!'_ Hindley Milner Type Inference

i Announcements

= HWG?

= Presentation guidelines are up, papers are
up on schedule page as well
= 1. Select available paper/slot from list
= 2. If available, | assign to you, otherwise goto 1.

= 4 broad topics, but let me know if you
= "Homework™ papers on class analysis

=« ML for program analysis tasks
= Applications of program analysis: smart contracts

= Dynamic Binary Instrumentation (DBI) ?

i Outline

= Simple type inference, conclusion
= Let constructs
» Strategy 2: on-the-fly typing

= Parametric polymorphism

= Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova

i Simple Type Inference

= Strategy 1 solves constraints offline
= Use typing rules to generate type constraints

= Solve type constraints “offline”

= Essential concepts: equality, unification and
substitution

= Strategy 2 solves constraints on the fly
= Builds the substitution map incrementally

Program Analysis CSCI 4450/6450, A Milanova

i The Let Construct

= In dynamic semantics, let x=E; In E, Is
equivalent to (Ax.E,) E,
= Typing rule
N+E,:0o NxXcpPE,: 7
MEletx=E,IinE;:7
= |n static semantics let x = E; in E, is not equivalent

to (AXx.E,) E;

=« In let, the type of “argument” E, is inferred/checked
before the type of function body E,

= let construct enables Hindley Milner style polymorphism!
Program Analysis CSCI 4450/6450, A Milanova

i The Let Construct

= Typing rule R AL
e i
NE;:o NxopE,:7 X c 4 C,
MNpFletx=E,inE;:7 Se,Té2 Se2,Tez

= Attribute grammar rule

E:=letx=E;InE, e, =T¢
[g2= Sgq(lg) + {X:Tg4}
Te = Tg, Sg = Sg2 Sgq

U — ——————

Program Analysis CSCI 4450/6450, A Milanova 6

Typing Let Terms (Strategy 1)
(et 7If'.: \Ax.x U L(O/' 1'2 m
. ; = 261 i’-{’_;g
it S
7& 2 s ° NEZ ‘AW’ '{{TI:M—»@}

2'62 = Gx
C: E'éf K‘a; Lz EK”’@(? 6} m‘("_”%/ é.lc#gf

i The Letrec Construct

= letrec x=E,InE,
= X can be referenced from within E;4

= Extends calculus with general recursion

= No need to type fix (we can’t!) but we can still type
recursive functions like plus, times, etc.

= Haskell's let is a letrec actually!

o E.g.,

letrec plus = Ax.Ay. if (x=0) then y else ((plus x-1) y+1) in ...

or in Haskell syntax:
let plus x y = if (x=0) then y else plus (x-1) (y+1) in ...

i The Letrec Construct

Extensions over let rule

s letrec x = E1 in E2 —> 1. T4 is inferred in augmented

environment g + {x:t,}

2. Must unify SE1(tx) and TE1

3. Apply substitution S on top of Sg4
Note: Can merge let and letrec, in let
Unify and S have no impact

= Attribute grammar rule
E ::=letrec x %ln E, =g+ {x:t,}
Lefree — S Unlfy(SE1(t), Teq)

/
o " el Te=SSe(Te) * xTey
" Sy Te=Tez Sg=Sg2 S Sg;

Program Analysis CSCI 4450/6450, A Milanova 9

let vs. letrec
C £,
—1

let plus =Ax.Ay. if (x=0) then y else ((plus x-1) y+1) in

Ld A lg jpl,as o flF— i — Wi
{f,w, r,/j? ek
/ t' LF(.us ; érlw . d’“’
Ax,y E (\ w&é
/ . r=ly: b, b f e lhree s
/ ~ J A]jf {_"-C]ol,us AL«;,
w \J N, 1 bplus = Mok —> 6‘9 |
S te = M — 6
\ S 4.
Mlk[d— / 'Léﬁ = Tk = 5\)("

Algorithm W, Almost There!

def W(I', E) = case E of

e c -> ([], TypeOf(c))

® X -> if (x NOT in Dom(I")) then fail
else let Tg = I'(x);

in ([], TE)

