Hindley Milner Type Inference

Announcements

HW6?

- Presentation guidelines are up, papers are up on schedule page as well
 - 1. Select available paper/slot from list
 - 2. If available, I assign to you, otherwise goto 1.
- 4 broad topics, but let me know if you
 - "Homework" papers on class analysis
 - ML for program analysis tasks
 - Applications of program analysis: smart contracts
 - Dynamic Binary Instrumentation (DBI)

Outline

- Simple type inference, conclusion
 - Let constructs
 - Strategy 2: on-the-fly typing
- Parametric polymorphism
- Hindley Milner type inference. Algorithm W

Simple Type Inference

Strategy 1 solves constraints offline

- Use typing rules to generate type constraints
- Solve type constraints "offline"
- Essential concepts: equality, unification and substitution

Strategy 2 solves constraints on the fly
 Builds the substitution map incrementally

The Let Construct In dynamic semantics, let x = E₁ in E₂ is equivalent to (λx.E₂) E₁

Typing rule

 $\Gamma \models E_1 : \sigma$ Γ;x: $\sigma \models E_2 : \tau$

 $\Gamma \vdash \text{let } \mathbf{x} = \mathbf{E}_1 \text{ in } \mathbf{E}_2 : \tau$

- In static semantics let x = E₁ in E₂ is not equivalent to (λx.E₂) E₁
 - In let, the type of "argument" E₁ is inferred/checked before the type of function body E₂

Iet construct enables Hindley Milner style polymorphism! Program Analysis CSCI 4450/6450, A Milanova

5

The Let Construct

- Typing rule
 - $\Gamma \models E_1 : \sigma \qquad \Gamma; x: \sigma \models E_2 : \tau$ $\Gamma \models \text{ let } x = E_1 \text{ in } E_2 : \tau$

Attribute grammar rule
E ::= let x = E₁ in E₂ $\Gamma_{E1} = \Gamma_E$ $\Gamma_{E2} = S_{E1}(\Gamma_E) + \{x:T_{E1}\}$ $T_E = T_{E2}$ $S_E = S_{E2}S_{E1}$

Typing Let Terms (Strategy 1)
(ef
$$f = \frac{\lambda \times \times}{E_{1}}$$
 in $(f 1)$
1. let t_{1} $F = CI$ $\xi t_{1} = t_{2}$ $f = t_{3}$
1. let t_{1} $F = CI$ $\xi t_{1} = t_{3}$
 $f = f + t_{3}$
 $f = f + t_{3}$
 $\xi t_{2} = t_{2}$
 $\xi t_{2} = t_{2} \to t_{3}$
 $\xi t_{3} = t_{3} \to t_{3}$
 $\xi t_{4} = t_{3}$, $t_{1} = t_{3}$

The Letrec Construct

• letrec $\mathbf{x} = \mathbf{E}_1$ in \mathbf{E}_2

- x can be referenced from within E₁
- Extends calculus with general recursion
 - No need to type fix (we can't!) but we can still type recursive functions like plus, times, etc.
- Haskell's let is a letrec actually!

∎ E.g.,

letrec plus = $\lambda x \cdot \lambda y$. if (x=0) then y else ((plus x-1) y+1) in ...

or in Haskell syntax:

let plus x y = if (x=0) then y else plus (x-1) (y+1) in ...

The Letrec Construct

• letrec $\mathbf{x} = \mathbf{E}_1$ in \mathbf{E}_2

Extensions over let rule

 1. T_{E1} is inferred in augmented environment Γ_E + {x:t_x}
 2. Must unify S_{E1}(t_x) and T_{E1}
 3. Apply substitution S on top of S_{E1}
 Note: Can merge let and letrec, in let Unify and S have no impact

Attribute grammar rule

Algorithm W, Almost There!

def W(F, E) = case E of

- c -> ([], TypeOf(c))
- ★ x -> if (x NOT in Dom(Γ)) then fail else let T_E = Γ(x);

