Announcements

- HW6?
- Presentation guidelines are up, papers are up on schedule page as well
 1. Select available paper/slot from list
 2. If available, I assign to you, otherwise goto 1.
- 4 broad topics, but let me know if you
 - “Homework” papers on class analysis
 - ML for program analysis tasks
 - Applications of program analysis: smart contracts
 - Dynamic Binary Instrumentation (DBI)
Outline

- Simple type inference, conclusion
 - Let constructs
 - Strategy 2: on-the-fly typing

- Parametric polymorphism

- Hindley Milner type inference. Algorithm W
Simple Type Inference

- Strategy 1 solves constraints offline
 - Use typing rules to generate type constraints
 - Solve type constraints “offline”
 - Essential concepts: equality, unification and substitution

- Strategy 2 solves constraints on the fly
 - Builds the substitution map incrementally
The Let Construct

- In dynamic semantics, \texttt{let x = E_1 in E_2} is equivalent to \((\lambda x. E_2) \ E_1\)
- Typing rule
 \[
 \Gamma \vdash E_1 : \sigma \quad \Gamma; x: \sigma \vdash E_2 : \tau
 \]
 \[
 \Gamma \vdash \texttt{let x = E_1 in E_2} : \tau
 \]
- In static semantics \texttt{let x = E_1 in E_2} is not equivalent to \((\lambda x. E_2) \ E_1\)
 - In \texttt{let}, the type of “argument” \(E_1\) is inferred/checked \textbf{before} the type of function body \(E_2\)
 - \texttt{let} construct enables Hindley Milner style polymorphism!
The Let Construct

- Typing rule

\[
\Gamma \vdash E_1 : \sigma \quad \Gamma; x: \sigma \vdash E_2 : \tau \\
\Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : \tau
\]

- Attribute grammar rule

\[E ::= \text{let } x = E_1 \text{ in } E_2\]

\[\Gamma_{E_1} = \Gamma_E\]

\[\Gamma_{E_2} = S_{E_1}(\Gamma_E) + \{x : T_{E_1}\}\]

\[T_E = T_{E_2}\]

\[S_E = S_{E_2} S_{E_1}\]
Typing Let Terms (Strategy 1)

\[
\begin{align*}
\text{let } f &= \lambda x . x, \text{ in } (f \ 1) \\
\text{1. let } t_1 & \in E_2 \\
\text{2. Abs } t_2 & \in E_2 \\
\text{3. App } t_{tf} & = t_1 \rightarrow t_2 \\
\text{C: } & tf = t_2, t_2 = t_x \rightarrow t_x, t_{tf} = \text{Inl} \rightarrow t_3, t_1 = t_3
\end{align*}
\]
The **Letrec Construct**

- **letrec** \(x = E_1 \text{ in } E_2 \)
 - \(x \) can be referenced from within \(E_1 \)
 - Extends calculus with general recursion
 - No need to type **fix** (we can’t!) but we can still type recursive functions like **plus**, **times**, etc.
 - Haskell’s **let** is a **letrec** actually!

- E.g.,

  ```
  letrec plus = \( x \). \( y \). \text{if (x=0) then y else ((plus \ x-1) \ y+1) in …}
  ```

 or in Haskell syntax:

  ```
  let plus x y = if (x=0) then y else plus (x-1) (y+1) in …
  ```
The Letrec Construct

- **letrec** \(x = E_1 \) in \(E_2 \)

Extensions over let rule
1. \(T_{E_1} \) is inferred in augmented environment \(\Gamma_E + \{x:t_x\} \)
2. Must unify \(S_{E_1}(t_x) \) and \(T_{E_1} \)
3. Apply substitution \(S \) on top of \(S_{E_1} \)

Note: Can merge let and letrec, in let

Attribute grammar rule

\[
E ::= \text{letrec } x = E_1 \text{ in } E_2
\]

\[
\begin{align*}
\Gamma_{E_1} &= \Gamma_E + \{x:t_x\} \\
S &= \text{Unify}(S_{E_1}(t_x), T_{E_1}) \\
\Gamma_{E_2} &= S S_{E_1}(\Gamma_E) + \{x:T_{E_1}\} \\
T_E &= T_{E_2} \\
S_E &= S_{E_2} S S_{E_1}
\end{align*}
\]
let vs. letrec

\[
\text{let } \text{plus } = \lambda x. \lambda y. \text{if } (x=0) \text{ then } y \text{ else } ((\text{plus } x-1) \ y+1) \text{ in }
\]

