Hindley Milner Type Inference, cont.

HW6?

Please sign up for papers

Program Analysis CSCI 4450/6450, A Milanova

Outline

Hindley Milner type inference

- Expression and type syntax
- Instantiations and generalization
- Typing rules
- Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
- Observations and examples

Haskell records and monads

Varieties of Polymorphism

Subtype polymorphism

- Code can use a subclass B where a superclass
 A is expected; discussed earlier, gives rise to class analysis
- Standard in object-oriented languages

Varieties of Polymorphism

Parametric polymorphism

- Code has a type as parameter
- Type parameter can be explicit or implicit
- Standard in functional programming languages

Ad-hoc polymorphism (overloading)

Parametric Polymorphism

- Ada, Clu, C++, Java, Haskell (type classes)
- Explicit parametric polymorphism is also known as genericity
- C++ templates:

typedef lost-under rul? i-lost-under typedef lost<nut? i-lost;

template<class V>
class list_node {
 list_node<V>* prev;
...

template<class V>
class list {
 list_node<V> header;

Program Analysis CSCI 4450/6450, A Milanova

```
Parametric Polymorphism
Java generics, e.g., bounded polymorphism:
class MyList1<E extends Object> {
 void m(E p) {
   p.intValue();
                  //compile-time error; Object
                  //does not have intValue()
class MyList2<E extends Number> {
 void m(E p) {
   p.intValue(); //OK. Number has intValue()
  }
```

Rrogram Analysis CSCI 4450/6450, A Milanova

```
Parametric Polymorphism
Instantiations respect the bound
class MyList2<E extends Number> {
  void m(E arg) {
   arg.intValue(); //OK. Number has intValue()
MyList2<String> ls = new MyList2<String>(); X
MyList2<Integer> li = ...
```

Parametric Polymorphism

Haskell type classes: sum :: (Num t1) => t1 -> [t1] -> t1 sum n [] = n sum n (x:xs) = sum (n+x) xs

- t1 is a type parameter
- (Num t1) is a predicate in type definition
- (Num t1) constrains the types we can instantiate the generic function with

Let Polymorphism

Haskell and ML

- Known as ML-style polymorphism, or
- Hindley Milner polymorphism

$$\begin{array}{l} & \lambda \times . \times \\ \text{let } \mathbf{f} = \mathbf{x} \rightarrow \mathbf{x} \text{ in if (f True) then (f 1) else 0} \\ & t \colon \mathscr{U} : (t_{\mathbf{x}} \rightarrow t_{\mathbf{x}}) \rightarrow t_{\mathbf{x}} \rightarrow t_{\mathbf{x}} \\ & t \text{wice } \mathbf{f} \mathbf{x} = \mathbf{f} (\mathbf{f} \mathbf{x}) \\ & t \text{wice twice } (\mathbf{x} \rightarrow \mathbf{x}+1) \mathbf{4} \end{array}$$

Towards Hindley Milner

let $f = \lambda x \cdot x$

in

)(

if (f true) then (f 1) else 1

Constraints

$$t_{f} = t_{1} \rightarrow t_{1}$$

$$t_{f} = bool \rightarrow t_{2} // \text{ at call (f true)}$$

$$t_{f} = int \rightarrow t_{3} // \text{ at call (f 1)}$$
Desn't unify!

Expression Syntax (to study Hindley Milner)

- Expressions:
- $E ::= c | x | \lambda x.E_1 | E_1 E_2 | \text{ let } x = E_1 \text{ in } E_2$
- There are no types in the syntax

 The type of each sub-expression is derived by the Hindley Milner type inference algorithm

Type Syntax (to study Hindley Milner)

- Just as n. shuple types! t is a type variable Types (aka monotypes):
 - $\tau ::= \mathbf{b} | \tau_1 \rightarrow \tau_2 | \mathbf{t} <$
 - E.g., int, bool, int \rightarrow bool, $t_1 \rightarrow$ int, $t_1 \rightarrow t_1$, etc.
- Type schemes (aka polymorphic types):
 - t₃ is a "free" type • $\sigma ::= \tau | \forall t.\sigma \quad \forall t_1 b_2 b_3 t_4 \cdot t_3 \rightarrow t_4$ variable as it isn't
 - E.g., $\forall t_1$. $\forall t_2$. (int $\rightarrow t_1$) $\rightarrow t_2 \rightarrow t_3$ bound under \forall
 - Note: all quantifiers appear in the beginning, τ cannot contain schemes $\Gamma = \Gamma f: H_{6x} \cdot t_{x} \rightarrow t_{x}, x: inf,$
- Type environment now
 - Γ ::= Identifiers \rightarrow Type schemes

y: 6001]