▶
$$\lambda x.E_1 \rightarrow \text{let}(S_{E1},T_{E1}) = W(\Gamma + \{x:t_x\},E_1)$$

in (S_{E1}, S_{E1}(t_x)→T_{E1})

$$E_1 E_2 \rightarrow \text{let} (S_{E1}, T_{E1}) = W(\Gamma, E_1)$$
$$(S_{E2}, T_{E2}) = W(S_{E1}(\Gamma), E_2)$$

 $\Rightarrow S = Unify(S_{E2}(T_{E1}), T_{E2} \rightarrow t)$

in (S S_{E2} S_{E1}, S(t)) // S S_{E2} S_{E1} composes substitutions let x = E₁ in E₂ -> let (S_{E1},T_{E1}) = W(Γ ,E₁) (S_{E2},T_{E2}) = W(S_{E1}(Γ)+{x:T_{E1}},E₂) in (S_{E2} S_{E1}, T_{E2})

Algorithm W, Almost There! (merges let and letrec)

def W(Γ, E) = case E of

c -> ([], TypeOf(c)) -> if $(x \text{ NOT in Dom}(\Gamma))$ then fail Χ else let $T_E = \Gamma(x)$; in ([], T_F) $\lambda x.E_1 \rightarrow \text{let}(S_{E1},T_{E1}) = W(\Gamma + \{x: , E_1\}, E_1)$ in $(S_{F1}, S_{F1}(t_x) \rightarrow T_{F1})$ $E_1 E_2 \rightarrow let (S_{E1}, T_{E1}) = W(\Gamma, E_1)$ $(S_{E2}, T_{E2}) = W(S_{E1}(\Gamma), E_2)$ $S = Unify(S_{E2}(T_{E1}), T_{F2} \rightarrow t)$ in (S S_{F2} S_{F1}, S(t)) // S S_{F2} S_{F1} composes substitutions let $x = E_1$ in $E_2 \rightarrow let (S_{F_1}, T_{F_1}) = W(\Gamma + \{x: t_x\}, E_1)$ $S = Unify(S_{E1}(t_x), T_{E1})$ $(S_{E2}, T_{E2}) = W(S S_{E1}(\Gamma) + \{x: T_{E1}\}, E_2)$ in $(S_{F_2} S_{F_1}, T_{F_2})$

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Outline

- Simple type inference, conclusion
 - Let constructs
 - Strategy 2: on-the-fly typing
- Parametric polymorphism

Hindley Milner type inference. Algorithm W

Motivating Example

- A sound type system rejects some programs that don't get stuck
- Canonical example

let $f = \lambda x \cdot x$ in $\frac{t_{f} - b_{x} - b_{x}}{t_{f} - b_{x} - b_{x}}$ if (f true) then (f 1) else 1

- Term does not get "stuck"
- Term is NOT TYPABLE in the simply typed lambda calculus. It is typable in Hindley Milner!

Different Styles of (Parametric) Polymorphism $\frac{1}{\sqrt{7}}$

■ Impredicative polymorphism (System F) $\tau ::= b | \tau_1 \rightarrow \tau_2 | T | \forall T.\tau$ E ::= x | λx:τ.E | E₁ E₂ | ΛT.E | E [τ]

Very powerful

- Can type self application λx. x x
- Still cannot type fix!

 $\lambda x: \forall T, T \rightarrow T \cdot x [\forall T, T \rightarrow T] x$

Type inference is undecidable!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

X[VT. T->T] instantiates T with VT. T->T.

