
Hindley Milner Type Inference, cont.

Announcements

n HW6?

n Please sign up for papers

Program Analysis CSCI 4450/6450, A Milanova 2

Outline

n Hindley Milner type inference
n Expression and type syntax
n Instantiations and generalization
n Typing rules
n Type inference

n Strategy 1 or
n Strategy 2 as known as Algorithm W

n Observations and examples

n Haskell records and monads 3

Varieties of Polymorphism

n Subtype polymorphism
n Code can use a subclass B where a superclass

A is expected; discussed earlier, gives rise to
class analysis

n Standard in object-oriented languages

Program Analysis CSCI 4450/6450, A Milanova 4

Varieties of Polymorphism

n Parametric polymorphism
n Code has a type as parameter
n Type parameter can be explicit or implicit
n Standard in functional programming languages

n Ad-hoc polymorphism (overloading)

Program Analysis CSCI 4450/6450, A Milanova 5

Parametric Polymorphism

n Ada, Clu, C++, Java, Haskell (type classes)
n Explicit parametric polymorphism is also

known as genericity
n C++ templates:

template<class V>
class list_node {
list_node<V>* prev;
…

}
Program Analysis CSCI 4450/6450, A Milanova 6

template<class V>
class list {
list_node<V> header;
…

}

Parametric Polymorphism

n Java generics, e.g., bounded polymorphism:
class MyList1<E extends Object> {

void m(E p) {
p.intValue();

//compile-time error; Object
//does not have intValue()

}
}
class MyList2<E extends Number> {

void m(E p) {
p.intValue(); //OK. Number has intValue()

}
}Program Analysis CSCI 4450/6450, A Milanova 7

Parametric Polymorphism

n Instantiations respect the bound
class MyList2<E extends Number> {

void m(E arg) {
arg.intValue(); //OK. Number has intValue()

}
}

MyList2<String> ls = new MyList2<String>();

MyList2<Integer> li = …

Program Analysis CSCI 4450/6450, A Milanova 8

Parametric Polymorphism

n Haskell type classes:
sum :: (Num t1) => t1 -> [t1] -> t1
sum n [] = n
sum n (x:xs) = sum (n+x) xs

n t1 is a type parameter
n (Num t1) is a predicate in type definition
n (Num t1) constrains the types we can

instantiate the generic function with
Program Analysis CSCI 4450/6450, A Milanova 9

Let Polymorphism

n Haskell and ML
n Known as ML-style polymorphism, or
n Hindley Milner polymorphism

let f = \x -> x in if (f True) then (f 1) else 0

twice f x = f (f x)
twice twice (\x -> x+1) 4

Program Analysis CSCI 4450/6450, A Milanova 10

Towards Hindley Milner

let f = lx.x
in
if (f true) then (f 1) else 1

n Constraints
tf = t1®t1

tf = bool®t2 // at call (f true)
tf = int®t3 // at call (f 1)

n Doesn’t unify!
11Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Expression Syntax
(to study Hindley Milner)

n Expressions:
E ::= c | x | lx.E1 | E1 E2 | let x = E1 in E2

n There are no types in the syntax

n The type of each sub-expression is derived
by the Hindley Milner type inference
algorithm

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 12

Type Syntax
(to study Hindley Milner)

n Types (aka monotypes):
n τ ::= b | τ1®τ2 | t
n E.g., int, bool, int®bool, t1®int, t1®t1, etc.

n Type schemes (aka polymorphic types):
n σ ::= τ | t.σ
n E.g., t1. t2.(int®t1)®t2®t3

n Note: all quantifiers appear in the beginning, τ cannot
contain schemes

n Type environment now
Γ ::= Identifiers à Type schemes

13

t is a type variable

∀
∀ ∀

t3 is a “free” type
variable as it isn’t
bound under ∀

Instantiations

n Type scheme σ = t1…tn.τ can be instantiated
into a type τ’ by substituting types for the bound
variables (BV) under the universal quantifier
n τ’ = S τ S is a substitution s.t. Domain(S) BV(σ)
n τ’ is said to be an instance of σ (σ > τ’)
n τ’ is said to be a generic instance when S maps

some type variables to new type variables
n E.g., σ = t1.t1®t2

14

∀

∀

∀

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW)

⊇

Generalization (aka Closing)

n We can generalize a type τ as follows
Gen(Γ,τ) = t1,…tn.τ

where {t1…tn} = FV(τ) – FV(Γ)
n Generalization introduces polymorphism
n Quantify type variables that are free in τ but are not

free in the type environment Γ
n E.g., Gen([],t1®t2) yields
n E.g., Gen([x:t2],t1®t2) yields

