Dataflow Analysis, cont.
Announcements

- Monday is Martin Luther King Jr. Day, No classes

- HW1 problem set is posted, due Jan 25th
 - Work individually or in teams of 2
 - Ask questions on forum
 - Upload in Submitty
Outline of Today’s Class

- Classical compiler optimizations
- Building CFG from 3-address code
- Local analysis vs. global analysis
- The four classical dataflow analysis problems
 - Reaching definitions
 - Live variables
 - Available expressions
 - Very busy expressions

- Reading:
 - Dragon Book, Chapter 9.2
Three Address Code
Intermediate Representation (IR)

1. \text{sum} = 0 \quad \rightarrow \text{initialize sum}
2. \text{i} = 1 \quad \rightarrow \text{initialize loop counter}
3. \text{if } \text{i} > \text{n} \text{ goto 15} \quad \rightarrow \text{loop test, check for limit}
4. \text{t1} = \text{addr(a)} - 4
5. \text{t2} = \text{i} \ast 4
6. \text{t3} = \text{t1}[\text{t2}]
7. \text{t4} = \text{addr(a)} - 4
8. \text{t5} = \text{i} \ast 4
9. \text{t6} = \text{t4}[\text{t5}]
10. \text{t7} = \text{t3} \ast \text{t6}
11. \text{t8} = \text{sum} + \text{t7}
12. \text{sum} = \text{t8} \quad \rightarrow \text{increment sum}
13. \text{i} = \text{i} + 1 \quad \rightarrow \text{increment loop counter}
14. \text{goto 3}
15. ...
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
1. \(\text{sum} = 0 \)
2. \(i = 1 \)
3. \(t1 = \text{addr}(a) - 4 \)

4. if \(i > n \) goto 15

5. \(t2 = i \times 4 \)
6. \(t3 = t1[t2] \)
7. \(t7 = t3 \times t3 \)
8. \(\text{sum} = \text{sum} + t7 \)
9. \(i = i + 1 \)
10. goto 3

11. …
New Control Flow Graph

1. sum = 0
2. t1 = addr(a) - 4
3. t9 = n * 4
4. t2 = 4
5. if t2 > t9 goto 11
6. t3 = t1[t2]
7. t7 = t3 * t3
8. sum = sum + t7
9. t2 = t2 + 4
10. goto 5
11. ...
Classical Compiler Optimizations

To summarize

- Common subexpression elimination
- Copy propagation
- Strength reduction
- Test elision and induction variable elimination
- Constant propagation
- Dead code elimination

Dataflow analysis enables these optimizations
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. ...

Diagram:

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
Building the Control Flow Graph

Build the CFG from linear 3-address code:

- Step 1: partition code into basic blocks
 - Basic blocks are the nodes of the CFG
- Step 2: add control flow edges

Aside: in Principles of Software, we built a CFG from “high-level” structural program representation, the AST:

\[
S ::= \text{x = y Op z | if (B) then S else S | while (B) S | S};S
\]
Step 1. Partition Code Into Basic Blocks

1. Determine the leader statements:
 (i) First program statement
 (ii) Targets of a goto, conditional or unconditional
 (iii) Any statement following a goto

2. For each leader, its basic block consists of the leader and all statements up to, but not including, the next leader or the end of the program
Question. Find the Leader

Statements

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. ...
Step 2. Add Control Flow Edges

- There is a directed edge from basic block B_1 to block B_2 if B_2 can immediately follow B_1 in some execution sequence.

Determine edges as follows:

(i) There is an edge from B_1 to B_2 if B_2 follows B_1 in three address code, and B_1 does not end in an unconditional goto.