...
Algorithm W, Almost There!

def W(Γ, E) = case E of

• c -> ([], TypeOf(c))

• x -> if (x NOT in Dom(Γ)) then fail
 else let T_E = Γ(x);
 in ([], T_E)

• λx.E_1 -> let (S_{E_1}, T_{E_1}) = W(Γ + { x : t_x }, E_1)
 in (S_{E_1}, S_{E_1}(t_x) → T_{E_1})

• E_1 E_2 -> let (S_{E_1}, T_{E_1}) = W(Γ, E_1)
 (S_{E_2}, T_{E_2}) = W(S_{E_1}(Γ), E_2)
 \rightarrow S = \text{Unify}(S_{E_2}(T_{E_1}), T_{E_2} → t)
 in (S S_{E_2} S_{E_1}, S(t)) \parallel S S_{E_2} S_{E_1} \text{ composes substitutions}

let x = E_1 in E_2 -> let (S_{E_1}, T_{E_1}) = W(Γ, E_1)
 (S_{E_2}, T_{E_2}) = W(S_{E_1}(Γ) + { x : T_{E_1} }, E_2)
 in (S_{E_2} S_{E_1}, T_{E_2})
def W(Γ, E) = case E of

 c -> ([]), TypeOf(c))

 x -> if (x NOT in Dom(Γ)) then fail
 else let T_E = Γ(x);
 in ([], T_E)

 λx.E_1 -> let (S_E1, T_E1) = W(Γ+{x:T_E1},E_1)
 in (S_E1, S_E1(t_x)→T_E1)

 E_1 E_2 -> let (S_E1, T_E1) = W(Γ,E_1)
 (S_E2, T_E2) = W(S_E1(Γ),E_2)
 S = Unify(S_E2(T_E1),T_E2→)
 in (S S_E2 S_E1, S(t)) // S S_E2 S_E1 composes substitutions

 let x = E_1 in E_2 -> let (S_E1, T_E1) = W(Γ+{x:T_E1},E_1)
 S = Unify(S_E1(t_x),T_E1)
 (S_E2, T_E2) = W(S S_E1(Γ)+{x:T_E1},E_2)
 in (S_E2 S S_E1, T_E2)
Simple type inference, conclusion
- Let constructs
- Strategy 2: on-the-fly typing

Parametric polymorphism

Hindley Milner type inference. Algorithm W
Motivating Example

- A sound type system rejects some programs that don’t get stuck
- Canonical example

```informal
let f = \x.x
in
if (f true) then (f 1) else 1
```

- Term does not get “stuck”
- Term is NOT TYPABLE in the simply typed lambda calculus. It is typable in Hindley Milner!
Different Styles of (Parametric) Polymorphism

- Impredicative polymorphism (System F)
 \[\tau ::= b \mid \tau_1 \to \tau_2 \mid T \mid \forall T. \tau \]
 \[E ::= x \mid \lambda x : \tau. E \mid E_1 E_2 \mid \Lambda T. E \mid E [\tau] \]

- Very powerful
 - Can type self application \(\lambda x. x \ x \)
 - Still cannot type \(\text{fix!} \)

- Type inference is undecidable!
\(\lambda x \cdot x x \) in System F

\(X[\forall T. T \to T] \) instantiates \(T \) with \(\forall T. T \to T \).

\[\sigma \quad \tau \quad (\text{return type}) \]

\[[x : \forall T. T \to T] \vdash x [\forall T. T \to T] : (\forall T. T \to T) \to (\forall T. T \to T) \]

\[[\] \vdash \lambda x : \forall T. T \to T. \ x [\forall T. T \to T] x : \forall T. T \to T \]
Different Styles of Polymorphism

- Predicative polymorphism

 \[
 \tau ::= \text{b} \mid \tau_1 \rightarrow \tau_2 \mid T
 \]

 \[
 \sigma ::= \tau \mid \forall T.\sigma \mid \sigma_1 \rightarrow \sigma_2
 \]

 \[
 E ::= x \mid \lambda x:\sigma. E \mid E_1 \ E_2 \mid \Lambda T. E \mid E [\tau]
 \]

- Still very powerful
 - Restricts System F by disallowing instantiation with a polymorphic type: \(E [\tau]\) but not \(E [\sigma]\)