15

∀

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW)

Generalization, Examples

let f = lx.x in if (f true) then (f 1) else 1
n We’ll infer type for lx.x using simple type

inference: t1®t1

n Then we’ll generalize that type, Gen([],t1®t1):
t1.t1®t1

n Then we’ll pass the polymorphic type into
if (f true) then (f 1) else 1 and instantiate for
each f in if (f true) then (f 1) else 1
n E.g., [u2/t1] (t1®t1) where u2 is fresh type

variable at (f 1) 16

∀

Generalization, Examples

n λf. λx. let g=f in g x
n Gen([f:tf,x:tx],tf) yields?

n Why can’t we generalize tf?
n Suppose we can generalize to tf.tf

n Then tf.tf will instantiate at g x to some fresh u
n Then u becomes tx®u’ thus losing the important

connection between tx and tf!
n Thus (λf. λx. let g=f in g x) (λy.y+1) true will type-

check (unsound!!!)
n DO NOT generalize variables that are mentioned in

type environment Γ! 17

∀

∀

Hindley Milner Typing Rules

n Type of x as inferred for E1 is τ. Type of x in E2 is
the generalized type scheme σ = Gen(Γ,τ)

n x in E2 of let: x is of type τ if its type σ in the
environment can be instantiated to τ

(Note: remaining rules, c, App, Abs are as in F1.)
Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 18

Γ;x:τ |- E1 : τ Γ;x:Gen(Γ,τ) |- E2 : τ’
Γ |- let x = E1 in E2 : τ’

Γ |- x : τ
x:σ Γ τ<σ∈

(Let)

(Var)

Outline

n Hindley Milner type inference
n Expression and type syntax
n Instantiations and generalization
n Typing rules
n Type inference

n Strategy 1 or
n Strategy 2 as known as Algorithm W

n Observations and examples

n Haskell records and monads 19

Hindley Milner Type Inference,
Rough Sketch

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx using simple type

inference
2. Generalize free type variables in TE1 to get the type

scheme for TE1 (be mindful of caveat!)
3. Extend environment with x:Gen(Γ,TE1) and start typing

E2

4. Every time we encounter x in E2, instantiate its type
scheme using fresh type variables
E.g., id’s type scheme is t1.t1®t1 so id is
instantiated to uk®uk at (id 1)

20

∀

Hindley Milner Type Inference

n Two ways:

n Extend Strategy 1 (constraint-based typing)

n Extend Strategy 2 (Algorithm W)

Program Analysis CSCI 4450/6450, A Milanova 21

Strategy 1

let f = lx.x in if (f true) then (f 1) else 1

22

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [f:tf,x:tx]

t2 = tx®tx

3. if-then-else

Next, generalize tf: tx. tx®tx

Γ = [f: tx.tx®tx]∀

∀

4. App 5. App

f true

1
u1®u1 = bool®t4

f 1

u2®u2 = int®t5

t3= t5 = int
t4 = bool

u1 and u2 are fresh type vars generated
at instantiation of polymorphic type.

t1 = t3

Example

n lx. let f = ly.x in (f true, f 1)

Program Analysis CSCI 4450/6450, A Milanova 23

def W(Γ, E) = case E of
c -> ([], TypeOf(c))
x -> if (x NOT in Domain(Γ)) then fail

else let TE = Γ(x)
in case TE of

t1,...tn.τ -> ([],[u1/t1...un/tn] τ)
_ -> ([], TE)

lx.E1 -> let (SE1,TE1) = W(Γ+{x:tx},E1)
in (SE1, SE1(tx)®TE1)

// ...
// continues on next slide!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 24

Strategy 2: Algorithm W

∀

u1 to un are fresh type vars generated
at instantiation of polymorphic type

def W(Γ, E) = case E of
// continues from previous slide
// ...

E1 E2 -> let (SE1,TE1) = W(Γ,E1)
(SE2,TE2) = W(SE1(Γ),E2)
S = Unify(SE2(TE1),TE2®t)

in (S SE2 SE1, S(t))
let x = E1 in E2 -> let (SE1,TE1) = W(Γ+{x:tx},E1)

S = Unify(SE1(tx),TE1)
σ = Gen(S SE1(Γ), S(TE1))
(SE2,TE2) = W(S SE1(Γ)+{x:σ},E2)

in (SE2 S SE1, TE2)

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 25

Strategy 2: Algorithm W

Strategy 2 Example

let f = lx.x in if (f true) then (f 1) else 1

26

1. let

f 2. Abs

x lx: tx

Γ = []

Γ = [f:tf]

Γ = [x:tx,f:tf]

T2 = tx®tx
S2 = []

3. if-then-else

Γ = [f: tx.tx®tx]∀

No constraint, types 2. Abs
immediately: T2 = tx®tx: [tx®tx/t2]
σ = Gen([],tx®tx) = tx. tx®tx∀

4. App 5. App

f true

1
T4 = bool
S4 = [bool/t4][bool/u1]

f 1

T3 = int
S3 = ...