(ii) There is an edge from B_1 to B_2 if there is a goto from the last statement in B_1 to the first statement in B_2.
Question. Add Control Flow Edges

1. \texttt{sum} = 0
2. \texttt{i} = 1
3. \texttt{if i > n goto 15}
4. \texttt{t1 = addr(a) - 4}
5. \texttt{t2 = i*4}
6. \texttt{t3 = t1 [t2]}
7. \texttt{t4 = addr(a) - 4}
8. \texttt{t5 = i*4}
9. \texttt{t6 = t5 [t5]}
10. \texttt{t7 = t3 * t6}
11. \texttt{t8 = sum + t7}
12. \texttt{sum = t8}
13. \texttt{i = i + 1}
14. \texttt{goto 3}
15. \texttt{...}
Local Analysis vs. Global Analysis

- **Local analysis: analysis within basic block**
 - Enables optimizations such as *local* common subexpression elimination, dead code elimination, constant propagation, copy propagation, etc.

- **Global analysis: beyond the basic block**
 - Enables optimizations such as *global* common subexpression elimination, dead code elimination, constant propagation, loop optimizations, etc.
1. \(t_1 = 4 \times i \)
2. \(t_2 = a \ [\ t_1 \] \)
3. \(t_3 = 4 \times i \)
4. \(t_4 = b \ [\ t_3 \] \)
5. \(t_5 = t_2 \times t_4 \)
6. \(t_6 = \text{prod} + t_5 \)
7. \(\text{prod} = t_6 \)
8. \(t_7 = i + 1 \)
9. \(i = t_7 \)
10. \(\text{if } i \leq 20 \text{ goto 1} \)
Local Constant Propagation

1. \(t_1 = 1 \)
 Assume \(a, k, t_3, \) and \(t_4 \) are used beyond basic block:

2. \(a = t_1 \)
 \(1' \) \(a = 1 \)

3. \(t_2 = 1 + a \)
 \(2' \) \(k = 2 \)

4. \(k = t_2 \)
 \(3' \) \(t_4 = 8.2 \)

5. \(t_3 = \text{cvttoreal}(k) \)
 \(4' \) \(t_3 = 8.2 \)

6. \(t_4 = 6.2 + t_3 \)

7. \(t_3 = t_4 \)

David Gries’ algorithm:
- Process 3-address statements in order
- Check if operand is constant; if so, substitute
- If all operands are constant:
 Do operation, and add (LHS,value) to map
- If not all operands constant:
 Delete (LHS,value) entry from map
Arrays and Pointers Make Things Harder

- Consider:
 1. \(x = a[k] \);
 2. \(a[j] = y \);
 3. \(z = a[k] \);

- Can we transform this code into:
 1. \(x = a[k] \);
 2. \(a[j] = y \);
 3. \(z = x \);
Local Analysis vs. Global Analysis

- Local analysis is generally easy – a single path from basic block entry to basic block exit

- Global analysis is generally hard – multiple control-flow paths
 - Control flow splits and merges at if-then-else
 - Loops!
Dataflow Analysis

- Collects information for all inputs along all execution paths
 - Control splits and control merges
 - Loops (control goes back)

- Dataflow analysis is a powerful framework
- We can define many different dataflow analysis
1. Control-flow graph (CFG):
 - $G = (N, E, 1)$
 - Nodes are basic blocks

2. Data

3. Dataflow equations
 \[\text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j) \]
 (\text{gen} and \text{kill} are parameters)

4. Merge operator V
 \[\text{in}(j) = V \text{ out}(i) \]
 i is predecessor of j
Four Classical Dataflow Problems

- Reaching definitions (*Reach*)
- Live uses of variables (*Live*)
- Available expressions (*Avail*)
- Very busy expressions (*VeryB*)

Reach and the dual *Live* enable several classical optimizations such as dead code elimination, as well as dataflow-based testing.

Avail enables global common subexpression elimination.

VeryB enables conservative code motion.
Reaching Definitions

- **Definition** A statement that may change the value of a variable (e.g., $x = y + z$)
- (x, k) denotes definition of x at node k
- A definition (x, k) reaches node n if there is a path from k to n, free of a definition of x
Live Uses of Variables

- **Use** Appearance of a variable as an operand of a 3-address statement (e.g., `x` in `y=x+4`)

- A use of a variable `x` at node `n` is **live on exit** from `k`, if there is a path from `k` to `n` clear of definition of `x`
Def-use Relations

- **Use-def chain** links a use of x to a definition of x that reaches that use.

