milanova 23

Analysis Precision

n Analysis precision refers to how “close”
results are to actual runtime
n E.g., in our running example, an analysis that

reports x in {1,2,3} is more precise than the
one that reports x in {1,2,3,21}

n Typically, we use the term precision with safe
analysis (safe analysis has 100% recall)

n Wide spectrum of static analyses and
tradeoff between cost and precision

CSCI 4450/6450, A Milanova 24

25

Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4450/

n Static analysis, introduction

n Course topics, tools, and homework

n Introduction to Dataflow analysis
CSCI 4450/6450, A Milanova

http://www.cs.rpi.edu/~milanova/csci2600/

Course Topics

n Dataflow analysis
n Lattices, transfer functions, dataflow frameworks
n Classical analyses: constant propagation and

points-to analysis
n Binary analysis

n Abstract interpretation (a more powerful
formalism)
n Abstract vs. concrete semantics
n Galois connections

26CSCI 4450/6450, A Milanova

Course Topics

n Types and type-based analysis
n Simply typed Lambda calculus
n Type systems and type soundness
n Simple type inference
n Hindley Milner type inference

27CSCI 4450/6450, A Milanova

Course Topics

n Axiomatic semantics
n You know already: Hoare logic!
n Logics to specify assertions (as you know them,

P and Q in { P } code { Q })
n SMT solvers and proving Hoare triples

CSCI 4450/6450, A Milanova 28

Historical Perspective

n “An axiomatic basis for computer programming” by C.A.R.
Hoare 1969
n Great enthusiasm about verification 1970-ties

n “Social processes and proofs of theorems and programs” by
De Millo, Lipton, and Perlis 1979
n Credited with setting back work on formal verification

n “Can programming be liberated… A functional style and its
algebra of programs” by John Backus 1977
n Research on functional programming, type theory

n Z3 theorem prover from Microsoft about 2005
n Lots of new enthusiasm about verification and symbolic

execution
29

Tools and Programming
Languages

n Soot
n Z3
n Ghidra (optional)

n Java
n Haskell
n OCaml

CSCI 4450/6450, A Milanova 30

Homework Assignments

n There will be 6-7 homework assignments
n Each makes about 5-6% of your grade
n Larger assignments are broken into 2-3 parts
n Some are individual, some are team

assignments

n Submitty!

CSCI 4450/6450, A Milanova 31

Homework Assignments

n HW1
n Problem set to practice dataflow analysis

n HW2-HW4
n Classical OO analyses in Soot: the CHA, RTA,

and XTA family of analyses
n HW5-HW6

n Problem set to practice abstract
interpretation/type inference concepts

n Implement simple type inference (and maybe
Hindley Milner) in Haskell 32

Homework Assignments

n HW7
n Implement a simple verifier for C using Z3

n If you are interested in Binary analysis, we’ll
replace parts of HW2-HW4 and HW7 with
Ghidra projects
n E.g., a taint analysis, a buffer overflow analysis,

or other

CSCI 4450/6450, A Milanova 33

Dataflow Analysis

Outline

n Motivation and origin of dataflow analysis:
compiler optimization

n Overview of the compiler
n Classical compiler optimizations
n Control flow graphs

n Reading:
n Dragon Book, Chapter 9.1 35

Overview of the Compiler

n Phases of the compiler
n Lexical Analyzer (scanner)
n Syntax Analyzer (parser)
n Semantic Analyzer and Intermediate Code

Generator
n Machine-Independent Code Optimizer
n Code Generator
n Machine-Dependent Code Optimizer

CSCI 4450/6450, A Milanova 36

Overview of the Compiler

CSCI 4450/6450, A Milanova 37

front
end

symbol
table

code
generat

or

optimiz
er

source
program

intermediate
code

intermediate
code

target
program

An optimization is a semantics-preserving transformation

Classical Compiler Optimizations

n We will show the classical optimizations
using an example Fortran loop

n Opportunities for optimization due to
automatic generation of intermediate code
…
sum = 0
do 10 i = 1, n
10 sum = sum + a[i]*a[i]
…