Instantiations Turns or what

- Type scheme $\sigma = \forall t_1...t_n.\tau$ can be instantiated into a type τ ' by substituting types for the bound variables (**BV**) under the universal quantifier \forall
 - $\tau' = \mathbf{S} \tau$ **S** is a substitution s.t. Domain(**S**) \supseteq **BV**(σ)
 - τ ' is said to be an instance of σ ($\sigma > \tau$ ')
 - τ' is said to be a generic instance when S maps some type variables to new type variables

• E.g.,
$$\sigma = \forall t_1 \cdot t_1 \rightarrow t_2$$

 $\begin{bmatrix} n+n+t_{\perp} \end{bmatrix} \begin{pmatrix} t_{\perp} \rightarrow t_{2} \end{pmatrix} = \begin{pmatrix} \delta n t \rightarrow i \lambda t \end{pmatrix} \rightarrow t_{2} \\ \begin{bmatrix} boo (|t_{1}] (|t_{\perp} \rightarrow t_{2}) \end{bmatrix} = boo (|-h|t_{2}) \\ \end{bmatrix}$ Program Analysis CSCI 4450/6450, A Milanova (from MIT's 2015 Program Analysis OCW)

 $\left[u/t_{2}\right] (t_{1} \rightarrow t_{2}) = u \rightarrow t_{2}$

Generalization (aka Closing)

We can generalize a type r as follows

Gen(
$$\Gamma, \tau$$
) = $\forall t_1, \dots t_n \cdot \tau$
where $\{t_1 \dots t_n\} = FV(\tau) - FV(\Gamma)$

Generalization introduces polymorphism

- Quantify type variables that are free in τ but are not free in the type environment Γ
 - E.g., $Gen([], t_1 \rightarrow t_2)$ yields $\forall t_1 \not t_2 \cdot b_1 \rightarrow b_2$
 - E.g., $Gen([x:t_2], t_1 \rightarrow t_2)$ yields $\forall t_1 \circ t_1 \rightarrow t_2$

Generalization, Examples $f = t f: \forall t_i.t_i \rightarrow t_i$ let f = $\lambda x.x$ in'if (f true) then (f 1) else 1 '

- We'll infer type for $\lambda x.x$ using simple type inference: $t_1 \rightarrow t_1$
- Then we'll generalize that type, Gen([],t₁→t₁):
 ∀t₁.t₁→t₁
- Then we'll pass the polymorphic type into if (f true) then (f 1) else 1 and instantiate for each f in if (f true) then (f 1) else 1
 E.g., [u₂/t₁] (t₁→t₁) where u₂ is fresh type variable at (f 1)

Generalization, Examples

- $= \lambda f. \lambda x. \text{ let g=f in g x (t_h → u)→t_x → u V (tef) = if: t_f.$
 - Gen([f:t_f,x:t_x],t_f) yields?
- Why can't we generalize t_f?
- Suppose we can generalize to ∀t_f.t_f
 - Then $\forall t_{f}.t_{f}$ will instantiate at g x to some fresh u
 - Then u becomes t_x→u' thus losing the important connection between t_x and t_f!
 - Thus (λf. λx. let g=f in g x) (λy.y+1) true will typecheck (unsound!!!)
- DO NOT generalize variables that are mentioned in type environment Γ!

Hindley Milner Typing Rules

$\frac{\Gamma; \mathbf{x}: \mathbf{\tau} \models \mathsf{E}_1 : \mathbf{\tau} \quad \Gamma; \mathbf{x}: \mathsf{Gen}(\Gamma, \mathbf{\tau}) \models \mathsf{E}_2 : \mathbf{\tau}'}{\Gamma \models \mathsf{let} \ \mathbf{x} = \mathsf{E}_1 \ \mathsf{in} \ \mathsf{E}_2 : \mathbf{\tau}'} \quad (\mathsf{Let})$

Type of x as inferred for E₁ is τ. Type of x in E₂ is the generalized type scheme σ = Gen(Γ,τ)

$$\begin{array}{c} \mathbf{x}: \mathbf{\sigma} \in \mathbf{\Gamma} \quad \mathbf{\tau} < \mathbf{\sigma} \\ \hline \mathbf{\Gamma} \models \mathbf{x}: \mathbf{\tau} \end{array}$$
 (Var)

x in E₂ of let: x is of type τ if its type σ in the environment can be instantiated to τ

(Note: remaining rules, **c**, **App**, **Abs** are as in F_1 .)

