!'_ Hindley Milner Type Inference, cont.

i Announcements

= HWG?

= Please sign up for papers

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Hindley Milner type inference
= Expression and type syntax
= Instantiations and generalization
= Typing rules
= Type inference

= Strategy 1 or
= Strategy 2 as known as Algorithm W

= Observations and examples

s Haskell records and monads

i Varieties of Polymorphism

= Subtype polymorphism

= Code can use a subclass B where a superclass
A is expected; discussed earlier, gives rise to
class analysis

=« Standard in object-oriented languages

h@,()%/] >\(W
[[
- [&] []

Program Analysis CSCI 4450/6450, A Milanova

i Varieties of Polymorphism

= Parametric polymorphism
= Code has a type as parameter
= Type parameter can be explicit or implicit
« Standard in functional programming languages

= Ad-hoc polymorphism (overloading)

Program Analysis CSCI 4450/6450, A Milanova

i Parametric Polymorphism

= Ada, Clu, C++, Java, Haskell (type classes)
= EXplicit parametric polymorphism is also
kKnown as genericity

» C++ templates: Ypedf ttiodecinty itk

Vpedef ot <nd> 0Lt

template<class V> template<class V>
class list node { class list ({

list node<V>* prev; llst_node§X> header;

—

}

Program Analysis CSCI 4450/6450, A Milanova 6

i Parametric Polymorphism

= Java generics, e.g., bounded polymorphism:

class MyList1<£ extends Object> {
void m(E p) {
p.intValue() ;
//compile-time error; Object
//does not have intValue ()

}
class MyList2<E extends Number> ({

void m(E p) {
p.intValue(); //OK. Number has intValue()
}

I}rogram Analysis CSCI 4450/6450, A Milanova

i Parametric Polymorphism

= Instantiations respect the bound
class MyList2<E extends Number> ({

void m(E arg) ({
arg.intValue(); //OK. Number has intValue ()

}

MyList2<String> ls = new MyList2<String>();‘%(

MyList2<Integer> li = .. \//

Program Analysis CSCI 4450/6450, A Milanova

i Parametric Polymorphism

= Haskell type classes:

sum :: (Num tl) => tl1 -> [tl] -> tl
sum n [] = n
sum n (x:xs) = sum (n+x) xs

= t1 Is atype parameter
= (Num t1) Is a predicate in type definition

= (Num tl) constrains the types we can
instantiate the generic function with

Program Analysis CSCI 4450/6450, A Milanova

i Let Polymorphism

s Haskell and ML

= Known as ML-style polymorphism, or
= Hindley Milner polymorphism

NS
let £f = \x -> x in if (f True) then (f 1) else O
[&L ti @ :<£a<"’6a<)">(:,<“9£x

”Fwice f x=£f (£ x)
twice twice (\x -> x+1) 4
w“E——

Program Analysis CSCI 4450/6450, A Milanova

10

i Towards Hindley Milner

let f = Ax.X
in

if (f true) then (f 1) else 1
= Constraints

b=t Toee Mor WoRK
t;= bool—t, // at call (f true) ¥ ~/LFPL
t;= int>t; // at call (f 1) TePEs.

= Doesn’t unify!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 11

Expression Syntax
i (to study Hindley Milner)

= EXpressions:
E::=c|x|Ax.E{|E E,|letx=E;inE,

— — D

= There are no types in the syntax

= The type of each sub-expression is derived
by the Hindley Milner type inference
algorithm

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 12

Type Syntax
(to study Hindley Milner)

far . Suple /
= Types (aka monotypes): Eﬁs - type Varig blj?’/”“'
«» T.=b |17, | gp—

= E.g., int, bool, int—>bool, t;—int, t;—>t,, etc.

