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Introductions

n Ana Milanova

n You 
n Tell us

n Your name
n Graduate or undergraduate student
n Concentration, interests, research area 
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Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4450/

n Program analysis, introduction

n Course topics, tools and homework

n Introduction to Dataflow analysis
CSCI 4450/6450, A Milanova

http://www.cs.rpi.edu/~milanova/csci2600/
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Logistics

n Course webpage
http://www.cs.rpi.edu/~milanova/csci4450

n Schedule, Notes, Reading
n Schedule, lecture slides and assigned reading

n Submitty
n All homework submission and grades, forum
n Check forum regularly for announcements

http://www.cs.rpi.edu/~milanova/csci4450
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Logistics

n Recommended reading
n Compilers: Principles, Techniques and Tools, 

by Alfred Aho, Monica Lam, Ravi Sethi, and 
Jeffrey Ullman (the Dragon Book)

n Types and Programming Languages, by 
Benjamin C. Pierce

n MIT’s Open Courseware Program Analysis
n Principles of Program Analysis by Flemming

Nielson, Hanne Riis Nielson, and Chris Hankin
n Papers and lecture notes



CSCI 4450/6450, A Milanova 6

Logistics

n Syllabus 
www.cs.rpi.edu/~milanova/csci4450/syllabus.htm
Topics, outcomes, policies and grading

n In-class quizzes (6-8): 20%
n Homework assignments: 35%
n Paper presentation and critique: 12%
n Take-home final: 25%
n Attendance and participation: 8%

http://www.cs.rpi.edu/~milanova/CSCI4430/syllabus.htm


Logistics

n Assignments and take-home exam are to be 
completed individually unless otherwise 
specified

n Quizzes are in-class, open-notes, and may 
be completed individually or in small groups

n We will drop the lowest quiz
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Logistics

n Graduate students enrolled in CSCI-6450
n Grade breakdown:

n In-class quizzes (6-8): 15%
n Homework assignments: 38%
n Paper presentation: 12%
n Take-home final: 27%
n Attendance and participation: 8%

n Some assignments will have additional 
problems



Late Homework

n Homework assignments must be submitted in 
Submitty by 12pm on the due date

n You have 10 late days for the semester, with 
a max of 5 late days per assignment

n Exceptions to policy may be granted in rare 
cases
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New This Term!

n Communication Intensive (CI) Designation 
(Pending)

n Paper presentation
n Two written assignments
n Participation
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Academic Integrity

n Trust

n Discussion is allowed, even encouraged 

n Taking written notes out of discussion is not 
allowed. Actual work should be your own

n Posting solutions on public forums (e.g., 
Discord, Github) is not allowed
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Program Analysis

n Tools and techniques that help us reason 
about the run-time behavior of the program
n Dynamic analysis – during program execution

n Static instrumentation
n Dynamic (binary) instrumentation (DBI)

n Static analysis – before program execution
n E.g., Java compiler’s definite-assignment-check
n E.g., Type checking and type inference are forms of 

static analysis
n E.g., Dafny-style verification
n And many, many more! 12



Program Analysis in Security

n E.g., is there uninitialized memory?
n char buf[64]; -> definition-free path -> use of buf

n or char * buf = malloc(64); -> definition-free path 
-> use of buf

n E.g., is there an information leak?
void * fp = &exit // sensitive source

…

x->f = fp;
y = x;

fp1 = y->f;

printf(“libc exit function @ %p\n” fp1) // sink
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Program Analysis in Security

n E.g., is there an information leak?
gold += fight(&map[row*3+col]); // source
…
print_highscore(gold); // printf(param) leak, sink

n E.g., is there a TICTOU bug?
char * buf = malloc(bar->name_len);
...
modifies_bar(bar); // we can detect side-effects!
...
memcpy(buf, bar->name, bar->name_len);

n E.g., is there a buffer overflow? Many 
analyses 14



Our focus will be Static Analysis

n Many techniques 
n Decades of research and Turing Awards!

n Dataflow analysis and abstract interpretation
n Kildall ’73, Kam and Ullman ’77, Cousot & Cousot ’77

n Types and type-based analysis
n Following John Backus’ “Can Programming…” ‘78

n Axiomatic semantics (i.e., Hoare Logic)
n C.A.R. Hoare’s “An Axiomatic Basis for Computer 

Programming”, ’69
15CSCI 4450/6450, A Milanova



Static Analysis

n What this course is mostly about
n How can we define the meaning of programs
n How can we model behavior of programs, and 

prove theorems about programs

n How can we use tools and build tools that reason 
about programs

n Many applications
CSCI 4450/6450, A Milanova 16



Applications

n Compiler optimization, traditional application
n We’ll start with dataflow analysis

n Finding bugs, verifying the absence of bugs
n Improving security and privacy

n Android, smart contracts, binary analysis
n Refactoring and testing
n Improving energy efficiency
n Education. Submitty uses static analysis! 17



Examples of Properties 
Deducible by Static Analysis

n Can x ever be null at program point 
i: x.m()

n Can y be different than 1 at program point 
i: x = y*10?

n Can n at x[n] cause out-of-bounds access?
n Does an app leak private data (e.g., phone 

number, phone identifier, location) to ad 
networks?
n Answer: Yes!
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Examples of Properties 
Deducible by Static Analysis

n What inputs avoid 
divide-by-zero at x/y?