Outline

Hindley Milner type inference

- Expression and type syntax
- Instantiations and generalization
- Typing rules
- Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
- Observations and examples

Haskell records and monads

Hindley Milner Type Inference, Rough Sketch

let $\mathbf{x} = \mathbf{E}_1$ in \mathbf{E}_2

- Calculate type T_{E1} for E₁ in Γ;x:t_x using simple type inference
- 2. Generalize free type variables in T_{E1} to get the type scheme for T_{E1} (be mindful of caveat!)
- Extend environment with x:Gen(Γ,T_{E1}) and start typing
 E₂
- Every time we encounter x in E₂, instantiate its type scheme using fresh type variables
 E.g., id's type scheme is ∀t₁.t₁→t₁ so id is instantiated to u_k→u_k at (id 1)

Hindley Milner Type Inference

Two ways:

Extend Strategy 1 (constraint-based typing)

Extend Strategy 2 (Algorithm W)

Strategy 1 - like
Let
$$f = \lambda x.x$$
 in if (f true) then (f 1) else 1
1. let $\Gamma = [1]$
f 2. Abs
 $T = [f: \forall t_x.t_x \rightarrow t_x]$
 $f 2. Abs$
 $L_2 = [t_x \rightarrow t_x]$
 $\lambda x: t_x$
Next, generalize t_r : $\forall t_x. t_x \rightarrow t_x$
 $f t_x = [f: \forall t_x.t_x \rightarrow t_x]$
Next, generalize t_r : $\forall t_x. t_x \rightarrow t_x$
 $L_2 = [f: t_r, x: t_x]$
 $L_1 \rightarrow u_1 = bool \rightarrow t_4 u_2 \rightarrow u_2 = int \rightarrow t_5$
 $f true f 1$
 $U_1 and u_2 are fresh type vars generated at instantiation of polymorphic type.
 $L_2 = L_2$
 $L_1 \rightarrow u_1 = bool \rightarrow t_4 u_2 \rightarrow u_2 = int \rightarrow t_5$
 $L_2 = L_2 \rightarrow t_2$
 $L_1 \rightarrow u_1 = bool \rightarrow t_4 u_2 \rightarrow u_2 = int \rightarrow t_5$
 $L_2 = L_2 \rightarrow t_2$
 $L_1 \rightarrow u_1 = bool \rightarrow t_4 u_2 \rightarrow u_2 = int \rightarrow t_5$
 $L_2 = L_2 \rightarrow t_2$
 $L_1 \rightarrow u_1 = bool \rightarrow t_4 u_2 \rightarrow u_2 = int \rightarrow t_5$
 $L_2 = L_2 \rightarrow t_2$
 $L_2 = L_2 \rightarrow t_2$
 $L_2 = L_2 \rightarrow t_2$
 $L_3 = L_2 \rightarrow t_2$
 $L_4 = L_2 \rightarrow t_2$
 $L_1 \rightarrow u_1 = bool \rightarrow t_4 u_2 \rightarrow u_2 = int \rightarrow t_5$
 $L_2 = L_2 \rightarrow t_2$
 $L_2 = L_2 \rightarrow t_2$
 $L_3 = L_2 \rightarrow t_2$
 $L_4 = L_2 \rightarrow t_2$
 $L_5 \rightarrow$$

Example

$\lambda x. \text{ let } f = \lambda y.x \text{ in (f true, f 1) } t_X \rightarrow (t_X, t_X)$

Gen([x:tx], by→tx) = +ty.ty→tx 10 Abs λ_x 2. let $\Gamma = [x:t_x]$ $f 3. Abs \frac{4!}{(t_3 + b_2) + t_1} = (f: t_2, b_2 - t_1, x: t_2]$ true l 1

Strategy 2: Algorithm W

 \mathbf{u}_1 to \mathbf{u}_n are fresh type vars generated def W(Γ , E) = case E of at instantiation of polymorphic type c -> ([], TypeOf(c)) x -> if (x NOT in Domain(Γ)) then *fail* else let $T_F = \Gamma(x)$ _-> ([], T_E) (usus type) $\lambda x.E_1 \rightarrow let(S_{E_1},T_{E_1}) = W(\Gamma + \{x:t_*\},E_1)$ in $(S_{F1}, S_{F1}(t_x) \rightarrow T_{F1})$

// ...
// continues on next slide!

