
Hindley Milner, conclusion; Haskell 



Announcements

n Quiz 6

n HW6?

n Please sign up for papers
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Outline

n Hindley Milner type inference, conclusion
n Observations and examples

n Haskell: records, type classes and monads
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Hindley Milner Observations

n Generates the most general type (principal 
type) for each term/subterm

n Type system is sound

n Complexity of Algorithm W
n PSPACE-Hard
n Because of nested let blocks
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Hindley Milner Recap

let x = E1 in E2
1. Calculate type TE1 for E1 in Γ;x:tx using simple type 

inference. TE1 is principal type of E1

2. Generalize free type variables in TE1 to get type 
scheme for TE1 (be mindful of caveat!)

3. Extend environment with x:Gen(Γ,TE1) and start typing 
E2

4. When we encounter x in E2, instantiate its type 
scheme to a fresh monotype

E.g., id’s type scheme is    t1.t1®t1 so id is instantiated to 
uk®uk at (id 1) 
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Hindley Milner Limitations

n Only let-bound constructs can be 
polymorphic and instantiated differently

let twice f x = f (f x) 
in twice twice succ 4 // let-bound polymorphism
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Hindley Milner Limitations

n Only let-bound constructs can be 
polymorphic and instantiated differently

let twice f x = f (f x) 
foo g = g g succ 4 // lambda-bound

in foo twice
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Hindley Milner Limitations

n Another example:
(lx. x (ly. y) (x 1)) (lz. z)

vs.
let x = (lz. z)
in

x (ly. y) (x 1)    
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Outline

n Hindley Milner type inference, conclusion
n Observations and examples

n Haskell: records, type classes and monads
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Haskell Records

{- Constraint environment. -}
type Constraints = [(Type, Type)]
data ConstraintEnv = CEnv

{
constraints :: Constraints
, var :: Int
, tenv :: TEnv
}

cenv = CEnv { constraints=[], var=0, tenv=[] } ;; new environment
… constraints cenv … var cenv … tenv cenv … ;; field accessors 
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Haskell Type Classes

n Not to be confused with Java classes/interfaces
n Let us define a type class containing the 

arithmetic and comparison operators:
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class Num a where 
(==)   :: a -> a -> Bool
(+)     :: a -> a -> a
…

instance Num Int where
x == y = ...
...

instance Num Float where
…

Read: A type a is an instance of the type 
class Num if it provides “overloaded” 
definitions of operators ==, +, …

Read: Int and Float are instances of Num



Generic Functions with Type 
Class

sum :: (Num a) => a -> List a -> a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

n One view of type classes: predicates
n (Num a) is a predicate in type definitions
n Constrains the specific types we can instantiate a 

generic function with
n A type class has associated laws
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Type Class Hierarchy

n Each type class corresponds to one concept
n Class constraints give rise to a hierarchy
n Eq is a superclass of Ord

n Ord inherits specification of (==) and (/=)
n Notion of “true subtyping”
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class Eq a where 
(==), (/=)  :: a -> a -> Bool

class (Eq a) => Ord a where
(<), (<=), (>), (>=)  :: a -> a -> Bool
min, max               :: a -> a -> a



Monad Quote

n “A monad is just a monoid in the category of 
endofunctors, what's the problem?”

n Monad type class and the monad laws
n Maybe monad
n List monad
n IO monad
n State monad
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Monads

n A way to cleanly compose computations
n E.g., f may return a value of type a or Nothing
Composing computations becomes tedious:
case (f s) of

Nothing à Nothing 
Just m   à case (f m) …

n In Haskell, monads model IO and other 
imperative features

Program Analysis CSCI 4450/6450, A Milanova 15



An Example: Cloned Sheep

type Sheep = …
father :: Sheep à Maybe Sheep
father = ...
mother :: Sheep à Maybe Sheep
mother = …
(Note: a sheep has both parents; a cloned sheep has one)
maternalGrandfather :: Sheep à Maybe Sheep
maternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à father m
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An Example

mothersPaternalGrandfather :: Sheep à Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of

Nothing à Nothing
Just m à case (father m) of

Nothing à Nothing
Just gf à father gf

n Tedious, unreadable, difficult to maintain
n Monads help!
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The Monad Type Class

n Haskell’s Monad type class requires 2 
operations, >>= (bind) and return

class Monad m where 
// >>= (the bind operation) takes a monad
// m a, and a function that takes a and turns 
// it into a monad m b, and returns m b
(>>=) :: m a à (a à m b) à m b
// return encapsulates a value into the monad
return :: a à m a
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The Maybe Monad

instance Monad Maybe where 
Nothing >>= f = Nothing
(Just x) >>= f = f x
return = Just

n Back to our example:
mothersPaternalGrandfather s = 

(return s) >>= mother >>= father >>= father
(Note: if at any point, some function returns 
Nothing, it gets cleanly propagated.) 19



The List Monad

n The List type constructor is a monad
li >>= f = concat (map f li)
return x = [x]
Note: concat::[[a]] à [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,6]
n Use any f s.t. f::aà[b]. f may return a list of 

0,1,2,… elements of type b, e.g.,
> f x = [x+1]
> [1,2,3] >>= f  --- ?
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The List Monad

parents :: Sheep à [Sheep]
parents s = MaybeToList (mother s) ++    

MaybeToList (father s)   

grandParents :: Sheep à [Sheep]
grandParents s = (parents s) >>= parents
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The do Notation

n do notation is syntactic sugar for monadic bind

> f x = x+1
> g x = x*5
> [1,2,3] >>= (return . f) >>= (return . g)
Or
> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]
Or, make encapsulated element explicit with do
> do { v <- [1,2,3]; w <- (\x->[x+1]) v; (\y->[y*5]) w }
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List Comprehensions

> [ x | x <- [1,2,3,4] ] 
[1,2,3,4]
> [ x | x <- [1,2,3,4], x `mod` 2 == 0 ]
[2,4]
> [ [x,y] | x <- [1,2,3], y <- [6,5,4] ]
[[1,6],[1,5],[1,4],[2,6],[2,5],[2,4],[3,6],[3,5],[3,4]]
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List Comprehensions

n List comprehensions are syntactic sugar on 
top of the do notation!

[ x | x <- [1,2,3,4] ] is syntactic sugar for
do { x <- [1,2,3,4]; return x }
[ [x,y] | x <- [1,2,3], y <- [6,5,4] ] is syntactic 

sugar for
do { x <- [1,2,3]; y<-[6,5,4]; return [x,y] }
n Which in turn, we can translate into monadic 

bind…
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So, What is the Point of the 
Monad…

n Conveniently chains (builds) computation

n Encapsulates “mutable” state. E.g., IO:
openFile :: FilePath -> IOMode -> IO Handle 
hClose :: Handle -> IO () -- void 
hIsEOF :: Handle -> IO Bool 
hGetChar :: Handle -> IO Char 
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These operations break “referential transparency”. 
For example, hGetChar typically returns different value 
when called twice in a row!

Program Analysis CSCI 4450/6450, A Milanova


