!'_ Hindley Milner, conclusion; Haskell

i Announcements

m Quiz 6

= HWG?

= Please sign up for papers

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Hindley Milner type inference, conclusion
= Observations and examples

= Haskell: records, type classes and monads

Program Analysis CSCI 4450/6450, A Milanova

i Hindley Milner Observations

= Generates the most general type (principal
type) for each term/subterm

= [ype system is sound

= Complexity of Algorithm W
= PSPACE-Hard
= Because of nested let blocks

Program Analysis CSCI 4450/6450, A Milanova (from MIT 2015 Program Analysis OCW)

i Hindley Milner Recap

let x = E, in E,

1.

Calculate typ:é Tgq for E4in IM;x:t, using simple type
inference. Tg, is principal type of E,

Generalize free type variables in Tg4to get type
scheme for Tg4 (be mindful of caveat!)

Extend environment with x:Gen(I",Tg4) and start typing
E,
When we encounter x in E,, instantiate its type

scheme to a fresh monotype

E.g., id’s type scheme is Vt,.t;>t, so id is instantiated to
u,—u, at (id 1)

i Hindley Milner Limitations

= Only let-bound constructs can be
polymorphic and instantiated differently

L‘dbui‘ce = Cé,(—ﬁ;,() — G~k 636,4 ([7, éxéb()—?éx"’b()#é"é")é()"’é("&
let twice fx = f (f x) /== < f(4x)

iﬂ:\fd‘[‘@ﬁ_m(_isz_e;’succ 4 |/ let-bound polymorphism
C L) Q Uity) o, [Ut [y T

((“%)"y@(j:'?uz)—) —D[(U,_-v b,) - (‘41"’&;)) é‘z""%)—? b, =4,
(“1-3'/42) - U. U, [l ¢ 07[fLice /Ldi((

(urly) = U e, b3 Nt E’IL L
U=t hie hwia S;uc':/u J

Program Analysis CSCI 4450/6450, A Milanova

i Hindley Milner Limitations

= Only let-bound constructs can be
polymorphic and instantiated differently

let twice f x = f (f x)

foo g = g g succ 4 // lambda-bound
in foo twice ﬁ? = @‘”’

Program Analysis CSCI 4450/6450, A Milanova

i Hindley Milner Limitations

= Another example:
(Ax. x (Ay. y) (x 1)) (Az. 2)

VS.
let x = (Az. 2)
in

X (Ay.y) (x 1)

Program Analysis CSCI 4450/6450, A Milanova

i Outline

= Hindley Milner type inference, conclusion
= Observations and examples

s Haskell: records, type classes and monads

Program Analysis CSCI 4450/6450, A Milanova

i Haskell Records

{- Constraint environment. -} n‘o[” %/“ ceuv (ELC"‘ZZ&)
type Constraints = [(Type, Type)] [ef Y e
data ConstraintEnv = CEnv (“W', tv)= ek TVor ceuy
(ces 1Le) = hew TVar ceuy’
{ Ceuv"’,#M ' I O ikt Vit
constraints :: Constraints ﬁ(Zw“ eV ot Y
,var 3 Int (eeas ™, Fhody) = Pefor rpes
ctenv :: TENnvV constructor v Cenv™ bo{:_
— ceuv ¢ odd eouy fraiwk
) the new type te = tv— Lbody
cenv = CEnv { constraints=[], var=0, tenv=[] } ;; new environment
... constraints cenv ... var cenv ... tenv cenv ... ;; field accessors
W
v
Program Analysis CSCI 4450/6450, A Milanova (va ’ "‘e.) 10

i Haskell Type Classes

= Not to be confused with Java classes/interfaces

= Let us define a type class containing the
arithmetic and comparison operators:

class Num a where
(==) :a->a->Bool
(+) :na->a->a

instance Num Int where
X==y=.,

instance Num Float where

Read: A type a is an instance of the type
class Num if it provides “overloaded”
definitions of operators ==, +, ...

Read: Int and Float are instances of Num

11

Generic Functions with Type

i Class

sum :: (Numa)=>a->Lista->a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

= One view of type classes: predicates
= (Num a) is a predicate in type definitions

= Constrains the specific types we can instantiate a
generic function with

= A type class has associated laws

Program Analysis CSCI 4450/6450, A Milanova 12

i Type Class Hierarchy

class Eq a where
(==), (/=) :: a->a->Bool

class (Eq a) => Ord a where
(<), (<=), (*), (>=) ::a->a->Bool
min, max sa->a->a

= Each type class corresponds to one concept
= Class constraints give rise to a hierarchy

= Eqis a superclass of Ord
= Ord inherits specification of (==) and (/=)
= Notion of “true subtyping”

13

i Monad Quote

= "A monad is just a monoid in the category of
endofunctors, what's the problem?”