® 2\x.Eq ->let (Sg1,Teq1) = W(M+{x:t,},E,)
in (Sgq, Seq(ty)—>Te1)

® E,E; ->let(Sgq,Teq) =W(I,E)

4w
(Se2,Te2) = W(Sg4(IN),E2) X// \QJ"‘}&

e S = Unify(Se2(Te1), Te2—t)
in (S Sga Sgq, S(t)) /1 S Sg; Sgq composes substitutions
let x =E; in E; -> let (Sg4,Te1) = W(I,E)
(Se2, Te2) = W(Seq(IN)+{x:Te1},E>)
in (Sgz2 Sgq, Te2)

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 11

Algorithm W, Almost There!
(merges let and letrec)

def W(I', E) = case E of
c -> ([, TypeOf(c))
X -> if (x NOT in Dom(I')) then fail
else let Tg = I(x);
in ([]’ TE)
}\JX.E1 -> let (SE1,TE1) - W(r+{X:J‘E~v},E1)
in (Sg1, Sea(tx)>Ten)
EiE, ->let (Sgq,Tgq) = W(I,Ey)
(Se2,Te2) = W(Sgq(IN),E2)
S = Unify(Sgx(Te1), Tex—>1)
in (S Sga Sgq, S(t)) /' S Sg; Sgq composes substitutions
let x = E1 in Ez -> let (SE15TE1) - W(r"' X:tx},E1)
S = Unify(Sgq(t), Ted)
(Se2,Te2) = W(S Sgq(IMN)+{x:Tg4},E>)
“

in (Sgz S Sgq, Te2)
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

i Outline

= Simple type inference, conclusion
= Let constructs
» Strategy 2: on-the-fly typing

s Parametric polymorphism

= Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova

13

i Motivating Example

= A sound type system rejects some programs
that don't get stuck

= Canonical example
let f = Ax.X
in

if (f true) then (f 1) else 1

= Term does not get “stuck”

« Termis NOT TYPABLE in the simply typed

lambda calculus. It is typable in Hindley Milner!
14

Different Styles of (Parametric)
i Polymorphism

= Impredicative polymorphism (System F)

t=b |11, | T| VTt ﬂ‘ Can instantiate wit
E::=x|Ax:t.E|E{E, | AT.E | E [7]

= Very powerful
= Can type self application Ax. X x
» Still cannot type fix!

= Type inference is undecidable!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 15

i oo oxx o Sk £

KVT.ToT] itaubiaks T b ¥ 7T

(reduru '?ﬂf' &)
o) T o’

[YT. BT T 6 X [ATTT :@4@ LV T T @
LS el - ~—
[T Aes¥r.m=7, x[¥n 77] x :

16

i Different Styles of Polymorphism

= Predicative polymorphism
Ti=b |11, | T
6::=1|Vl.o|06,>0,
E::=x|Ax:c.E|E{E, | AT.E | E [7]
We cauuot W AX X X
= Still very powerful
= Restricts System F by disallowing instantiation
with a polymorphic type: E [t] but not E [o]
= Type inference is still undecidable!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

17

i Different Styles of Polymorphism

= Prenex polymorphism
Ti=b |11, | T
c..:=1|Vl.o
E::=x|\x:t.E|E{E, | AT.E | E [7]

= Now type inference is decidable
= But polymorphism is limited
= You cannot pass polymorphic functions

= E.g., we cannot pass a sort function as argument
18

i Different Styles of Polymorphism

= Let polymorphism

Ti=b |11, | T

c..:=1|Vl.o

E::=x|Ax:t.E|E,E, | AT.E | E[t] | let x = E, in E,
= Like (AX.E,) E, but x can be polymorphic!