- **Def-use chain** links a definition to a use that it reaches.

![Diagram]

$k \quad x = \ldots \quad n \quad \ldots = x$
Def-use Enable Optimizations

- Dead code elimination (Def-use)
- Code motion (Use-def)
- Constant propagation (Use-def)
- Strength reduction (Use-def)
- Test elision (Use-def)
- Copy propagation (Def-use)

Aside: Def-use enables dataflow-based testing. (In Principles of Software)
Question. What are the Def-use Chains that start at 2?

Answer:
(2,3)
(2,5)
(2,6)
Def-use Enables Dead Code Elimination

1. sum = 0
2. i = 1

3. if t2 > t9 goto 15

4. t3 = t1[t2]
5. t7 = t3 * t3
6. sum = sum + t7
7. t2 = t2 + 4

After code motion, strength reduction, test elision and constant propagation, the def-use links from 2.i=1 disappear. Thus, 2.i=1 becomes dead code.
Use-def Enables Constant Propagation

What are the use-def chains that originate at 6?

Answer:
(6,1)
(6,5)
Def-use Enables Reasoning about Buffer Overflows

1. `local_20 = USER_INPUT`
2. `i = bowl.size`
3. `if i < local_20` → T
4. `local_20 = i - 1`
5. `local_24 = 0`
6. `if local_24 <= local_20` → T
7. `t1 = ingredients[local_24]`
8. `bowl[local_24] = t1`
9. `local_24 = local_24 + 1`
10. ...
Problem 1. Reaching Definitions (Reach)

- Problem statement: for each CFG node \(n \), compute the set of definitions \((x, k)\) that reach \(n \)

- First, define **data** (i.e., the dataflow facts) to propagate
 - **Primitive dataflow facts** are definitions \((x, k)\)
 - **Reach** propagates **sets** of definitions, e.g., \{ (i,1), (p,4) \}

CSCI 4450/6450, A Milanova
Reaching Definitions (*Reach*)

- Next, define the dataflow equations (i.e., effect of code at node \(j \) on incoming dataflow facts)

\[j: x = y + z \]

\[\text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j) \]

- \(\text{kill}(j) \): all definitions of \((x,_)\)
- \(\text{gen}(j) \): this definition of \(x, (x,j)\)

E.g., if \(\text{in}(4) = \{(x,1), (y,2), (x,3)\}\)

Node 4 is: \(x = y + z \)

Then \(\text{out}(4) = \{(y,2), (x,4)\}\)
Reaching Definitions (*Reach*)

- Next, define the merge operator V (i.e., how to combine data from incoming paths)
- For *Reach*, V is the set union U

$$in(j) = \{ U \text{ out}(i) \mid i \text{ is predecessor of } j \}$$

E.g., if $out(2) = \{(x,1), (y,2)\}$ and $out(3) = \{(x,3)\}$ and 2 and 3 are predecessors of 4

$$in(4) = \{(x,1), (x,3), (y,2)\}$$
Reach: Dataflow Equations

1. x = 5
 in(1) = Ø
 out(1) = (in(1) - D_x) U {(x,1)}

2. y = 1
 in(2) = out(1)
 out(2) = (in(2) - D_y) U {(y,2)}

3. x >= 2
 in(3) = out(2) U out(6)
 out(3) = in(3)

4. y = x * y
 in(4) = out(3)
 out(4) = (in(4) - D_y) U {(y,4)}

5. x = x - 1
 in(5) = out(4)
 out(5) = (in(5) - D_x) U {(x,5)}

6. goto 3
 in(6) = out(5)
 out(6) = in(6)