= [ype schemes (aka polymorphic types):

m6.—-T | Vt.G Vl:] b—; 15} 7({(= ‘63")’67 t; |S atl)l“free”.gtypet
_ . variable as it isn’
o E.g. Vit Vo (intot)otot ound under Y

= Note: all quantifiers appear in the beginning, T cannot
contain schemes

= Type environmentnow /= [ffV&-&—;éf,;.;f}h
[::= Identifiers > Type schemes |

13

i Instantiations 7, o wh « T

= Type scheme ¢ = Vt,...t .1 can be instantiated
iInto a type 1’ by substituting types for the bound
variables (BV) under the universal quantifier V

= =81 Sisasubstitution s.t. Domain(S) > BV(o)
= 7’ is said to be an instance of 6 (6 > 1°)

= T’ is said to be a generic instance when S maps
some type variables to new type variables

= E.g,06= Vf,.t1—>t2 fu/%] (b—t:)= Ut
=
Ehlehl—/{lj (6_,_-—){;2) :@a{—e iz.l)—ﬂfz
£b°°(/tlj (h“’ t'z.) = bm:(-—?éz_

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 14

Generalization (aka Closing)
Trw- & nb6 O

= \We can generalize a type 7 as follows
Gen(l,7) =Vt,,...t.7
where {t;...t.} = FV(t) - FV(I")
= Generalization introduces polymorphism

= Quantify type variables that are free in t but are not
free in the type environment I
« E.g., Gen([l,t;>t,) yields Ybzb b, >6,

= E.g., Gen([x:t,],t;—t,) yields Sfﬁﬂo ﬁl"’bg

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 15

Generalization, Examples

[= [Pz b, b=t
let f = Ax.x in'if (f trueﬁg (fF1)else1’
= We'll infer type for Ax.x using simple type
inference: t,—t,
= Then we’'ll generalize that type, Gen([],t;—t,):
vVt .t,ot,
= Then we'll pass the polymorphic type into

if (f true) then (f 1) else 1 and instantiate for
each fin |fl(f true) then (f 1) else 1

= E.g., [u,/t t—>t Where uz is fresh type
variable at (f 1 16

Generalization, Examples

2t >1§,<«->u’x] ”
= M. AX. letg=fing xzi >u)%x—>u,\/ M [=Lf: 4 2t]

» Gen([f:t,x:t],t;) yields? g 744 \Aﬂvé"gg-éf)(

JEEss———

= Why can’t we generalize t;? tf g; > Can
= Suppose we can generalize to Vt.t, = §ereeliz!

= Then Vi.t; will instantiate at g x to some fresh u

= Then u becomes t,—u’ thus losing the important
connection between t, and t!

« Thus (M. Ax. let g=f in g x) (Ly.y+1) true will type-
check (unsound!!!)

= DO NOT generalize variables that are mentioned in
type environment I'! Y

i Hindley Milner Typing Rules

NxtkE;:7t Mx:Gen(lt) FE,: T
rl-letx=E1 in EZ:T,

(Let)

= Type of x as inferred for E, is t. Type of X in E, is
the generalized type scheme ¢ = Gen(I',7)

xe &Il 1<0
M=Xx:1

(Var)

= X In E, of let: x is of type t if its type o In the
environment can be instantiated to t

(Note: remaining rules, ¢, App, Abs are asin F,.)

Program Analysis CSCI 4450/6450, A Milanova (from MIT’s 2015 Program Analysis OCW) 18

i Outline

= Hindley Milner type inference
= Expression and type syntax
= Instantiations and generalization
= Typing rules
= Type inference

= Strategy 1 or
= Strategy 2 as known as Algorithm W

= Observations and examples

s Haskell records and monads

19

Hindley Milner Type Inference,

i Rough Sketch

let x = E, in E,

1.

Calculate typ:é Tgq for E4in IM;x:t, using simple type
inference

Generalize free type variables in Tg4 to get the type
scheme for Tg4 (be mindful of caveat!)