Different Styles of Polymorphism

- Predicative polymorphism
- $\rightarrow \tau ::= \mathbf{b} \mid \tau_1 \rightarrow \tau_2 \mid \mathbf{T}$
- $\rightarrow \sigma ::= \tau \mid \forall T.\sigma \mid \sigma_1 \rightarrow \sigma_2$
 - $\mathsf{E} ::= \mathbf{x} \mid \lambda \mathbf{x} : \boldsymbol{\sigma} . \mathsf{E} \mid \mathsf{E}_1 \, \mathsf{E}_2 \mid \Lambda \mathsf{T} . \mathsf{E} \mid \mathsf{E} \ [\tau]$
 - Still very powerful
 - Restricts System F by disallowing instantiation with a polymorphic type: Ε [τ] but not Ε [σ]

We cannot type $\lambda x. x x$

Type inference is still undecidable!

Different Styles of Polymorphism

Prenex polymorphism

 $\tau ::= b \mid \tau_1 {\rightarrow} \tau_2 \mid T$

- $\mathsf{E} ::= \mathsf{x} \mid \lambda \mathsf{x} : \tau . \mathsf{E} \mid \mathsf{E}_1 \, \mathsf{E}_2 \mid \Lambda \mathsf{T} . \mathsf{E} \mid \mathsf{E} \ [\tau]$
- Now type inference is decidable
- But polymorphism is limited
 - You cannot pass polymorphic functions
 - E.g., we cannot pass a sort function as argument

Different Styles of Polymorphism

- Let polymorphism
 - $\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T$
 - $\boldsymbol{\sigma} ::= \boldsymbol{\tau} \mid \forall \boldsymbol{\mathsf{T}}.\boldsymbol{\sigma}$
 - $\mathsf{E} ::= \mathsf{x} \mid \lambda \mathsf{x} : \tau . \mathsf{E} \mid \mathsf{E}_1 \mathsf{E}_2 \mid \mathsf{\Lambda} \mathsf{T} . \mathsf{E} \mid \mathsf{E}[\tau] \mid \mathsf{let} \mathsf{x} = \mathsf{E}_1 \mathsf{ in } \mathsf{E}_2$
- Like (λx.E₂) E₁ but x can be polymorphic!
- Good engineering compromise
 - Enhance expressiveness
 - Preserve decidability

This is the Hindley Milner type system

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Outline

- Simple type inference, conclusion
 - Let constructs
 - Strategy 2: on-the-fly typing
- Parametric polymorphism

Hindley Milner type inference. Algorithm W

Constraints

$$t_{f} = t_{1} \rightarrow t_{1}$$

$$t_{f} = bool \rightarrow t_{2} // \text{ at call (f true)}$$

$$t_{f} = int \rightarrow t_{3} // \text{ at call (f 1)}$$
oesn't unify!

Towards Hindley Milner

- Solution:
- Generalize the type variable in type of f
 - $\mathbf{t}_{f}: \mathbf{t}_{1} \rightarrow \mathbf{t}_{1} \text{ becomes } \mathbf{t}_{f}: \forall \mathbf{T}.\mathbf{T} \rightarrow \mathbf{T}$
- Different uses of generalized type variables are instantiated differently
 - E.g., (f true) instantiates t_f into bool→bool
 - E.g., (f 1) instantiates t_f into int→int
- When can we generalize?

Expression Syntax (to study Hindley Milner)

Expressions:

$E ::= c | x | \lambda x.E_1 | E_1 E_2 | let x = E_1 in E_2$

There are no types in the syntax

 The type of each sub-expression is derived by the Hindley Milner type inference algorithm

Type Syntax (to study Hindley Milner)

- Types (aka monotypes):
- $o \bullet \tau ::= b | \tau_1 \rightarrow \tau_2 | t$
 - E.g., int, bool, int \rightarrow bool, $t_1 \rightarrow$ int, $t_1 \rightarrow t_1$, etc.
- Type schemes (aka polymorphic types):
- σ ::= τ | ∀t.σ
 t₃ is a "free" type
 variable as it isn't
 - E.g., $\forall t_1$. $\forall t_2$. (int $\rightarrow t_1$) $\rightarrow t_2 \rightarrow t_3$ bound under \forall
 - Note: all quantifiers appear in the beginning, τ cannot contain schemes
- Type environment now