CSCI 4450/6450, A Milanova 38

Three Address Code
Intermediate Representation (IR)

CSCI 4450/6450, A Milanova 39

1. sum = 0 initialize sum
2. i = 1 initialize loop counter
3. if i > n goto 15 loop test, check for limit
4. t1 = addr(a) – 4
5. t2 = i * 4 a[i]
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i * 4 a[i]
9. t6 = t4[t5]
10. t7 = t3 * t6 a[i]*a[i]
11. t8 = sum + t7
12. sum = t8 increment sum
13. i = i + 1 increment loop counter
14. goto 3

15. …

Control Flow Graph (CFG)

CSCI 4450/6450, A Milanova 40

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15. …
T

F

Common Subexpression
Elimination

1. sum = 0 1. sum = 0
2. i = 1 2. i = 1
3. if i > n goto 15 3. if i > n goto 15
4. t1 = addr(a) – 4 4. t1 = addr(a) – 4
5. t2 = i*4 5. t2 = i*4
6. t3 = t1[t2] 6. t3 = t1[t2]
7. t4 = addr(a) – 4 7. t4 = addr(a) – 4
8. t5 = i*4 8. t5 = i*4
9. t6 = t4[t5] 9. t6 = t4[t5]
10. t7 = t3*t6 10. t7 = t3*t6
11. t8 = sum + t7 10a t7 = t3*t3
12. sum = t8 11. t8 = sum + t7
13. i = i + 1 12. sum = t8
14. goto 3 13. i = i + 1
15. … 14. goto 3

CSCI 4450/6450, A Milanova 41

After Common Subexpression
Elimination

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
10a t7 = t3*t3
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

CSCI 4450/6450, A Milanova 42

Copy Propagation
1. sum = 0 1. sum = 0
2. i = 1 2. i = 1
3. if i > n goto 15 3. if i > n goto 15
4. t1 = addr(a) – 4 4. t1 = addr(a) - 4
5. t2 = i * 4 5. t2 = i * 4
6. t3 = t1[t2] 6. t3 = t1[t2]
10a t7 = t3 * t3 10a t7 = t3 * t3
11 t8 = sum + t7 11. t8 = sum + t7
12. sum = t8 11a sum = sum + t7
13. i = i + 1 12. sum = t8
14. goto 3 13. i = i + 1
15. … 14. goto 3

15. …

CSCI 4450/6450, A Milanova 43

After Copy Propagation
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15. …

CSCI 4450/6450, A Milanova 44

Invariant Code Motion
1. sum = 0 1. sum = 0
2. i = 1 2. i = 1
3. if i > n goto 15 2a t1 = addr(a) - 4
4. t1 = addr(a) – 4 3. if i > n goto 15
5. t2 = i * 4 4. t1 = addr(a) - 4
6. t3 = t1[t2] 5. t2 = i * 4
10a t7 = t3 * t3 6. t3 = t1[t2]
11a sum = sum + t7 10a t7 = t3 * t3
13. i = i + 1 11a sum = sum + t7
14. goto 3 13. i = i + 1
15. … 14. goto 3

15. …

CSCI 4450/6450, A Milanova 45

After Invariant Code Motion
1. sum = 0
2. i = 1
2a t1 = addr(a) – 4
3. if i > n goto 15
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15. …

CSCI 4450/6450, A Milanova 46

Strength Reduction
1. sum = 0 1. sum = 0
2. i = 1 2. i = 1
2a t1 = addr(a) – 4 2a t1 = addr(a) - 4
3. if i > n goto 15 2b t2 = i * 4
5. t2 = i * 4 3. if i > n goto 15
6. t3 = t1[t2] 5. t2 = i * 4
10a t7 = t3 * t3 6. t3 = t1[t2]
11a sum = sum + t7 10a t7 = t3 * t3
13. i = i + 1 11a sum = sum + t7
14. goto 3 11b t2 = t2 + 4
15. … 13. i = i + 1