Strategy 2: Algorithm W

def W(Γ, E) = case E of

Hindley Milner Observations

 Do not generalize over type variables mentioned in type environment (they are used elsewhere)

let is the only way of defining polymorphic constructs

Generalize the types of let-bound identifiers
 only after processing their definitions

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

Hindley Milner Observations

- Generates the most general type (principal type) for each term/subterm
- Type system is sound
- Complexity of Algorithm W
 - PSPACE-Hard
 - Because of nested let blocks

Hindley Milner Limitations

Only let-bound constructs can be polymorphic and instantiated differently huice s: (bx→bx)→bx → bx let twice f x = f (f x) Geu (CJ, (bx→bx)→bx→bx) = in twice twice succ 4 // let-bound polymorphism

Hindley Milner Limitations

 Only let-bound constructs can be polymorphic and instantiated differently

let twice
$$f x = f(f x)$$
 since $\frac{f(f x)}{foo g = g g succ 4 // lambda-bound}$
in foo twice $\frac{f(f x)}{f(f x)} = \frac{f(f x)}{f(f x)}$

Hindley Milner Limitations

Another example:
 (λx. x (λy. y) (x 1)) (λz. z)

VS.

let $x = (\lambda z. z)$

in

x (λy. y) (x 1)

Outline

Hindley Milner type inference

- Expression and type syntax
- Instantiations and generalization
- Typing rules
- Type inference
 - Strategy 1 or
 - Strategy 2 as known as Algorithm W
- Observations and examples

Haskell records and monads

Haskell Records

```
{- Constraint environment. -}
type Constraints = [(Type, Type)]
data ConstraintEnv = CEnv
    constraints :: Constraints
    , var :: Int
    , tenv :: TEnv
```

cenv = Cenv { constraints=[], var=0, tenv=[] } ;; new environment ... constraints cenv ... var cenv ... tenv cenv ... ;; field accessors

"A monad is just a monoid in the category of endofunctors, what's the problem?"

- Monad type class and the monad laws
- Maybe monad
- List monad
- IO monad
- State monad

Monads

A way to cleanly compose computations

- E.g., f may return a value of type a or Nothing
 Composing computations becomes tedious:
 case (f s) of
 - Nothing \rightarrow Nothing
 - Just m \rightarrow case (f m) ...

In Haskell, monads model IO and other imperative features

Program Analysis CSCI 4450/6450, A Milanova

An Example: Cloned Sheep

type Sheep = ... father :: Sheep \rightarrow Maybe Sheep father = ... mother :: Sheep \rightarrow Maybe Sheep mother = \dots (Note: a sheep has both parents; a cloned sheep has one) maternalGrandfather :: Sheep \rightarrow Maybe Sheep maternalGrandfather **s** = case (mother **s**) of Nothing \rightarrow Nothing Just $\mathbf{m} \rightarrow$ father \mathbf{m}

mothersPaternalGrandfather :: Sheep \rightarrow Maybe Sheep mothersPaternalGrandfather $\mathbf{s} = \mathbf{case}$ (mother \mathbf{s}) of Nothing \rightarrow Nothing Just $\mathbf{m} \rightarrow \mathbf{case}$ (father \mathbf{m}) of Nothing \rightarrow Nothing Just $\mathbf{gf} \rightarrow$ father \mathbf{gf}

Tedious, unreadable, difficult to maintainMonads help!

The Monad Class

 Haskell's Monad type class requires 2 operations, >>= (bind) and return

class Monad m where

// >>= (the bind operation) takes a monad
// m a, and a function that takes a and turns

// it into a monad **m b**, and returns **m b**

// return encapsulates a value into the monad return :: $a \rightarrow m a$

The Maybe Monad

instance Monad Maybe where

- Nothing >>= **f** = Nothing
- (Just **x**) >>= **f** = **f x**
- return = Just
- Back to our example:

mothersPaternalGrandfather **s** =

(return s) >>= mother >>= father >>= father

(Note: if at any point, some function returns Nothing, it gets cleanly propagated.)

The List Monad

- The List type constructor is a monad
 - li >>= f = concat (map f li)
 - return x = [x]
- Note: concat::[[**a**]] \rightarrow [**a**]
- e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
- Use any f s.t. f::a→[b]. f may return a list of 0,1,2,... elements of type b, e.g.,
 - > f x = [x+1]
 - > [1,2,3] >>= f // returns [2,3,4]

parents :: Sheep → [Sheep] parents **s** = MaybeToList (mother **s**) ++ MaybeToList (father **s**)

grandParents :: Sheep \rightarrow [Sheep] grandParents **s** = (parents **s**) >>= parents