Gamma ::= Identifiers → Type schemes Program Analysis CSCI 4450/6450, A Milanova (from MIT's 2015 Program Analysis OCW)

Instantiations

- Type scheme $\sigma = \forall t_1...t_n \tau$ can be instantiated into a type τ ' by substituting types for the bound variables (**BV**) under the universal quantifier \forall
 - $\tau' = \mathbf{S} \tau$ **S** is a substitution s.t. Domain(**S**) \supseteq **BV**(σ)
 - τ ' is said to be an instance of σ ($\sigma > \tau$ ')
 - τ' is said to be a generic instance when S maps some type variables to new type variables

• E.g.,
$$\sigma = \forall t_1.t_1 \rightarrow t_2$$

• $[t_3/t_1] t_1 \rightarrow t_2 = t_3 \rightarrow t_2$ is a generic instance of σ

• [int/t₁] $t_1 \rightarrow t_2$ = int $\rightarrow t_2$ is a non-generic instance of σ

Program Analysis CSCI 4450/6450, A Milanova (from MIT's 2015 Program Analysis OCW)

Generalization (aka Closing)

• We can generalize a type τ as follows

Gen(
$$\Gamma, \tau$$
) = $\forall t_1, \dots, t_n, \tau$
where $\{t_1, \dots, t_n\} = FV(\tau) - FV(\Gamma)$

Generalization introduces polymorphism

- Quantify type variables that are free in τ but are not free in the type environment Γ
 - E.g., $Gen([],t_1 \rightarrow t_2)$ yields $\forall t_1, t_2 \rightarrow t_2 \rightarrow t_2 \rightarrow t_2$
 - E.g., $Gen([x:t_2],t_1 \rightarrow t_2)$ yields $\forall t_1.t_1 \rightarrow t_2$

Generalization, Examples

let $f = \lambda x.x$ in if (f true) then (f 1) else 1

- We'll infer type for $\lambda x.x$ using simple type inference: $t_1 \rightarrow t_1$
- Then we'll generalize that type, Gen([],t₁→t₁):
 ∀t₁.t₁→t₁
- Then we'll pass the polymorphic type into if (f true) then (f 1) else 1 and instantiate for each f in if (f true) then (f 1) else 1
 - E.g., [u₂/t₁] (t₁→t₁) where u₂ is fresh type variable at (f 1)

Generalization, Examples

- $\lambda f:t_f$. $\lambda x:t_x$. let g=f in g x
 - Gen([f:t_f,x:t_x],t_f) yields?
- Why can't we generalize t_f?
- Suppose we can generalize to ∀t_f
 - Then $\forall \mathbf{t}_{f} = \mathbf{t}_{g}$ will instantiate at $\mathbf{g} \mathbf{x}$ to some fresh \mathbf{u}
 - Then u becomes $t_x {\rightarrow} u'$ thus losing the important connection between t_x and $t_f!$
 - Thus (λf:t_f. λx:t_x. let g=f in g x) (λy.y+1) true will type-check (unsound!!!)
- DO NOT generalize variables that are mentioned in type environment **Γ**!

Hindley Milner Typing Rules

$\frac{\Gamma; \mathbf{x}: \mathbf{\tau} \mid -\mathbf{E}_1 : \mathbf{\tau} \quad \Gamma; \mathbf{x}: \mathbf{Gen}(\Gamma, \mathbf{\tau}) \mid -\mathbf{E}_2 : \mathbf{\tau}'}{\Gamma \mid -\mathbf{let} \mathbf{x} = \mathbf{E}_1 \text{ in } \mathbf{E}_2 : \mathbf{\tau}'} \quad (\text{Let})$

Type of x as inferred for E₁ is τ. Type of x in E₂ is the generalized type scheme σ = Gen(Γ,τ)

$$\frac{\mathbf{x}:\mathbf{\sigma} \in \mathbf{\Gamma} \quad \mathbf{\tau} < \mathbf{\sigma}}{\mathbf{\Gamma} \mid -\mathbf{x}:\mathbf{\tau}} \quad \text{(Var)}$$

x in E₂ of let: x is of type τ if its type σ in the environment can be instantiated to τ

(Note: remaining rules, **c**, **App**, **Abs** are as in F_1 .)