14. goto 3
15. …

CSCI 4450/6450, A Milanova 47

After Strength Reduction
1. sum = 0
2. i = 1
2a t1 = addr(a) – 4
2b t2 = i * 4
3. if i > n goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
13. i = i + 1
14. goto 3
15. …

48

Test Elision and Induction
Variable Elimination

1. sum = 0 1. sum = 0
2. i = 1 2. i = 1
2a t1 = addr(a) – 4 2a t1 = addr(a) – 4
2b t2 = i * 4 2b t2 = i * 4
3. if i > n goto 15 2c t9 = n * 4
6. t3 = t1[t2] 3. if i > n goto 15
10a t7 = t3 * t3 3a if t2 > t9 goto 15
11a sum = sum + t7 6. t3 = t1[t2]
11b t2 = t2 + 4 10a t7 = t3 * t3
13. i = i + 1 11a sum = sum + t7
14. goto 3 11b t2 = t2 + 4
15. … 13. i = i + 1

14. goto 3a
15. …

CSCI 4450/6450, A Milanova 49

After Test Elision and Induction
Variable Elimination

1. sum = 0
2. i = 1
2a t1 = addr(a) – 4
2b t2 = i * 4
2c t9 = n * 4
3a if t2 > t9 goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
14. goto 3a
15. … 50

Constant Propagation and Dead
Code Elimination

1. sum = 0 1. sum = 0
2. i = 1 2. i = 1
2a t1 = addr(a) – 4 2a t1 = addr(a) - 4
2b t2 = i * 4 2b t2 = i * 4
2c t9 = n * 4 2c t9 = n * 4
3a if t2 > t9 goto 15 2d t2 = 4
6. t3 = t1[t2] 3a if t2 > t9 goto 15
10a t7 = t3 * t3 6. t3 = t1[t2]
11a sum = sum + t7 10a t7 = t3 * t3
11b t2 = t2 + 4 11a sum = sum + t7
14. goto 3a 11b t2 = t2 + 4
15. … 14. goto 3a

15. …

CSCI 4450/6450, A Milanova 51

New Control Flow Graph

1. sum = 0
2. t1 = addr(a) - 4
3. t9 = n * 4
4. t2 = 4

5. if t2 > t9 goto 11

6. t3 = t1[t2]
7. t7 = t3 * t3
8. sum = sum + t7
9. t2 = t2 + 4
10. goto 5

11. …

F

T

52

Classical Compiler Optimizations

n To summarize
n Common subexpression elimination
n Copy propagation
n Strength reduction
n Test elision and induction variable elimination
n Constant propagation
n Dead code elimination

n Dataflow analysis enables these
optimizations

CSCI 4450/6450, A Milanova 53

Building the Control Flow Graph

Build the CFG from linear 3-address code:

n Step 1: partition code into basic blocks
n Basic blocks are the nodes in the CFG

n Step 2: add control flow edges

n Aside: in Principles of Software, we built a
CFG from structured (AST) IR:
n S ::= x = y op z | S;S | if (b) then S else S |

while (b) S

Step 1. Partition Code Into Basic
Blocks

1. Determine the leader statements:
(i) First program statement
(ii) Targets of gotos, conditional or

unconditional
(iii) Any statement following a goto

2. For each leader, its basic block consists of
the leader and all statements up to, but not
including, the next leader or the end of the
program

CSCI 4450/6450, A Milanova

Question. Find the Leader
Statements

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …

CSCI 4450/6450, A Milanova

Step 2. Add Control Flow Edges

n There is a directed edge from basic block
B1 to block B2 if B2 can immediately follow
B1 in some execution sequence

n Determine edges as follows:
(i) There is an edge from B1 to B2 if B2 follows B1

in three-address code, and B1 does not end
in an unconditional goto

(ii) There is an edge from B1 to B2 if there is a
goto from the last statement in B1 to the first
statement in B2

CSCI 4450/6450, A Milanova

Question. Add Control Flow
Edges

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …

CSCI 4450/6450, A Milanova

Next Class

n Dataflow analysis
n Four classical dataflow analysis problems

CSCI 4450/6450, A Milanova 59

