
Hindley Milner Type Inference

Announcements

n HW6?
n Presentation guidelines are up, papers are

up on schedule page as well
n 1. Select available paper/slot from list
n 2. If available, I assign to you, otherwise goto 1.

n 4 broad topics, but let me know if you
n “Homework” papers on class analysis
n ML for program analysis tasks
n Applications of program analysis: smart contracts
n Dynamic Binary Instrumentation (DBI) 2

Outline

n Simple type inference, conclusion
n Let constructs
n Strategy 2: on-the-fly typing

n Parametric polymorphism

n Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova 3

Simple Type Inference

n Strategy 1 solves constraints offline
n Use typing rules to generate type constraints
n Solve type constraints “offline”
n Essential concepts: equality, unification and

substitution

n Strategy 2 solves constraints on the fly
n Builds the substitution map incrementally

Program Analysis CSCI 4450/6450, A Milanova 4

The Let Construct

n In dynamic semantics, let x = E1 in E2 is
equivalent to (lx.E2) E1

n Typing rule

n In static semantics let x = E1 in E2 is not equivalent
to (lx.E2) E1
n In let, the type of “argument” E1 is inferred/checked

before the type of function body E2

n let construct enables Hindley Milner style polymorphism!
Program Analysis CSCI 4450/6450, A Milanova 5

Γ |- E1 : σ Γ;x:σ |- E2 : τ
Γ |- let x = E1 in E2 : τ

The Let Construct

n Typing rule

n Attribute grammar rule
E ::= let x = E1 in E2 ΓE1 = ΓE

ΓE2 = SE1(ΓE) + {x:TE1}
TE = TE2 SE = SE2 SE1

Program Analysis CSCI 4450/6450, A Milanova 6

Γ |- E1 : σ Γ;x:σ |- E2 : τ
Γ |- let x = E1 in E2 : τ

Typing Let Terms (Strategy 1)

7

The Letrec Construct

n letrec x = E1 in E2
n x can be referenced from within E1

n Extends calculus with general recursion
n No need to type fix (we can’t!) but we can still type

recursive functions like plus, times, etc.
n Haskell’s let is a letrec actually!

n E.g.,
letrec plus = lx.ly. if (x=0) then y else ((plus x-1) y+1) in …
or in Haskell syntax:
let plus x y = if (x=0) then y else plus (x-1) (y+1) in …

8

The Letrec Construct

n letrec x = E1 in E2

n Attribute grammar rule
E ::= letrec x = E1 in E2 ΓE1 = ΓE + {x:tx}

S = Unify(SE1(tx),TE1)
ΓE2 = S SE1(ΓE) + {x:TE1}
TE = TE2 SE = SE2 S SE1

Program Analysis CSCI 4450/6450, A Milanova 9

Extensions over let rule
1. TE1 is inferred in augmented
environment ΓE + {x:tx}
2. Must unify SE1(tx) and TE1
3. Apply substitution S on top of SE1
Note: Can merge let and letrec, in let
Unify and S have no impact

let vs. letrec

let plus = lx.ly. if (x=0) then y else ((plus x-1) y+1) in
…

10

Algorithm W, Almost There!
def W(Γ, E) = case E of

c -> ([], TypeOf(c))
x -> if (x NOT in Dom(Γ)) then fail

else let TE = Γ(x);
in ([], TE)

lx.E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t)) // S SE2 SE1 composes substitutions
let x = E1 in E2 -> let (SE1,TE1) = W(Γ,E1)

(SE2,TE2) = W(SE1(Γ)+{x:TE1},E2)
in (SE2 SE1, TE2)

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 11

def W(Γ, E) = case E of
c -> ([], TypeOf(c))
x -> if (x NOT in Dom(Γ)) then fail

else let TE = Γ(x);
in ([], TE)

lx.E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t)) // S SE2 SE1 composes substitutions
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify(SE1(tx),TE1)
(SE2,TE2) = W(S SE1(Γ)+{x:TE1},E2)

in (SE2 S SE1, TE2)
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 12

Algorithm W, Almost There!
(merges let and letrec)

Outline

n Simple type inference, conclusion
n Let constructs
n Strategy 2: on-the-fly typing

n Parametric polymorphism

n Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova 13

Motivating Example

n A sound type system rejects some programs
that don’t get stuck

n Canonical example
let f = lx.x
in
if (f true) then (f 1) else 1

n Term does not get “stuck”
n Term is NOT TYPABLE in the simply typed

lambda calculus. It is typable in Hindley Milner!
14

Different Styles of (Parametric)
Polymorphism

n Impredicative polymorphism (System F)
τ ::= b | τ1®τ2 | T | T.τ
E ::= x | lx:τ.E | E1 E2 | ΛT.E | E [τ]

n Very powerful
n Can type self application lx. x x
n Still cannot type fix!

n Type inference is undecidable!
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 15

∀ Can instantiate with
polymorphic type!