{x!=1 && x!=-2}
y = x + 4;
if (x > 0) {
y = x*x – 1;

}
else {
y = y + x;

}
{y!=0}
x = x/y; 19

n Formalism of Axiomatic 
Semantics (Hoare logic)
n Different from dataflow 

and types
n Allows us to specify 

program behavior with 
preconditions and 
postconditions that form 
logical assertions
n Support complex logics
n Enabiles reasoning about 

correctness



Nature of Static Analysis

n To remain computable, static analysis must 
approximate. It is undecidable to find exactly 
what happens at runtime

n Typically, analysis errs on the safe (sound) side -
-- that is, it over-approximates

n Sometimes, analysis is unsafe (unsound) --- that 
is, it under-approximates

20CSCI 4450/6450, A Milanova



Nature of Static Analysis, cont. 

n A static analysis is said to be safe (also, 
sound, correct) if it over-approximates in the 
sense that it accounts for every possible 
execution path 
n E.g., suppose ground truth is x in {1,2}
n A value-flow analysis that reports x in 

{1,2,21} is safe
n An analysis that reports x in {0,2} is unsafe 

(unsound, incorrect)
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Analysis Safety

n Safety is crucial when analysis enables 
compiler optimizations. Why?
n E.g., an unsafe analysis may report that y is 1 at 
z = y*10 while there is an execution path that 
sets y to 10
If the optimizing compiler changes z = y*10 to 
z = 10, the program produces incorrect result 
along the path when y is 10!
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Analysis Safety

n Safety is often relinquished when analysis is 
used in static debugging tools. Why?

n E.g., suppose we have code that contains 10 
“ground truth” null-pointer dereferences
n Safe analysis A reports 100 potential null-pointer 

dereferences (all 10 “true” bugs and 90 “false-
positives”). 

n Unsafe analysis B reports 10 potential null-
pointer dereferences (8 “true” and 2 false-
positives). Which one would you take?  
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Analysis Precision 

n Analysis precision refers to how “close” 
results are to actual runtime
n E.g., in our running example, an analysis that 

reports x in {1,2,3} is more precise than the 
one that reports x in {1,2,3,21}

n Typically, we use the term precision with safe 
analysis (safe analysis has 100% recall)

n Wide spectrum of static analyses and 
tradeoff between cost and precision
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Outline

n Logistics
www.cs.rpi.edu/~milanova/csci4450/

n Static analysis, introduction

n Course topics, tools, and homework

n Introduction to Dataflow analysis
CSCI 4450/6450, A Milanova

http://www.cs.rpi.edu/~milanova/csci2600/


Course Topics

n Dataflow analysis 
n Lattices, transfer functions, dataflow frameworks
n Classical analyses: constant propagation and 

points-to analysis
n Binary analysis

n Abstract interpretation (a more powerful 
formalism)
n Abstract vs. concrete semantics
n Galois connections
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Course Topics

n Types and type-based analysis
n Simply typed Lambda calculus
n Type systems and type soundness
n Simple type inference
n Hindley Milner type inference
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Course Topics

n Axiomatic semantics
n You know already: Hoare logic!
n Logics to specify assertions (as you know them, 

P and Q in { P } code { Q })
n SMT solvers and proving Hoare triples 

CSCI 4450/6450, A Milanova 28



Historical Perspective

n “An axiomatic basis for computer programming” by C.A.R. 
Hoare 1969
n Great enthusiasm about verification 1970-ties

n “Social processes and proofs of theorems and programs” by 
De Millo, Lipton, and Perlis 1979
n Credited with setting back work on formal verification

n “Can programming be liberated… A functional style and its 
algebra of programs” by John Backus 1977
n Research on functional programming, type theory

n Z3 theorem prover from Microsoft about 2005
n Lots of new enthusiasm about verification and symbolic 

execution
29



Tools and Programming 
Languages

n Soot
n Z3
n Ghidra (optional)

n Java
n Haskell 
n OCaml

CSCI 4450/6450, A Milanova 30



Homework Assignments

n There will be 6-7 homework assignments
n Each makes about 5-6% of your grade
n Larger assignments are broken into 2-3 parts
n Some are individual, some are team 

assignments

n Submitty!

