Hindley Milner, conclusion; Haskell

Please sign up for papers

Program Analysis CSCI 4450/6450, A Milanova

Hindley Milner type inference, conclusion Observations and examples

Haskell: records, type classes and monads

Hindley Milner Observations

- Generates the most general type (principal type) for each term/subterm
- Type system is sound
- Complexity of Algorithm W
 - PSPACE-Hard
 - Because of nested let blocks

Hindley Milner Recap

let $x = E_1$ in E_2

- 1. Calculate type T_{E1} for E_1 in Γ ;x:t_x using simple type inference. T_{E1} is principal type of E_1
- 2. Generalize free type variables in T_{E1} to get type scheme for T_{E1} (be mindful of caveat!)
- Extend environment with x:Gen(Γ,T_{E1}) and start typing
 E₂
- 4. When we encounter x in E₂, instantiate its type scheme to a fresh monotype

E.g., **id**'s type scheme is $\forall t_1.t_1 \rightarrow t_1$ so **id** is instantiated to $u_k \rightarrow u_k$ at **(id 1)**

Hindley Milner Limitations

Only let-bound constructs can be polymorphic and instantiated differently $bbuice = (t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x \quad Ge_1(I, (t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x) \rightarrow t_x \rightarrow t_x$ Huise = >fx. f(fx) let twice f x = f (f x)in twice twice succ 4 // let-bound polymorphism $(u_1 - u_1) - (u_1 - u_1) - (u_1 - u_1) - (u_2 - u_2) - (u_2 - u_2) - (u_1 - u_1) -$ $\begin{pmatrix} (u_1 - u_1) \end{pmatrix} \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_1 - u_2) \end{pmatrix} \begin{pmatrix} (u_1 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \rightarrow (u_2 - u_2) \end{pmatrix} \rightarrow (u_2 - u_2) \rightarrow (u_2$

Hindley Milner Limitations

 Only let-bound constructs can be polymorphic and instantiated differently

let twice f x = f (f x)foo g = g g succ 4 // lambda-boundin foo twice $\frac{bg}{fg} = \frac{bg}{fg} \rightarrow f$

Hindley Milner Limitations

Another example:
 (λx. x (λy. y) (x 1)) (λz. z)

VS.

let x = (λz. z)

in

x (λy. y) (x 1)

Hindley Milner type inference, conclusion Observations and examples

Haskell: records, type classes and monads

Haskell Records

Program Analysis CSCI 4450/6450, A Milanova

Haskell Type Classes

Not to be confused with Java classes/interfaces

Let us define a type class containing the arithmetic and comparison operators:

```
class Num a where
(==) :: a -> a -> Bool
(+) :: a -> a -> a
...
instance Num Int where
x == y = ...
...
instance Num Float where
```

Read: A type **a** is an instance of the type class **Num** if it provides "overloaded" definitions of operators **==**, **+**, ...

Read: Int and Float are instances of Num

Generic Functions with Type Class

sum :: (Num a) => a -> List a -> a sum n Nil = n sum n (Cons x xs) = sum (n+x) xs

- One view of type classes: predicates
 - (Num a) is a predicate in type definitions
 - Constrains the specific types we can instantiate a generic function with
- A type class has associated laws

Type Class Hierarchy

class Eq a where

(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where (<), (<=), (>), (>=) :: a -> a -> Bool min, max :: a -> a -> a

- Each type class corresponds to one concept
- Class constraints give rise to a hierarchy
- Eq is a superclass of Ord
 - Ord inherits specification of (==) and (/=)
 - Notion of "true subtyping"

"A monad is just a monoid in the category of endofunctors, what's the problem?"

- Monad type class and the monad laws
- Maybe monad
- List monad
- IO monad
- State monad

Monads

A way to cleanly compose computations

• E.g., **f** may return a value of type **a** or Nothing Composing computations becomes tedious: case (f s) of Nothing \rightarrow Nothing Just m \rightarrow case (f m) ...