T = u1®u1
S = [] From Unify(u1®u1, bool®t4)

T5 = int
S5 = [int/t5][int/u2]

T1 = int
S1 = ...

Hindley Milner Observations

n Do not generalize over type variables
mentioned in type environment (they are
used elsewhere)

n let is the only way of defining polymorphic
constructs

n Generalize the types of let-bound identifiers
only after processing their definitions

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 27

Hindley Milner Observations

n Generates the most general type (principal
type) for each term/subterm

n Type system is sound

n Complexity of Algorithm W
n PSPACE-Hard
n Because of nested let blocks

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 28

Hindley Milner Limitations

n Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

Program Analysis CSCI 4450/6450, A Milanova 29

Hindley Milner Limitations

n Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound

in foo twice

Program Analysis CSCI 4450/6450, A Milanova 30

Hindley Milner Limitations

n Another example:
(lx. x (ly. y) (x 1)) (lz. z)

vs.
let x = (lz. z)
in

x (ly. y) (x 1)

Program Analysis CSCI 4450/6450, A Milanova 31

Outline

n Hindley Milner type inference
n Expression and type syntax
n Instantiations and generalization
n Typing rules
n Type inference

n Strategy 1 or
n Strategy 2 as known as Algorithm W

n Observations and examples

n Haskell records and monads 32

Haskell Records

{- Constraint environment. -}
type Constraints = [(Type, Type)]
data ConstraintEnv = CEnv

{
constraints :: Constraints
, var :: Int
, tenv :: TEnv
}

cenv = Cenv { constraints=[], var=0, tenv=[] } ;; new environment
… constraints cenv … var cenv … tenv cenv … ;; field accessors

Program Analysis CSCI 4450/6450, A Milanova 33

Monad Quote

n “A monad is just a monoid in the category of
endofunctors, what's the problem?”

n Monad type class and the monad laws
n Maybe monad
n List monad
n IO monad
n State monad
Program Analysis CSCI 4450/6450, A Milanova 34

Monads

n A way to cleanly compose computations
n E.g., f may return a value of type a or Nothing
Composing computations becomes tedious:
case (f s) of

Nothing à Nothing
Just m à case (f m) …

n In Haskell, monads model IO and other
imperative features

Program Analysis CSCI 4450/6450, A Milanova 35

An Example: Cloned Sheep

type Sheep = …
father :: Sheep à Maybe Sheep
father = ...
mother :: Sheep à Maybe Sheep
mother = …
(Note: a sheep has both parents; a cloned sheep has one)
maternalGrandfather :: Sheep à Maybe Sheep
maternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à father m

Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial) 36

An Example

mothersPaternalGrandfather :: Sheep à Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à case (father m) of

Nothing à Nothing
Just gf à father gf

n Tedious, unreadable, difficult to maintain
n Monads help!

37Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial)

The Monad Class

n Haskell’s Monad type class requires 2
operations, >>= (bind) and return

class Monad m where
// >>= (the bind operation) takes a monad
// m a, and a function that takes a and turns
// it into a monad m b, and returns m b
(>>=) :: m a à (a à m b) à m b
// return encapsulates a value into the monad
return :: a à m a

38

The Maybe Monad

instance Monad Maybe where
Nothing >>= f = Nothing
(Just x) >>= f = f x
return = Just

n Back to our example:
mothersPaternalGrandfather s =

(return s) >>= mother >>= father >>= father
(Note: if at any point, some function returns
Nothing, it gets cleanly propagated.) 39

The List Monad

n The List type constructor is a monad
li >>= f = concat (map f li)
return x = [x]
Note: concat::[[a]] à [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
n Use any f s.t. f::aà[b]. f may return a list of

0,1,2,… elements of type b, e.g.,
> f x = [x+1]
> [1,2,3] >>= f // returns [2,3,4]

40

The List Monad

parents :: Sheep à [Sheep]
parents s = MaybeToList (mother s) ++

MaybeToList (father s)

grandParents :: Sheep à [Sheep]
grandParents s = (parents s) >>= parents

Program Analysis CSCI 4450/6450, A Milanova 41