Extend environment with x:Gen(I',Tg4) and start typing
E,

Every time we encounter x in E,, instantiate its type
scheme using fresh type variables

E.g., id’s type scheme is Vt,.t;>t;soid is

instantiated to u,—uy at (id 1) 20

i Hindley Milner Type Inference

= WO ways:

= Extend Strategy 1 (constraint-based typing)

= Extend Strategy 2 (Algorithm W)

Program Analysis CSCI 4450/6450, A Milanova

21

i Strategy -l
let f = kx X in |f (f true) then (f1) else 1

1. letl =11
L=t [= [f:\t t, ot]
= [f:tg]
f 2. Abs 3. if-then-else t3=t5=int
| tZ{—ﬂ ~~—__t, = bool
Neec(& solve r 12 ...
=[fitxit] — +APP o SAPP
Ax: t, X u,— U} = bool-t, u,$u, = int—ts
(e ([7, &'95%) f true f 1

Next, generalize t;: W,. t,—t, u, and u, are fresh type vars generated

at instantiation of polymorphic type.

22

i Example
)t/

« Ax. let f = Ay.x in (f true, £ 1) & $—>(b 4

40)4%5 Geu([)(ijiv‘éz'_)éx)t:
am ' e by =
Ax L led l=(xibe] J % ‘

™~
¢ a i A Ty ot X6 T
y, ('63,[{@] \{;gc (L‘y,&)

X & G. App
Yy %géoo/—atz \u;”fx =Nf—> g

£ ohue [1

Program Analysis CSCI 4450/6450, A Milanova 23

Strategy 2: Algorithm W

us to u, are fresh type vars generated
def W(I', E) = case E of at instantiation of polymorphic type

¢ -> ([I, TypeOf(c))
o> X => if (x NOT in Domain(I')) then fail

else let Tz = (x) Nafaudrele NV
in case Tg of A/a’af‘[“ew Lusler ACVK

—
YVttt > ([LIuddtyu it ©)(ﬁo%jfe]

= (0 Te) (wovobrpe)
AX.E, ->let (Sgq,Tgq) = W(Ir+{x:t,},E,)

in (Sgq, Sgq(t)—>Teq)

Il ...
/I continues on next slide!

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 24

i Strategy 2: Algorithm W

def W(I', E) = case E of
/I continues from previous slide
I ...
E, E; ->let (Sgq,Tgq) = W(T,E,)
(Se2, Te2) = W(Sg4(IN),E>)
S = Unify(Se,(Tg4), Tea—t)
in (S Sg; Sg4, S(t))
let x = E, in E, -> let (Sg4,Tgq) = W(IT+{x:t,}.E,)
S = Unify(Sgq(ty), Teq)
—— C = Gen(S Sgq(IN), S(Tgq))

(Se2:Te2) = W(S Sgq(IMN+{x:c},E,)
in (Sgz S Sgq, Tey) e —

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

25

i Strategy 2 Example

let f =Ax.x|in|if (f true) then (f 1) else 1

1.letl =1 T, =int
Sy = ... I = [f: ¥t .t >t]
f 2. Absr - [t 3. if-then-else Ts=int
| T,=tot, ~—T
S,=11
[= [x:t, f:t] 4. App >-App 1
AX: tx X T4= bool T5=/nt

S, = [boollts][bool/u;] Ss= [int/ts][int/u,]
No constraint, types 2. Abs
immediately: T, =t —t,: [t,ot,/t,] f

true f 1
¢ = Gen([].t,»t,) = Vt,. t,.ot,

T=u;—>uy
S=1[]

From Unify(u;—u4, bool—t,)2%

J

i Hindley Milner Observations

= Do not generalize over type variables
mentioned in type environment (they are

used elsewhere)
,ﬁ

= let is the only way of defining polymorphic
constructs

= Generalize the types of let-bound identifiers
only after processing their definitions