= Good engineering compromise
= Enhance expressiveness
= Preserve decidability

= This is the Hindley Milner type system

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 19

i Outline

= Simple type inference, conclusion
= Let constructs

» Strategy 2: on-the-fly typing

= Parametric polymorphism

= Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova

20

i Towards Hindley Milner

let f = AXx.X
in
if (f true) then (f 1) else 1

= Constraints
t. = t,—ot,
t.= bool—>t, // at call (f true)
t.= into>t; // at call (f1)

= Doesn’t unify!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

21

i Towards Hindley Milner

= Solution:
= Generalize the type variable in type of f
t. : t.o>t, becomes t. :VT.ToT

= Different uses of generalized type variables
are instantiated differently
« E.g., (f true) instantiates t; into bool—>bool
« E.g., (f1) instantiates t; into int—int

= \When can we generalize”?

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 22

Expression Syntax
i (to study Hindley Milner)

= EXpressions:
E::=c|x|Ax.E{|E E,|letx=E;inE,

= There are no types in the syntax

= The type of each sub-expression is derived
by the Hindley Milner type inference
algorithm

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 23

Type Syntax
(to study Hindley Milner)

= Types (aka monotypes). ,
t is a type variable
o 1'::=b|1'1—>172|t/ P
= E.g., int, bool, int—>bool, t;—int, t;—>t,, etc.
= [ype schemes (aka polymorphic types):
« 6:=1|\to t; is a “free” type
a o variable as it isn’t
« E.g. V.V (int—>t,)ot,—t;

bound under V
= Note: all quantifiers appear in the beginning, T cannot

contain schemes
= [ype environment now
Gamma ::= ldentifiers - Type schemes

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 24

i Instantiations

= Type scheme ¢ = Vt,...t .1 can be instantiated
iInto a type v’ by substituting types for the bound
variables (BV) under the universal quantifier V
= =81 Sisasubstitution s.t. Domain(S) > BV(o)

= 7’ is said to be an instance of 6 (6 > 1°)

= T’ is said to be a generic instance when S maps
some type variables to new type variables

| Eg, (O Vt1.t1—)t2
s [ts/t,] t,ot, = t;ot,is a generic instance of 6

= [int/t,] t;>t, = int>t, is a non-generic instance of ¢
Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 25

i Generalization (aka Closing)

= \We can generalize a type 7 as follows

Gen(r,T) — Vt1,...tn.T
where {t;...t.} = FV(t) - FV(I")
= Generalization introduces polymorphism

= Quantify type variables that are free in t but are not
free in the type environment I
= E.g., Gen([],t;—ot,) yields Vt,/t5:t—st,
= E.g., Gen([x:t,],t;ot,) yields Vti.t1—>t;

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 26

i Generalization, Examples

let f = Ax.x in if (f true) then (f 1) else 1

= We'll infer type for Ax.x using simple type
inference: t,—t,

= Then we’'ll generalize that type, Gen([],t;—t,):
vVt .t,ot,

= Then we'll pass the polymorphic type into
if (f true) then (f 1) else 1 and instantiate for
each fin if (f true) then (f 1) else 1

= E.g., [uy/ty] (t,—>t)) where u, is fresh type
variable at (f 1) 27

i Generalization, Examples

s Mt At . letg=fingXx
« Gen([f:t.,x:t,],t;) yields?
= Why can’t we generalize t;?

= Suppose we can generalize to Vt;
= Thenyt; = t, will instantiate at g x to some fresh u

= Then u becomes t,—u’ thus losing the important
connection between t, and t!

« Thus (Mf:t. Ax:t,. let g=fin g x) (Ly.y+1) true will
type-check (unsound!!!)
= DO NOT generalize variables that are mentioned in
type environment I'! 2

i Hindley Milner Typing Rules

MHx:it|-Ei:1 MxiGen(lhr) |-E,: 7
rl' Ietx=E1 in EZ:T,

(Let)

= Type of x as inferred for E, is t. Type of X in E, is
the generalized type scheme ¢ = Gen(I',7)

xe &Il 1<0
MN-x:1

(Var)

= X In E, of let: x is of type T if its type o In the
environment can be instantiated to t

(Note: remaining rules, ¢, App, Abs are asin F,.)

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 29

Hindley Milner Type Inference,

i Rough Sketch

let x = E, in E,

1.

Calculate type Tgq for E4 in IM;x:t, using simple type
inference

Generalize free type variables in Tg4 to get the type
scheme for Tg4 (be mindful of caveat!)