= Monad type class and the monad laws
= Maybe monad

= List monad

= |O monad

= State monad

Program Analysis CSCI 4450/6450, A Milanova

14

i Monads

= A way to cleanly compose computations
« E.g., f may return a value of type a or Nothing

Composing computations becomes tedious:

case (f s) of
Nothing = Nothing (Jei @7')5>0;‘z‘2"‘/;>>>:

/‘
d other

s

Justm - case (fm)...

= In Haskell, monads mod
imperative features

Program Analysis CSCI 4450/6450, A Milanova \'5 15

i An Example: Cloned Sheep

type Sheep = ...
father :: Sheep - Maybe Sheep
father = ...
mother :: Sheep - Maybe Sheep
mother = ...
(Note: a sheep has both parents; a cloned sheep has one)
maternalGrandfather :: Sheep 2> Maybe Sheep
maternalGrandfather s = case (mother s) of
Nothing =2 Nothing

Just m - father m
Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial) 16

i An Example

mothersPaternalGrandfather :: Sheep - Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of
Nothing > Nothing
Just m - case (father m) of
Nothing = Nothing
Just gf - father gf

s [edious, unreadable, difficult to maintain
= Monads help!

Program Analysis CSCI 4450/6450, A Milanova (Example from All About Monads Tutorial) 17

i The Monad Type Class

= Haskell's Monad type class requires 2
operations, >>= (bind) and return

class Monad m where

/[>>= (the bind operation) takes a monad
// m a, and a function that takes a and turns

// it into a monad m b, and returns m b
(>>=):ma—2>@—>mb)>mb

// return encapsulates a value into the monad
return:a—> ma

18

i The Maybe Monad

instance Monad Maybe where
Nothing >>= f = Nothing
(Just x) >>=f=fx
return = Just
= Back to our example:
mothersPaternalGrandfather s =
(return s) >>= mother >>= father >>= father

(Note: if at any point, some function returns
Nothing, it gets cleanly propagated.) 19

i The List Monad

= The List type constructor is a monad
i >>=f = concat (map f i)

return x = [X]

Note: concat::[[a]] = [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,0]

= Use any f s.t. f::a->[b]. f may return a list of
0,1,2,... elements of type b, e.qg.,
> f x = [x+1]
>[1,2,3]>>=f - ?

20

i The List Monad

parents :: Sheep =2 [Sheep]
parents s = MaybeTolList (mother s) ++
MaybeToList (father s)

grandParents :: Sheep =2 [Sheep]
grandParents s = (parents s) >>= parents

Program Analysis CSCI 4450/6450, A Milanova 21

i The do Notation

= do notation is syntactic sugar for monadic bind

>f x = x+1

> g X=X

> [1,2,3] >>= (return . f) >>= (return . g)

Or

> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]

Or, make encapsulated element explicit with do
>do {v<-[1,2,3]; w <-((\x->[x+1]) v; (\y->[y*3]) w }

Program Analysis CSCI 4450/6450, A Milanova 22

i List Comprehensions

>[x| x<-[1,2,3,4]]

[1,2,3,4]

>[x]|x<-[1,2,3,4], x mod 2==0]

[2,4]

>[[x,y]| x<-[1,2,3], y <-[6,5,4]]
[[1,6],[1,9].[1,4],[2,6].[2,5].[2,4],[3,6],[3,5],[3,4]]

Program Analysis CSCI 4450/6450, A Milanova

23

i List Comprehensions

= List comprehensions are syntactic sugar on
top of the do notation!

[x| x <-[1,2,3,4]] is syntactic sugar for

do { x <-[1,2,3,4]; return x }

[[x,y]]| x<-[1,2,3], y <-[6,5,4]] is syntactic
sugar for

do { x <-[1,2,3]; y<-[6,5,4]; return [Xx,y] }

= \Which in turn, we can translate into monadic
bind...

24

So, What is the Point of the

i Monad...

= Conveniently chains (builds) computation

= Encapsulates "mutable” state. E.qg., 10:
openkFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO () -- void

hiseOF :: Handle -> 10 Bool

hGetChar :: Handle -> |0 Char

These operations break “referential transparency”.
For example, hGetChar typically returns different value
when called twice in a row!

Program Analysis CSCI 4450/6450, A Milanova 25