- Type inference is still undecidable!
Different Styles of Polymorphism

- Prenex polymorphism
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \]
 \[\sigma ::= \tau \mid \forall T. \sigma \]
 \[E ::= x \mid \lambda x : \tau . E \mid E_1 \, E_2 \mid \Lambda T. E \mid E[\tau] \]

- Now type inference is decidable
- But polymorphism is limited
 - You cannot pass polymorphic functions
 - E.g., we cannot pass a sort function as argument
Different Styles of Polymorphism

- Let polymorphism
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid T \]
 \[\sigma ::= \tau \mid \forall T.\sigma \]
 \[E ::= x \mid \lambda x:\tau.E \mid E_1 E_2 \mid \Lambda T.E \mid E[\tau] \mid \text{let } x = E_1 \text{ in } E_2 \]

- Like \((\lambda x.E_2) E_1\) but \(x\) can be polymorphic!

- Good engineering compromise
 - Enhance expressiveness
 - Preserve decidability

- This is the Hindley Milner type system
Outline

- Simple type inference, conclusion
 - Let constructs
 - Strategy 2: on-the-fly typing

- Parametric polymorphism

- Hindley Milner type inference. Algorithm W
Towards Hindley Milner

\[
\begin{align*}
\text{let } f &= \lambda x. x \\
\text{in } & \quad \quad \text{if } (f \text{ true}) \text{ then } (f 1) \text{ else } 1
\end{align*}
\]

- Constraints
 \[
 \begin{align*}
 t_f &= t_1 \rightarrow t_1 \\
 t_f &= \text{bool} \rightarrow t_2 \quad // \text{ at call } (f \text{ true}) \\
 t_f &= \text{int} \rightarrow t_3 \quad // \text{ at call } (f 1)
 \end{align*}
 \]

- Doesn’t unify!
Towards Hindley Milner

- Solution:

- Generalize the type variable in type of f

 $t_f : t_1 \rightarrow t_1$ becomes $t_f : \forall T. T \rightarrow T$

- Different uses of generalized type variables are instantiated differently

 - E.g., $(f \text{ true})$ instantiates t_f into $\text{bool} \rightarrow \text{bool}$

 - E.g., $(f \text{ 1})$ instantiates t_f into $\text{int} \rightarrow \text{int}$

- When can we generalize?
Expression Syntax (to study Hindley Milner)

- Expressions:

 \[E ::= c \mid x \mid \lambda x. E_1 \mid E_1 E_2 \mid \text{let } x = E_1 \text{ in } E_2 \]

- There are no types in the syntax

- The type of each sub-expression is derived by the Hindley Milner type inference algorithm
Type Syntax
(to study Hindley Milner)

- Types (aka monotypes):
 - $\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t$
 - E.g., int, bool, $\text{int} \rightarrow \text{bool}$, $t_1 \rightarrow \text{int}$, $t_1 \rightarrow t_1$, etc.

- Type schemes (aka polymorphic types):
 - $\sigma ::= \tau \mid \forall t. \sigma$
 - E.g., $\forall t_1. \forall t_2. (\text{int} \rightarrow t_1) \rightarrow t_2 \rightarrow t_3$
 - Note: all quantifiers appear in the beginning, τ cannot contain schemes

- Type environment now

\[\Gamma ::= \text{Identifiers} \rightarrow \text{Type schemes} \]
Instantiations

- Type scheme $\sigma = \forall t_1...t_n.\tau$ can be instantiated into a type τ' by substituting types for the bound variables (BV) under the universal quantifier \forall.
- $\tau' = S \tau$ S is a substitution s.t. Domain(S) \supseteq BV(σ)
- τ' is said to be an instance of σ ($\sigma \succ \tau'$)
- τ' is said to be a generic instance when S maps some type variables to new type variables

- E.g., $\sigma = \forall t_1.t_1\rightarrow t_2$
 - $[t_3/t_1] t_1\rightarrow t_2 = t_3\rightarrow t_2$ is a generic instance of σ
 - $[\text{int}/t_1] t_1\rightarrow t_2 = \text{int}\rightarrow t_2$ is a non-generic instance of σ
Generalization (aka Closing)

- We can generalize a type τ as follows
 \[
 \text{Gen}(\Gamma, \tau) = \forall t_1, \ldots, t_n. \tau
 \]
 where $\{t_1, \ldots, t_n\} = \text{FV}(\tau) - \text{FV}(\Gamma)$