CSCI 4450/6450, A Milanova 31



Homework Assignments

n HW1
n Problem set to practice dataflow analysis

n HW2-HW4
n Classical OO analyses in Soot: the CHA, RTA, 

and XTA family of analyses
n HW5-HW6

n Problem set to practice abstract 
interpretation/type inference concepts

n Implement simple type inference (and maybe 
Hindley Milner) in Haskell 32



Homework Assignments

n HW7
n Implement a simple verifier for C using Z3

n If you are interested in Binary analysis, we’ll 
replace parts of HW2-HW4 and HW7 with 
Ghidra projects
n E.g., a taint analysis, a buffer overflow analysis, 

or other
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Dataflow Analysis



Outline

n Motivation and origin of dataflow analysis: 
compiler optimization

n Overview of the compiler
n Classical compiler optimizations
n Control flow graphs

n Reading:
n Dragon Book, Chapter 9.1 35



Overview of the Compiler

n Phases of the compiler
n Lexical Analyzer (scanner)
n Syntax Analyzer (parser)
n Semantic Analyzer and Intermediate Code 

Generator
n Machine-Independent Code Optimizer 
n Code Generator 
n Machine-Dependent Code Optimizer
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Overview of the Compiler
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front 
end

symbol 
table

code
generat

or

optimiz
er

source 
program

intermediate 
code

intermediate 
code

target 
program

An optimization is a semantics-preserving transformation



Classical Compiler Optimizations

n We will show the classical optimizations 
using an example Fortran loop 

n Opportunities for optimization due to 
automatic generation of intermediate code
…
sum = 0
do 10 i = 1, n
10  sum = sum + a[i]*a[i]
…
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Three Address Code 
Intermediate Representation (IR) 

CSCI 4450/6450, A Milanova 39

1. sum = 0 initialize sum
2. i = 1 initialize loop counter
3. if i > n goto 15 loop test, check for limit
4. t1 = addr(a) – 4
5. t2 = i * 4 a[i]
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i * 4 a[i]
9. t6 = t4[t5]
10. t7 = t3 * t6 a[i]*a[i]
11. t8 = sum + t7
12. sum = t8 increment sum
13. i = i + 1 increment loop counter
14. goto 3

15. …



Control Flow Graph (CFG)
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1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15. …
T

F



Common Subexpression 
Elimination

1. sum = 0 1.  sum = 0 
2. i = 1 2.  i = 1
3. if i > n goto 15 3.  if i > n goto 15
4. t1 = addr(a) – 4 4.  t1 = addr(a) – 4
5. t2 = i*4 5.  t2 = i*4
6. t3 = t1[t2] 6.  t3 = t1[t2]
7. t4 = addr(a) – 4 7.  t4 = addr(a) – 4
8. t5 = i*4 8.  t5 = i*4
9. t6 = t4[t5] 9.  t6 = t4[t5]
10. t7 = t3*t6 10. t7 = t3*t6
11. t8 = sum + t7 10a t7 = t3*t3
12. sum = t8 11. t8 = sum + t7
13. i = i + 1 12. sum = t8
14. goto 3 13. i = i + 1
15. … 14. goto 3
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After Common Subexpression 
Elimination

1. sum = 0 
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
10a t7 = t3*t3
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
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Copy Propagation
1.  sum = 0 1.  sum = 0 
2.  i = 1 2.  i = 1
3. if i > n goto 15 3.  if i > n goto 15
4. t1 = addr(a) – 4 4.  t1 = addr(a) - 4
5.  t2 = i * 4 5.  t2 = i * 4
6. t3 = t1[t2] 6.  t3 = t1[t2]
10a t7 = t3 * t3 10a t7 = t3 * t3
11  t8 = sum + t7 11. t8 = sum + t7
12. sum = t8 11a sum = sum + t7
13. i = i + 1 12. sum = t8
14. goto 3 13. i = i + 1
15. … 14. goto 3

15. …
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After Copy Propagation
1. sum = 0 
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15. …
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Invariant Code Motion
1.  sum = 0 1.  sum = 0 
2.  i = 1 2.  i = 1
3.  if i > n goto 15 2a  t1 = addr(a) - 4
4.  t1 = addr(a) – 4 3.  if i > n goto 15
5.  t2 = i * 4 4.  t1 = addr(a) - 4
6.  t3 = t1[t2] 5.  t2 = i * 4
10a t7 = t3 * t3 6.  t3 = t1[t2]
11a sum = sum + t7 10a t7 = t3 * t3
13. i = i + 1 11a sum = sum + t7
14. goto 3 13. i = i + 1
15. … 14. goto 3