Hindley Milner Type Inference, Rough Sketch

let $\mathbf{x} = \mathbf{E}_1$ in \mathbf{E}_2

- Calculate type T_{E1} for E₁ in Γ;x:t_x using simple type inference
- 2. Generalize free type variables in T_{E1} to get the type scheme for T_{E1} (be mindful of caveat!)
- Extend environment with x:Gen(Γ,T_{E1}) and start typing
 E₂
- Every time we encounter x in E₂, instantiate its type scheme using fresh type variables
 E.g., id's type scheme is ∀t₁.t₁→t₁ so id is instantiated to u_k→u_k at (id 1)

Hindley Milner Type Inference Two ways:

Extend Strategy 1 (constraint-based typing)

Extend Strategy 2 (Algorithm W)

Strategy 1

let $f = \lambda x \cdot x$ in if (f true) then (f 1) else 1

Next, generalize $\mathbf{t}_{f}: \forall \mathbf{t}_{x}. \mathbf{t}_{x} \rightarrow \mathbf{t}_{x}$

 u_1 and u_2 are fresh type vars generated at instantiation of polymorphic type.

32

Example

• λx . let f = $\lambda y.x$ in (f true, f 1)

Strategy 2: Algorithm W

def W(Γ , E) = case E of

 u_1 to u_n are fresh type vars generated at instantiation of polymorphic type

- c -> ([], TypeOf(c))
- x -> if (x NOT in Domain(Γ)) then *fail*

else let $T_E = \Gamma(x)$

```
in case T_E of
\forall t_1,...,t_n.\tau \rightarrow ([],[u_1/t_1...,u_n/t_n]\tau)
```

// ... // continues on next slide!

Strategy 2: Algorithm W

def W(Γ, E) = case E of

```
// continues from previous slide
  // ...
E_1 E_2 \rightarrow Iet (S_{E1}, T_{E1}) = W(\Gamma, E_1)
                    (S_{F2}, T_{F2}) = W(S_{E1}(\Gamma), E_2)
                    S = Unify(S_{F2}(T_{F1}), T_{F2} \rightarrow t)
               in (S S_{F2} S_{F1}, S(t))
let x = E_1 in E_2 \rightarrow let (S_{E_1}, T_{E_1}) = W(\Gamma + \{x:t_x\}, E_1)
                                    S = Unify(S_{F1}(t_x), T_{F1})
                                     \sigma = \text{Gen}(S S_{F1}(\Gamma), S(T_{F1}))
                                     (S_{F_2}, T_{F_2}) = W(S S_{F_1}(\Gamma) + \{x:\sigma\}, E_2)
                                in (S_{F_2} S S_{F_1}, T_{F_2})
```


Example

• λx . let f = $\lambda y.x$ in (f true, f 1)

Hindley Milner Observations

 Do not generalize over type variables mentioned in type environment (they are used elsewhere)

let is the only way of defining polymorphic constructs

Generalize the types of let-bound identifiers
 only after processing their definitions

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Hindley Milner Observations

- Generates the most general type (principal type) for each term/subterm
- Type system is sound
- Complexity of Algorithm W
 - PSPACE-Hard
 - Because of nested let blocks

Hindley Milner Limitations

- Only let-bound constructs can be polymorphic and instantiated differently
 let twice f x = f (f x)
- in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x) foo g = g g succ 4 // lambda-bound in foo twice

Hindley Milner Limitations

Quiz example:

(λx. x (λy. y) (x 1)) (λz. z)

VS.

let $x = (\lambda z. z)$

in

x (λy. y) (x 1)