7. ...
 in(7) = out(3)
Reach: Solution of Equations

1. \(x = 5 \)
 \(\text{in}(1) = \emptyset \)
 \(\text{out}(1) = \{(x,1)\} \)

2. \(y = 1 \)
 \(\text{in}(2) = \{(x,1)\} \)
 \(\text{out}(2) = \{(x,1), (y,2)\} \)

3. \(x \geq 2 \)
 \(\text{in}(3) = \{(x,1),(x,5),(y,2),(y,4)\} \)
 \(\text{out}(3) = \{(x,1),(x,5),(y,2),(y,4)\} \)

4. \(y = x \times y \)
 \(\text{in}(4) = \{(x,1),(x,5),(y,2),(y,4)\} \)
 \(\text{out}(4) = \{(x,1),(x,5),(y,4)\} \)

5. \(x = x - 1 \)
 \(\text{in}(5) = \{(x,1),(x,5),(y,4)\} \)
 \(\text{out}(5) = \{(x,5),(y,4)\} \)

6. goto 3
 \(\text{in}(6) = \{(x,5),(y,4)\} \)
 \(\text{out}(6) = \{(x,5),(y,4)\} \)

7. ...
 \(\text{in}(7) = \{(x,1),(x,5),(y,2),(y,4)\} \)
Forward, may dataflow problem
Problem 2. Live Uses of Variables (Live)

- We say that a variable x is “live on exit from node j” if there is a live use of x on exit from j (recall the definition of “live use of x on exit from j”)

- Problem statement: for each node n, compute the set of variables that are live on exit from n.

1. $x=2$; 2. $y=4$; 3. $x=1$; if $(y>x)$ then 5. $z=y$; else 6. $z=y*y$; 7. $x=z$;

What variables are live on exit from statement 3? Statement 1?
Problem statement: for each node \(n \), compute the set of variables that are live on exit from \(n \).

\[
in_{LV}(j) = (out_{LV}(j) - kill_{LV}(j)) \cup gen_{LV}(j)
\]

\[
out_{LV}(j) = \{ U \in in_{LV}(i) \mid i \text{ is a successor of } j \}\}
\]

Q: What are the primitive dataflow facts?
Q: What is \(gen_{LV}(j) \)?
Q: What is \(kill_{LV}(j) \)?
Live Example

1. x = 2

2. y = 4

3. x = 1

4. (y > x)
 - T
 - 5. z = y
 - 7. x = z
 - F
 - 6. z = y*y

T F
Live Uses of Variables (Live)

- Data
 - Primitive facts: variables \(x \)
 - Propagates sets: \(\{x, y, z\} \)

- Dataflow equations. At \(j: \ x = y+z \)
 - \(\text{kill}_{LV}(j): \{x\} \)
 - \(\text{gen}_{LV}(j): \{y, z\} \)

- Merge operator: set union \(U \)
Live Uses of Variables

Backward, may dataflow problem

CSCI 4450/6450, A Milanova
Available Expressions

- An expression \(x \ op \ y \) is available at program point \(n \) if every path from entry to \(n \) evaluates \(x \ op \ y \), and there are NO subsequent assignments to \(x \) or \(y \) after evaluation and prior to reaching \(n \).
Problem 3. Available Expressions (Avail)

- Problem statement: For every node n, compute the set of expressions that are available at n
Avail Enables Global Common Subexpression Elimination
Avail Enables Global Common Subexpression Elimination

Can we eliminate $w = a\times b$?
Available Expressions (Avail)

- **Data?**
 - Primitive dataflow facts are expressions, e.g., \(x+y, \ a*b, \ a+2\)
 - Analysis propagates sets of expressions, e.g., \(\{x+y, \ a*b\}\)