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 27

i Hindley Milner Observations

= Generates the most general type (principal
type) for each term/subterm

= [ype system is sound

= Complexity of Algorithm W
= PSPACE-Hard
= Because of nested let blocks

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

28

i Hindley Milner Limitations

= Only let-bound constructs can be
polymorphic and instantiated differently

hoice <z (I‘x-?{:,c)%6(—‘fx

let twice f x =f (f X) (., (¢7, bt)» b)) =

in twice twice succ 4 // let-bound polymorphism
e S

Program Analysis CSCI 4450/6450, A Milanova 29

i Hindley Milner Limitations

= Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f X) W/ﬂ”

el
foo g = g g succ 4 // lambda-bound
in foo twice 1 ° ’3’><”L

Program Analysis CSCI 4450/6450, A Milanova 30

i Hindley Milner Limitations

= Another example:
(Ax. x (Ay. y) (x 1)) (Az. 2)

VS.
let x = (Az. 2)
in

X (Ay.y) (x 1)

Program Analysis CSCI 4450/6450, A Milanova

31

i Outline

= Hindley Milner type inference
= Expression and type syntax
= Instantiations and generalization
= Typing rules
= Type inference

= Strategy 1 or
= Strategy 2 as known as Algorithm W

= Observations and examples

s Haskell records and monads

32

i Haskell Records

{- Constraint environment. -}
type Constraints = [(Type, Type)]
data ConstraintEnv = CEnv

constraints :: Constraints

cvar o Int

ctenv :: TEnv
cenv = Cenv { constraints=[], var=0, tenv=[] } ;; new environment
... constraints cenv ... var cenv ... tenv cenv ... ;: field accessors

Program Analysis CSCI 4450/6450, A Milanova 33

i Monad Quote

= "A monad is just a monoid in the category of
endofunctors, what's the problem?”

= Monad type class and the monad laws
= Maybe monad

= List monad

= |O monad

= State monad

Program Analysis CSCI 4450/6450, A Milanova

34

i Monads

= A way to cleanly compose computations
« E.g., f may return a value of type a or Nothing

Composing computations becomes tedious:
case (f s) of

Nothing = Nothing
Justm -> case (fm)...

= |[n Haskell, monads model 10 and other
imperative features

Program Analysis CSCI 4450/6450, A Milanova 35

i An Example: Cloned Sheep

type Sheep = ...
father :: Sheep - Maybe Sheep
father = ...
mother :: Sheep - Maybe Sheep
mother = ...
(Note: a sheep has both parents; a cloned sheep has one)
maternalGrandfather :: Sheep 2> Maybe Sheep
maternalGrandfather s = case (mother s) of
Nothing =2 Nothing

Just m - father m
Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial) 36

i An Example

mothersPaternalGrandfather :: Sheep - Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of
Nothing > Nothing
Just m - case (father m) of
Nothing = Nothing
Just gf - father gf

s [edious, unreadable, difficult to maintain
= Monads help!

Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial) 37

i The Monad Class

= Haskell's Monad type class requires 2
operations, >>= (bind) and return

class Monad m where

/[>>= (the bind operation) takes a monad
// m a, and a function that takes a and turns

// it into a monad m b, and returns m b
(>>=):ma—2>@—>mb)>mb

// return encapsulates a value into the monad
return:a—> ma

38

i The Maybe Monad

instance Monad Maybe where
Nothing >>= f = Nothing
(Just x) >>=f=fx
return = Just
= Back to our example:
mothersPaternalGrandfather s =
(return s) >>= mother >>= father >>= father

(Note: if at any point, some function returns
Nothing, it gets cleanly propagated.) 39

i The List Monad

= The List type constructor is a monad
i >>=f = concat (map f i)

return x = [X]

Note: concat::[[a]] = [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,0]

= Use any f s.t. f::a->[b]. f may return a list of
0,1,2,... elements of type b, e.qg.,
> f x = [x+1]
>[1,2,3] >>=1f // returns [2,3,4]

40

i The List Monad

parents :: Sheep =2 [Sheep]
parents s = MaybeTolList (mother s) ++
MaybeToList (father s)

grandParents :: Sheep =2 [Sheep]
grandParents s = (parents s) >>= parents

Program Analysis CSCI 4450/6450, A Milanova 41