In Haskell, monads model IO and other imperative features

Program Analysis CSCI 4450/6450, A Milanova

An Example: Cloned Sheep

type Sheep = ... father :: Sheep \rightarrow Maybe Sheep father = ... mother :: Sheep \rightarrow Maybe Sheep mother = \dots (Note: a sheep has both parents; a cloned sheep has one) maternalGrandfather :: Sheep \rightarrow Maybe Sheep maternalGrandfather **s** = case (mother **s**) of Nothing \rightarrow Nothing Just $\mathbf{m} \rightarrow$ father \mathbf{m}

mothersPaternalGrandfather :: Sheep \rightarrow Maybe Sheep mothersPaternalGrandfather $\mathbf{s} = \mathbf{case}$ (mother \mathbf{s}) of Nothing \rightarrow Nothing Just $\mathbf{m} \rightarrow \mathbf{case}$ (father \mathbf{m}) of Nothing \rightarrow Nothing Just $\mathbf{gf} \rightarrow$ father \mathbf{gf}

Tedious, unreadable, difficult to maintainMonads help!

The Monad Type Class

 Haskell's Monad type class requires 2 operations, >>= (bind) and return

class Monad m where

// >>= (the bind operation) takes a monad // **m a**, and a function that takes **a** and turns

// it into a monad **m b**, and returns **m b**

// return encapsulates a value into the monad return :: $a \rightarrow m a$

The Maybe Monad

instance Monad Maybe where

- Nothing >>= **f** = Nothing
- (Just **x**) >>= **f** = **f x**
- return = Just
- Back to our example:

mothersPaternalGrandfather **s** =

(return s) >>= mother >>= father >>= father

19

(Note: if at any point, some function returns Nothing, it gets cleanly propagated.)

The List Monad

- The List type constructor is a monad
 - li >>= f = concat (map f li)
 - return x = [x]
- Note: concat::[[**a**]] \rightarrow [**a**]
- e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
- Use any f s.t. f::a→[b]. f may return a list of 0,1,2,... elements of type b, e.g.,
 - > f x = [x+1]
 - > [1,2,3] >>= f --- ?

parents :: Sheep → [Sheep] parents **s** = MaybeToList (mother **s**) ++ MaybeToList (father **s**)

grandParents :: Sheep \rightarrow [Sheep] grandParents **s** = (parents **s**) >>= parents

The do Notation

do notation is syntactic sugar for monadic bind

- > f x = x+1
- > g x = x*5
- > [1,2,3] >>= (return . f) >>= (return . g)
- Or
- > [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
- Or, make encapsulated element explicit with do
- > do { v <- [1,2,3]; w <- (\x->[x+1]) v; (\y->[y*5]) w }

Program Analysis CSCI 4450/6450, A Milanova

List Comprehensions

- > [x | x <- [1,2,3,4]]
 [1,2,3,4]
 > [x | x <- [1,2,3,4], x `mod` 2 == 0]
 [2,4]
 > [[x,y] | x <- [1,2,3], y <- [6,5,4]]</pre>
- [[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]]

- List comprehensions are syntactic sugar on top of the do notation!
- [x | x <- [1,2,3,4]] is syntactic sugar for
- do { x <- [1,2,3,4]; return x }
- [[x,y] | x <- [1,2,3], y <- [6,5,4]] is syntactic sugar for
- do { x <- [1,2,3]; y<-[6,5,4]; return [x,y] }
- Which in turn, we can translate into monadic bind...

So, What is the Point of the Monad...

Conveniently chains (builds) computation

Encapsulates "mutable" state. E.g., IO: openFile :: FilePath -> IOMode -> IO Handle hClose :: Handle -> IO () -- void hIsEOF :: Handle -> IO Bool hGetChar :: Handle -> IO Char

> These operations break "referential transparency". For example, **hGetChar** typically returns different value when called twice in a row!