- **Dataflow equations at \(j\): \(x = y \ \text{op} \ z\)?**
 - \(\text{out}_{AE}(j) = (\text{in}_{AE}(j) - \text{kill}_{AE}(j)) \cup \text{gen}_{AE}(j)\)
 - \(\text{kill}_{AE}(j)\): all expressions with operand \(x\):
 - \((x \ \text{op} \ _)\), \((_ \ \text{op} \ x)\)
 - \(\text{gen}_{AE}(j)\): new expression: \(\{ (y \ \text{op} \ z) \}\)
Available Expressions (Avail)

- Merge operator?
 - For Avail, it is set intersection \bigcap

\[
in_{AE}(j) = \{ \bigcap out_{AE}(i) \mid i \text{ is predecessor of } j \} \]
Available Expressions (Avail)

\[x = y + z \]

Forward, must dataflow problem
Example

1. \(y = a + b \)

2. \(x = a \times b \)

3. if \(y \leq a \times b \)

4. \(a = a + 1 \)

5. \(x = a \times b \)

6. goto 3

7. ...
Note on Homework
Very Busy Expressions

- An expression $x \ op \ y$ is very busy at node n, if along EVERY path from n to the end of the program, we come to a computation of $x \ op \ y$ BEFORE any redefinition of x or y.
Problem 4. Very Busy Expressions (VeryB)

Problem Statement: For each node \(n \), compute the set of expressions that are very busy on exit from \(n \).

Q: What is the data?

Q: What are the equations?

Q: What is \(gen_{VB}(i) \)?

Q: What is \(kill_{VB}(i) \)?

Q: What is the merge operator?
Very Busy Expressions (VeryB)

- **Data?**
 - Primitive dataflow facts are expressions, e.g., $x+y$, $a*b$
 - Analysis propagates sets of expressions, e.g., \{x+y, a*b\}

- **Dataflow equations at j: $x = y \text{ op } z$?**
 - $\text{in}(j) = \text{gen}(j) \cup (\text{out}(j) – \text{kill}(j))$
 - $\text{kill}(j)$: all expressions with operand x: $(x \text{ op } _), (_ \text{ op } x)$
 - $\text{gen}(j)$: new expression: \{ $(y \text{ op } z)$ \}
Very Busy Expressions (VeryB)

- Merge operator?
 - For VeryB, it is set intersection \(\cap \)

\[
\text{out}_{\text{VB}}(j) = \{ \bigcap \text{in}_{\text{VB}}(i) \mid i \text{ is successor of } j \}
\]
Very Busy Expressions

Backward, must dataflow problem
Dataflow Analysis Problems

<table>
<thead>
<tr>
<th></th>
<th>May Analyses</th>
<th>Must Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Analyses</td>
<td>Reaching Definitions</td>
<td>Available Expressions</td>
</tr>
<tr>
<td>Backward Analyses</td>
<td>Live Uses of Variables</td>
<td>Very Busy Expressions</td>
</tr>
</tbody>
</table>
Similarities

- In all cases, analysis operates on a finite set D of primitive dataflow facts:
 - $Reach$: D is the set of all definitions in the program:
 - e.g., $\{ (x,1), (y,2), (x,4), (y,5) \}$
 - $Avail$ and $VeryB$: D is the set of all arithmetic expressions:
 - e.g., $\{ a+b, a*b, a+1 \}$
 - $Live$: D is the set of all variables
 - e.g., $\{ x, y, z \}$

- Solution at node n is a subset of D (a definition either reaches node n or it does not reach node n)
Similarities

- Dataflow equations (i.e., transfer functions) for forward problems have generic form:
 \[\text{out}(j) = (\text{in}(j) - \text{kill}(j)) \cup \text{gen}(j) = (\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j) \]
 \[\text{in}(j) = \{ V \text{out}(i) \mid i \text{ is predecessor of } j \} \]

 Note: \(\text{pres}(j) \) is the complement of \(\text{kill}(j) \), \(D - \text{kill}(j) \)

 Note: What makes the 4 classical problems special is that sets \(\text{pres}(j) \) and \(\text{gen}(j) \) do not depend on \(\text{in}(j) \)

- Set union and set intersection can be implemented as logical OR and AND respectively