16

Different Styles of Polymorphism

n Predicative polymorphism
τ ::= b | τ1®τ2 | T
σ ::= τ | T.σ | σ1®σ2
E ::= x | lx:σ.E | E1 E2 | ΛT.E | E [τ]

n Still very powerful
n Restricts System F by disallowing instantiation

with a polymorphic type: E [τ] but not E [σ]
n Type inference is still undecidable!
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 17

∀

Different Styles of Polymorphism

n Prenex polymorphism
τ ::= b | τ1®τ2 | T
σ ::= τ | T.σ
E ::= x | lx:τ.E | E1 E2 | ΛT.E | E [τ]

n Now type inference is decidable
n But polymorphism is limited

n You cannot pass polymorphic functions
n E.g., we cannot pass a sort function as argument

18

∀

Different Styles of Polymorphism

n Let polymorphism
τ ::= b | τ1®τ2 | T
σ ::= τ | T.σ
E ::= x | lx:τ.E | E1 E2 | ΛT.E | E[τ] | let x = E1 in E2

n Like (lx.E2) E1 but x can be polymorphic!
n Good engineering compromise

n Enhance expressiveness
n Preserve decidability

n This is the Hindley Milner type system
Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 19

∀

Outline

n Simple type inference, conclusion
n Let constructs
n Strategy 2: on-the-fly typing

n Parametric polymorphism

n Hindley Milner type inference. Algorithm W

Program Analysis CSCI 4450/6450, A Milanova 20

Towards Hindley Milner

let f = lx.x
in
if (f true) then (f 1) else 1

n Constraints
tf = t1®t1

tf = bool®t2 // at call (f true)
tf = int®t3 // at call (f 1)

n Doesn’t unify!
21Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Towards Hindley Milner

n Solution:
n Generalize the type variable in type of f

tf : t1®t1 becomes tf : T.T®T
n Different uses of generalized type variables

are instantiated differently
n E.g., (f true) instantiates tf into bool®bool
n E.g., (f 1) instantiates tf into int®int

n When can we generalize?

22

∀

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Expression Syntax
(to study Hindley Milner)

n Expressions:
E ::= c | x | lx.E1 | E1 E2 | let x = E1 in E2

n There are no types in the syntax

n The type of each sub-expression is derived
by the Hindley Milner type inference
algorithm

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 23

Type Syntax
(to study Hindley Milner)

n Types (aka monotypes):
n τ ::= b | τ1®τ2 | t
n E.g., int, bool, int®bool, t1®int, t1®t1, etc.

n Type schemes (aka polymorphic types):
n σ ::= τ | t.σ
n E.g., t1. t2.(int®t1)®t2®t3

n Note: all quantifiers appear in the beginning, τ cannot
contain schemes

n Type environment now
Gamma ::= Identifiers à Type schemes

24

t is a type variable

∀
∀ ∀

t3 is a “free” type
variable as it isn’t
bound under ∀

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW)

Instantiations

n Type scheme σ = t1…tn.τ can be instantiated
into a type τ’ by substituting types for the bound
variables (BV) under the universal quantifier
n τ’ = S τ S is a substitution s.t. Domain(S) BV(σ)
n τ’ is said to be an instance of σ (σ > τ’)
n τ’ is said to be a generic instance when S maps

some type variables to new type variables
n E.g., σ = t1.t1®t2

n [t3/t1] t1®t2 = t3®t2 is a generic instance of σ
n [int/t1] t1®t2 = int®t2 is a non-generic instance of σ

25

∀

∀

∀

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW)

⊇

Generalization (aka Closing)

n We can generalize a type τ as follows
Gen(Γ,τ) = t1,…tn.τ

where {t1…tn} = FV(τ) – FV(Γ)
n Generalization introduces polymorphism
n Quantify type variables that are free in τ but are not

free in the type environment Γ
n E.g., Gen([],t1®t2) yields
n E.g., Gen([x:t2],t1®t2) yields

26

∀

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW)

t1,t2.t1®t2∀
t1.t1®t2∀

Generalization, Examples

let f = lx.x in if (f true) then (f 1) else 1
n We’ll infer type for lx.x using simple type

inference: t1®t1

n Then we’ll generalize that type, Gen([],t1®t1):
t1.t1®t1

n Then we’ll pass the polymorphic type into
if (f true) then (f 1) else 1 and instantiate for
each f in if (f true) then (f 1) else 1
n E.g., [u2/t1] (t1®t1) where u2 is fresh type

variable at (f 1) 27

∀

Generalization, Examples

n λf:tf. λx:tx. let g=f in g x
n Gen([f:tf,x:tx],tf) yields?