15. …
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After Invariant Code Motion
1.  sum = 0 
2.  i = 1
2a  t1 = addr(a) – 4
3.  if i > n goto 15
5.  t2 = i * 4
6.  t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15. …
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Strength Reduction
1.  sum = 0 1.  sum = 0
2.  i = 1 2.  i = 1
2a  t1 = addr(a) – 4 2a  t1 = addr(a) - 4
3.  if i > n goto 15 2b  t2 = i * 4
5.  t2 = i * 4 3.  if i > n goto 15
6.  t3 = t1[t2] 5.  t2 = i * 4
10a t7 = t3 * t3 6.  t3 = t1[t2]
11a sum = sum + t7 10a t7 = t3 * t3
13. i = i + 1 11a sum = sum + t7
14. goto 3 11b t2 = t2 + 4
15. … 13. i = i + 1

14. goto 3
15. …

CSCI 4450/6450, A Milanova 47



After Strength Reduction
1. sum = 0
2. i = 1
2a t1 = addr(a) – 4
2b t2 = i * 4
3. if i > n goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
13. i = i + 1
14. goto 3
15. …

48



Test Elision and Induction 
Variable Elimination

1.  sum = 0 1.  sum = 0
2.  i = 1 2.  i = 1
2a  t1 = addr(a) – 4 2a  t1 = addr(a) – 4
2b  t2 = i * 4 2b  t2 = i * 4
3.  if i > n goto 15 2c  t9 = n * 4
6.  t3 = t1[t2] 3.  if i > n goto 15
10a t7 = t3 * t3 3a  if t2 > t9 goto 15
11a sum = sum + t7 6.  t3 = t1[t2]
11b t2 = t2 + 4 10a t7 = t3 * t3
13. i = i + 1 11a sum = sum + t7
14. goto 3 11b t2 = t2 + 4
15. … 13. i = i + 1

14. goto 3a
15. …
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After Test Elision and Induction 
Variable Elimination

1.  sum = 0
2.  i = 1
2a  t1 = addr(a) – 4
2b  t2 = i * 4
2c  t9 = n * 4
3a  if t2 > t9 goto 15
6.  t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
14. goto 3a
15. … 50



Constant Propagation and Dead 
Code Elimination

1.  sum = 0 1.  sum = 0
2.  i = 1 2.  i = 1 
2a  t1 = addr(a) – 4 2a  t1 = addr(a) - 4 
2b  t2 = i * 4 2b  t2 = i * 4
2c  t9 = n * 4 2c  t9 = n * 4
3a  if t2 > t9 goto 15 2d  t2 = 4
6.  t3 = t1[t2] 3a  if t2 > t9 goto 15
10a t7 = t3 * t3 6.  t3 = t1[t2]
11a sum = sum + t7 10a t7 = t3 * t3
11b t2 = t2 + 4 11a sum = sum + t7
14. goto 3a 11b t2 = t2 + 4
15. … 14. goto 3a

15. …
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New Control Flow Graph

1.  sum = 0
2.  t1 = addr(a) - 4 
3.  t9 = n * 4
4.  t2 = 4

5.  if t2 > t9 goto 11

6.  t3 = t1[t2]
7.  t7 = t3 * t3
8.  sum = sum + t7
9.  t2 = t2 + 4
10. goto 5

11. …

F

T
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Classical Compiler Optimizations

n To summarize
n Common subexpression elimination
n Copy propagation
n Strength reduction
n Test elision and induction variable elimination
n Constant propagation
n Dead code elimination

n Dataflow analysis enables these 
optimizations
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Building the Control Flow Graph

Build the CFG from linear 3-address code:

n Step 1: partition code into basic blocks
n Basic blocks are the nodes in the CFG

n Step 2: add control flow edges

n Aside: in Principles of Software, we built a 
CFG from structured (AST) IR: 
n S ::= x = y op z | S;S | if (b) then S else S |  

while (b) S  



Step 1. Partition Code Into Basic 
Blocks

1. Determine the leader statements:
(i) First program statement
(ii) Targets of gotos, conditional or 

unconditional
(iii) Any statement following a goto

2. For each leader, its basic block consists of 
the leader and all statements up to, but not 
including, the next leader or the end of the 
program  
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Question. Find the Leader 
Statements

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …
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Step 2. Add Control Flow Edges

n There is a directed edge from basic block 
B1 to block B2 if B2 can immediately follow 
B1 in some execution sequence

n Determine edges as follows:
(i) There is an edge from B1 to B2 if B2 follows B1 

in three-address code, and B1 does not end 
in an unconditional goto

(ii) There is an edge from B1 to B2 if there is a 
goto from the last statement in B1 to the first 
statement in B2
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Question. Add Control Flow 
Edges

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …
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Next Class

n Dataflow analysis
n Four classical dataflow analysis problems
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