
Hindley Milner, conclusion; Haskell

Announcements

n Quiz 6

n HW6?

n Please sign up for papers

Program Analysis CSCI 4450/6450, A Milanova 2

Outline

n Hindley Milner type inference, conclusion
n Observations and examples

n Haskell: records, type classes and monads

3Program Analysis CSCI 4450/6450, A Milanova

Hindley Milner Observations

n Generates the most general type (principal
type) for each term/subterm

n Type system is sound

n Complexity of Algorithm W
n PSPACE-Hard
n Because of nested let blocks

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW) 4

Hindley Milner Recap

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx using simple type

inference. TE1 is principal type of E1

2. Generalize free type variables in TE1 to get type
scheme for TE1 (be mindful of caveat!)

3. Extend environment with x:Gen(Γ,TE1) and start typing
E2

4. When we encounter x in E2, instantiate its type
scheme to a fresh monotype

E.g., id’s type scheme is t1.t1®t1 so id is instantiated to
uk®uk at (id 1)

5

∀

Hindley Milner Limitations

n Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)
in twice twice succ 4 // let-bound polymorphism

Program Analysis CSCI 4450/6450, A Milanova 6

Hindley Milner Limitations

n Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)
foo g = g g succ 4 // lambda-bound

in foo twice

Program Analysis CSCI 4450/6450, A Milanova 7

Hindley Milner Limitations

n Another example:
(lx. x (ly. y) (x 1)) (lz. z)

vs.
let x = (lz. z)
in

x (ly. y) (x 1)

Program Analysis CSCI 4450/6450, A Milanova 8

Outline

n Hindley Milner type inference, conclusion
n Observations and examples

n Haskell: records, type classes and monads

9Program Analysis CSCI 4450/6450, A Milanova

Haskell Records

{- Constraint environment. -}
type Constraints = [(Type, Type)]
data ConstraintEnv = CEnv

{
constraints :: Constraints
, var :: Int
, tenv :: TEnv
}

cenv = CEnv { constraints=[], var=0, tenv=[] } ;; new environment
… constraints cenv … var cenv … tenv cenv … ;; field accessors

Program Analysis CSCI 4450/6450, A Milanova 10

the new type

constructor

Haskell Type Classes

n Not to be confused with Java classes/interfaces
n Let us define a type class containing the

arithmetic and comparison operators:

11

class Num a where
(==) :: a -> a -> Bool
(+) :: a -> a -> a
…

instance Num Int where
x == y = ...
...

instance Num Float where
…

Read: A type a is an instance of the type
class Num if it provides “overloaded”
definitions of operators ==, +, …

Read: Int and Float are instances of Num

Generic Functions with Type
Class

sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

n One view of type classes: predicates
n (Num a) is a predicate in type definitions
n Constrains the specific types we can instantiate a

generic function with
n A type class has associated laws

12Program Analysis CSCI 4450/6450, A Milanova

Type Class Hierarchy

n Each type class corresponds to one concept
n Class constraints give rise to a hierarchy
n Eq is a superclass of Ord

n Ord inherits specification of (==) and (/=)
n Notion of “true subtyping”

13

class Eq a where
(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

Monad Quote

n “A monad is just a monoid in the category of
endofunctors, what's the problem?”

n Monad type class and the monad laws
n Maybe monad
n List monad
n IO monad
n State monad
Program Analysis CSCI 4450/6450, A Milanova 14

Monads

n A way to cleanly compose computations
n E.g., f may return a value of type a or Nothing
Composing computations becomes tedious:
case (f s) of

Nothing à Nothing
Just m à case (f m) …

n In Haskell, monads model IO and other
imperative features

Program Analysis CSCI 4450/6450, A Milanova 15

An Example: Cloned Sheep

type Sheep = …
father :: Sheep à Maybe Sheep
father = ...
mother :: Sheep à Maybe Sheep
mother = …
(Note: a sheep has both parents; a cloned sheep has one)
maternalGrandfather :: Sheep à Maybe Sheep
maternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à father m

Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial) 16

An Example

mothersPaternalGrandfather :: Sheep à Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à case (father m) of

Nothing à Nothing
Just gf à father gf

n Tedious, unreadable, difficult to maintain
n Monads help!

17Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial)

The Monad Type Class

n Haskell’s Monad type class requires 2
operations, >>= (bind) and return

class Monad m where
// >>= (the bind operation) takes a monad
// m a, and a function that takes a and turns
// it into a monad m b, and returns m b
(>>=) :: m a à (a à m b) à m b
// return encapsulates a value into the monad
return :: a à m a

18

The Maybe Monad

instance Monad Maybe where
Nothing >>= f = Nothing
(Just x) >>= f = f x
return = Just

n Back to our example:
mothersPaternalGrandfather s =

(return s) >>= mother >>= father >>= father
(Note: if at any point, some function returns
Nothing, it gets cleanly propagated.) 19

The List Monad

n The List type constructor is a monad
li >>= f = concat (map f li)
return x = [x]
Note: concat::[[a]] à [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
n Use any f s.t. f::aà[b]. f may return a list of

0,1,2,… elements of type b, e.g.,
> f x = [x+1]
> [1,2,3] >>= f --- ?

20

The List Monad

parents :: Sheep à [Sheep]
parents s = MaybeToList (mother s) ++

MaybeToList (father s)

grandParents :: Sheep à [Sheep]
grandParents s = (parents s) >>= parents

Program Analysis CSCI 4450/6450, A Milanova 21

The do Notation

n do notation is syntactic sugar for monadic bind

> f x = x+1
> g x = x*5
> [1,2,3] >>= (return . f) >>= (return . g)
Or
> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
Or, make encapsulated element explicit with do
> do { v <- [1,2,3]; w <- (\x->[x+1]) v; (\y->[y*5]) w }

22Program Analysis CSCI 4450/6450, A Milanova

List Comprehensions

> [x | x <- [1,2,3,4]]
[1,2,3,4]
> [x | x <- [1,2,3,4], x `mod` 2 == 0]
[2,4]
> [[x,y] | x <- [1,2,3], y <- [6,5,4]]
[[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]]

23Program Analysis CSCI 4450/6450, A Milanova

List Comprehensions

n List comprehensions are syntactic sugar on
top of the do notation!

[x | x <- [1,2,3,4]] is syntactic sugar for
do { x <- [1,2,3,4]; return x }
[[x,y] | x <- [1,2,3], y <- [6,5,4]] is syntactic

sugar for
do { x <- [1,2,3]; y<-[6,5,4]; return [x,y] }
n Which in turn, we can translate into monadic

bind…
24

So, What is the Point of the
Monad…

n Conveniently chains (builds) computation

n Encapsulates “mutable” state. E.g., IO:
openFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO () -- void
hIsEOF :: Handle -> IO Bool
hGetChar :: Handle -> IO Char

25

These operations break “referential transparency”.
For example, hGetChar typically returns different value
when called twice in a row!

Program Analysis CSCI 4450/6450, A Milanova