- Generalization introduces polymorphism

- Quantify type variables that are free in τ but are not free in the type environment Γ
 - E.g., $\text{Gen}(\[], t_1 \rightarrow t_2)$ yields $\forall t_1, t_2. t_1 \rightarrow t_2$
 - E.g., $\text{Gen}([x: t_2], t_1 \rightarrow t_2)$ yields $\forall t_1. t_1 \rightarrow t_2$
Generalization, Examples

\[\text{let } f = \lambda x.x \text{ in } \begin{cases} \text{if } (f \text{ true}) \text{ then } (f \ 1) \text{ else } 1 \end{cases} \]

- We’ll infer type for \(\lambda x.x \) using simple type inference: \(t_1 \rightarrow t_1 \)
- Then we’ll generalize that type, \(\text{Gen}([], t_1 \rightarrow t_1) \): \(\forall t_1. t_1 \rightarrow t_1 \)
- Then we’ll pass the polymorphic type into \(\begin{cases} \text{if } (f \text{ true}) \text{ then } (f \ 1) \text{ else } 1 \end{cases} \) and instantiate for each \(f \) in \(\begin{cases} \text{if } (f \text{ true}) \text{ then } (f \ 1) \text{ else } 1 \end{cases} \)
 - E.g., \([u_2/t_1] \ (t_1 \rightarrow t_1)\) where \(u_2 \) is fresh type variable at \((f \ 1) \)
Generalization, Examples

- \(\lambda f : t_f. \; \lambda x : t_x. \; \text{let } g = f \text{ in } g \; x \)
 - \(\text{Gen}([f : t_f, x : t_x], t_f) \) yields?

Why can’t we generalize \(t_f \)?

Suppose we can generalize to \(\forall t_f \)
- Then \(\forall t_f = t_g \) will instantiate at \(g \; x \) to some fresh \(u \)
- Then \(u \) becomes \(t_x \rightarrow u’ \) thus losing the important connection between \(t_x \) and \(t_f \)!
- Thus \((\lambda f : t_f. \; \lambda x : t_x. \; \text{let } g = f \text{ in } g \; x) \) \((\lambda y. y+1) \) \text{ true} \) will type-check (unsound!!)

DO NOT generalize variables that are mentioned in type environment \(\Gamma \)!
Hindley Milner Typing Rules

\[\Gamma; x : \tau \mid- E_1 : \tau \quad \Gamma; x : \text{Gen} (\Gamma, \tau) \mid- E_2 : \tau' \]
\[\Gamma \mid- \text{let } x = E_1 \text{ in } E_2 : \tau' \]

(Let)

- Type of \(x \) as inferred for \(E_1 \) is \(\tau \). Type of \(x \) in \(E_2 \) is the generalized type scheme \(\sigma = \text{Gen}(\Gamma, \tau) \)

\[x : \sigma \in \Gamma \quad \tau < \sigma \]
\[\Gamma \mid- x : \tau \]

(Var)

- \(x \) in \(E_2 \) of let: \(x \) is of type \(\tau \) if its type \(\sigma \) in the environment can be instantiated to \(\tau \)

(Note: remaining rules, \(c, \text{App}, \text{Abs} \) are as in \(F_1 \).)
Hindley Milner Type Inference, Rough Sketch

let x = E₁ in E₂

1. Calculate type $T_{E₁}$ for $E₁$ in $\Gamma;x:t_x$ using simple type inference

2. Generalize free type variables in $T_{E₁}$ to get the type scheme for $T_{E₁}$ (be mindful of caveat!)

3. Extend environment with $x:Gen(\Gamma,T_{E₁})$ and start typing $E₂$

4. Every time we encounter x in $E₂$, instantiate its type scheme using fresh type variables

E.g., id’s type scheme is $\forall t₁.t₁→t₁$ so id is instantiated to $u_k→u_k$ at (id 1)
Hindley Milner Type Inference

- Two ways:
 - Extend Strategy 1 (constraint-based typing)
 - Extend Strategy 2 (Algorithm W)
Strategy 1

let $f = \lambda x.x$ in if (f true) then (f 1) else 1

1. let $\Gamma = []$
 $t_1 = t_3$
 $\Gamma = [f: t_f]$
 $\Gamma = [f: t_f, x: t_x]$
 $t_2 = t_x \rightarrow t_x$