Extend environment with x:Gen(I',Tg4) and start typing
E,

Every time we encounter x in E,, instantiate its type
scheme using fresh type variables

E.g., id’s type scheme is Vt,.t;>t;soid is

instantiated to u,—uy at (id 1) 20

i Hindley Milner Type Inference

= WO ways:

= Extend Strategy 1 (constraint-based typing)

= Extend Strategy 2 (Algorithm W)

Program Analysis CSCI 4450/6450, A Milanova

31

i Strategy 1

let f = Ax.x in if (f true) then (f 1) else 1

1. 1etl = [
L=t [= [f:\t t, ot]
= [f:1]
f 2. Abs 3. if-then-else t;3=t5=int
L L=t oot a t, = bool
= [f:t,,x:t,] 4. App >- App 1
Ax: t, X u,—u; = bool-t, u2—>u2 intot;

f true f 1

Next, generalize t;: W,. t,—t, u, and u, are fresh type vars generated

at instantiation of polymorphic type.

32

i Example

= AX. let f=Ay.xIn (f true, f 1)

Program Analysis CSCI 4450/6450, A Milanova

33

def W(I', E) = case E of
¢ -> ([I, TypeOf(c))

Strategy 2: Algorithm W

us to u, are fresh type vars generated
at instantiation of polymorphic type

X -> if (x NOT in Domain(IN)) then fail

else let Tg = N(x)
in case Tg of

Vt,,..t.t > ([],[ufty...u/t]t)
— -> ([]! TE)
AX.Ey -> let (Sgq,Tgq) = W(M+{x:t,},E,)
in (Sgq, Seq(ty)—>Te)

Il ...
/I continues on next slide!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

34

i Strategy 2: Algorithm W

def W(I', E) = case E of
/I continues from previous slide
I ...
E, E; ->let (Sgq,Teq) = W(T,E,)
(Se2, Te2) = W(Sg4(IN),E>)
S = Unify(Sgx(Teq), Te2—t)
in (S Sg; Sg4, S(t))
let x =E, in E, -> let (Sg,,Tgq) = W(Ir+{x:t,},E,)
S = Unify(Sgq(ty), Teq)
o = Gen(S Sgq(I'), S(Tg))
(Se2, Te2) = W(S Sgq(IN)+{x:c},E))
in (Sgz S Sgy, Te)

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

35

i Strategy 2 Example

let f =Ax.x|in|if (f true) then (f 1) else 1

1|etr=[] T1=int

S, =.. I = [f: ¥t .t >t]

r=1l : T, = int

f 2. Abs 3. if-then-else 3~ "

| T,=tot, ~—T
S,=11 5 A 3

M =[x:t,] 4. App - APP

AX: tx X T4= bool T5=/nt

S, = [boollts][bool/u;] Ss= [int/ts][int/u,]
No constraint, types 2. Abs
immediately: T, =t —t,: [t,ot,/t,] f

true f 1
¢ = Gen([].t,»t,) = Vt,. t,.ot,

T= us—uq
S=1]

From UnifY(U1—)U1 , bOOl—)t4)3(-

J

i Example

= AX. let f=Ay.xIn (f true, f 1)

Program Analysis CSCI 4450/6450, A Milanova

37

i Hindley Milner Observations

= Do not generalize over type variables
mentioned in type environment (they are
used elsewhere)

= let is the only way of defining polymorphic
constructs

= Generalize the types of let-bound identifiers
only after processing their definitions

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 38

i Hindley Milner Observations

= Generates the most general type (principal
type) for each term/subterm

= [ype system is sound

= Complexity of Algorithm W
= PSPACE-Hard
= Because of nested let blocks

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

39

i Hindley Milner Limitations

= Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound
in foo twice

Program Analysis CSCI 4450/6450, A Milanova 40

i Hindley Milner Limitations

= Quiz example:
(Ax. x (Ay. y) (x 1)) (Az. 2)

VS.
let x = (Az. 2)
in

X (Ay.y) (x 1)

Program Analysis CSCI 4450/6450, A Milanova

41

Program Analysis CSCI 4450/6450, A Milanova

42