n Why can’t we generalize tf?
n Suppose we can generalize to tf

n Then tf = tg will instantiate at g x to some fresh u
n Then u becomes tx®u’ thus losing the important

connection between tx and tf!
n Thus (λf:tf. λx:tx. let g=f in g x) (λy.y+1) true will

type-check (unsound!!!)
n DO NOT generalize variables that are mentioned in

type environment Γ! 28

∀

∀

Hindley Milner Typing Rules

n Type of x as inferred for E1 is τ. Type of x in E2 is
the generalized type scheme σ = Gen(Γ,τ)

n x in E2 of let: x is of type τ if its type σ in the
environment can be instantiated to τ

(Note: remaining rules, c, App, Abs are as in F1.)
Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 29

Γ;x:τ |- E1 : τ Γ;x:Gen(Γ,τ) |- E2 : τ’
Γ |- let x = E1 in E2 : τ’

Γ |- x : τ
x:σ Γ τ<σ∈

(Let)

(Var)

Hindley Milner Type Inference,
Rough Sketch

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx using simple type

inference
2. Generalize free type variables in TE1 to get the type

scheme for TE1 (be mindful of caveat!)
3. Extend environment with x:Gen(Γ,TE1) and start typing

E2

4. Every time we encounter x in E2, instantiate its type
scheme using fresh type variables
E.g., id’s type scheme is t1.t1®t1 so id is
instantiated to uk®uk at (id 1)

30

∀

Hindley Milner Type Inference

n Two ways:

n Extend Strategy 1 (constraint-based typing)

n Extend Strategy 2 (Algorithm W)

Program Analysis CSCI 4450/6450, A Milanova 31

Strategy 1

let f = lx.x in if (f true) then (f 1) else 1

32

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [f:tf,x:tx]

t2 = tx®tx

3. if-then-else

Next, generalize tf: tx. tx®tx

Γ = [f: tx.tx®tx]∀

∀

4. App 5. App

f true

1
u1®u1 = bool®t4

f 1

u2®u2 = int®t5

t3= t5 = int
t4 = bool

u1 and u2 are fresh type vars generated
at instantiation of polymorphic type.

t1 = t3

Example

n lx. let f = ly.x in (f true, f 1)

Program Analysis CSCI 4450/6450, A Milanova 33

def W(Γ, E) = case E of
c -> ([], TypeOf(c))
x -> if (x NOT in Domain(Γ)) then fail

else let TE = Γ(x)
in case TE of

t1,...tn.τ -> ([],[u1/t1...un/tn] τ)
_ -> ([], TE)

lx.E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

// ...
// continues on next slide!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 34

Strategy 2: Algorithm W

∀

u1 to un are fresh type vars generated
at instantiation of polymorphic type

def W(Γ, E) = case E of
// continues from previous slide
// ...

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t))
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify(SE1(tx),TE1)
σ = Gen(S SE1(Γ), S(TE1))
(SE2,TE2) = W(S SE1(Γ)+{x:σ},E2)

in (SE2 S SE1, TE2)

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 35

Strategy 2: Algorithm W

Strategy 2 Example

let f = lx.x in if (f true) then (f 1) else 1

36

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = []

Γ = [x:tx]

T2 = tx®tx
S2 = []

3. if-then-else

Γ = [f: tx.tx®tx]∀

No constraint, types 2. Abs
immediately: T2 = tx®tx: [tx®tx/t2]
σ = Gen([],tx®tx) = tx. tx®tx∀

4. App 5. App

f true

1
T4 = bool
S4 = [bool/t4][bool/u1]

f 1

T3 = int
S3 = ...

T = u1®u1
S = [] From Unify(u1®u1, bool®t4)

T5 = int
S5 = [int/t5][int/u2]

T1 = int
S1 = ...

Example

n lx. let f = ly.x in (f true, f 1)

Program Analysis CSCI 4450/6450, A Milanova 37

Hindley Milner Observations

n Do not generalize over type variables
mentioned in type environment (they are
used elsewhere)

n let is the only way of defining polymorphic
constructs

n Generalize the types of let-bound identifiers
only after processing their definitions

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 38

Hindley Milner Observations

n Generates the most general type (principal
type) for each term/subterm

n Type system is sound

n Complexity of Algorithm W
n PSPACE-Hard
n Because of nested let blocks

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 39

Hindley Milner Limitations

n Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound

in foo twice
Program Analysis CSCI 4450/6450, A Milanova 40

Hindley Milner Limitations

n Quiz example:
(lx. x (ly. y) (x 1)) (lz. z)

vs.
let x = (lz. z)
in

x (ly. y) (x 1)

Program Analysis CSCI 4450/6450, A Milanova 41

Program Analysis CSCI 4450/6450, A Milanova 42