2. Abs

3. if-then-else
 $t_3 = t_5 = \text{int}$
 $t_4 = \text{bool}$

4. App

5. App

Next, generalize $t_f: \forall t_x. t_x \rightarrow t_x$

$u_1 \rightarrow u_1 = \text{bool} \rightarrow t_4$ $u_2 \rightarrow u_2 = \text{int} \rightarrow t_5$

f true f 1

u_1 and u_2 are fresh type vars generated at instantiation of polymorphic type.
Example

\[\lambda x. \text{let } f = \lambda y. x \text{ in } (f \text{ true}, f \text{ 1}) \]
def $W(\Gamma, E) = \text{case } E \text{ of}$

- $c \rightarrow ([], \text{TypeOf}(c))$
- $x \rightarrow \text{if } (x \text{ NOT in Domain}(\Gamma)) \text{ then fail}$

 else let $T_E = \Gamma(x)$

 in case T_E of

 - $\forall t_1,...t_n.\tau \rightarrow ([],[u_1/t_1...u_n/t_n] \tau)$

 - $\rightarrow ([], T_E)$

- $\lambda x. E_1 \rightarrow \text{let } (S_{E_1}, T_{E_1}) = W(\Gamma+\{x:t_x\}, E_1)$

 in $(S_{E_1}, S_{E_1}(t_x)\rightarrow T_{E_1})$

// ...

// continues on next slide!

u_1 to u_n are fresh type vars generated at instantiation of polymorphic type
def W(Γ, E) = case E of

 // continues from previous slide
 // ...

 E₁ E₂ -> let (S₁,E₁) = W(Γ,E₁)
 (S₂,E₂) = W(S₁(Γ),E₂)
 S = Unify(S₂(E₁),E₂→t)
 in (S₂ S₁ S₁, S(t))

let x = E₁ in E₂ -> let (S₁,E₁) = W(Γ+{x:t,x},E₁)
 S = Unify(S₁(t,x),E₁)
 σ = Gen(S₁(Γ), S(T₁))
 (S₂,E₂) = W(S₂ S₁(Γ)+{x:σ},E₂)
 in (S₂ S₁ S₁, E₂)
Strategy 2 Example

let f = \(\lambda x.x \) in if (f true) then (f 1) else 1

1. let \(\Gamma = [] \)
 \(T_1 = \text{int} \)
 \(S_1 = ... \)

2. Abs \(f \)
 \(T_2 = t_x \rightarrow t_x \)
 \(S_2 = [] \)
 \(\Gamma = [x:t_x] \)

3. if-then-else
 \(\Gamma = [f: \forall t_x.t_x \rightarrow t_x] \)
 \(T_3 = \text{int} \)
 \(S_3 = ... \)

4. App \(f \)
 \(\Gamma = [] \)
 \(T_4 = \text{bool} \)
 \(S_4 = [\text{bool}/t_4][\text{bool}/u_1] \)

5. App \(f \)
 \(\Gamma = [x:t_x] \)
 \(T_5 = \text{int} \)
 \(S_5 = [\text{int}/t_5][\text{int}/u_2] \)

No constraint, types 2. Abs immediately: \(T_2 = t_x \rightarrow t_x : [t_x \rightarrow t_x/t_2] \)
\(\sigma = \text{Gen}([],t_x \rightarrow t_x) = \forall t_x. t_x \rightarrow t_x \)
Example

\(\lambda x. \text{let } f = \lambda y. x \text{ in } (f \text{ true, } f \text{ 1}) \)
Hindley Milner Observations

- Do not generalize over type variables mentioned in type environment (they are used elsewhere)

- `let` is the only way of defining polymorphic constructs

- Generalize the types of `let`-bound identifiers only after processing their definitions
Hindley Milner Observations

- Generates the most general type (principal type) for each term/subterm
- Type system is sound

Complexity of Algorithm W
- PSPACE-Hard
- Because of nested let blocks
Hindley Milner Limitations

- Only let-bound constructs can be polymorphic and instantiated differently

```
let twice f x = f (f x)

in twice twice succ 4 // let-bound polymorphism
```

```
let twice f x = f (f x)

foo g = g g succ 4 // lambda-bound

in foo twice
```
Hindley Milner Limitations

Quiz example:

\((\lambda x. x (\lambda y. y) (x 1)) (\lambda z. z)\)

vs.

\(\text{let } x = (\lambda z. z)\)
\(\text{in}\)
\(x (\lambda y. y) (x 1)\)