
Dataflow Analysis, cont.

Announcements

n Monday is Martin Luther King Jr. Day, No
classes

n HW1 problem set is posted, due Jan 25th

n Work individually or in teams of 2
n Ask questions on forum
n Upload in Submitty

CSCI 4450/6450, A Milanova 2

Outline of Today’s Class

n Classical compiler optimizations
n Building CFG from 3-address code
n Local analysis vs. global analysis
n The four classical dataflow analysis problems

n Reaching definitions
n Live variables
n Available expressions
n Very busy expressions

n Reading:
n Dragon Book, Chapter 9.2

CSCI 4450/6450, A Milanova 3

Three Address Code
Intermediate Representation (IR)

CSCI 4450/6450, A Milanova 4

1. sum = 0 initialize sum
2. i = 1 initialize loop counter
3. if i > n goto 15 loop test, check for limit
4. t1 = addr(a) – 4
5. t2 = i * 4 a[i]
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i * 4 a[i]
9. t6 = t4[t5]
10. t7 = t3 * t6 a[i]*a[i]
11. t8 = sum + t7
12. sum = t8 increment sum
13. i = i + 1 increment loop counter
14. goto 3

15. …

Control Flow Graph (CFG)

CSCI 4450/6450, A Milanova 5

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15. …
T

F

Control Flow Graph (CFG)

CSCI 4450/6450, A Milanova 6

1. sum = 0
2. i = 1
3. t1 = addr(a) – 4

4. if i > n goto 15

5. t2 = i*4
6. t3 = t1[t2]
7. t7 = t3*t3
8. sum = sum + t7

9. i = i + 1
10. goto 3

11. …
T

F

New Control Flow Graph

1. sum = 0
2. t1 = addr(a) - 4
3. t9 = n * 4
4. t2 = 4

5. if t2 > t9 goto 11

6. t3 = t1[t2]
7. t7 = t3 * t3
8. sum = sum + t7
9. t2 = t2 + 4
10. goto 5

11. …

F

T

7

Classical Compiler Optimizations

n To summarize
n Common subexpression elimination
n Copy propagation
n Strength reduction
n Test elision and induction variable elimination
n Constant propagation
n Dead code elimination

n Dataflow analysis enables these
optimizations

CSCI 4450/6450, A Milanova 8

Building Control Flow Graph

CSCI 4450/6450, A Milanova 9

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15. …
T

F

Building the Control Flow Graph

Build the CFG from linear 3-address code:
nStep 1: partition code into basic blocks

n Basic blocks are the nodes of the CFG
nStep 2: add control flow edges

nAside: in Principles of Software, we built a
CFG from “high-level” structural program
representation, the AST:

n S ::= x = y Op z | if (B) then S else S |
while (B) S | S;S

10

Step 1. Partition Code Into Basic
Blocks

1. Determine the leader statements:
(i) First program statement
(ii) Targets of a goto, conditional or

unconditional
(iii) Any statement following a goto

2. For each leader, its basic block consists of
the leader and all statements up to, but not
including, the next leader or the end of the
program

CSCI 4450/6450, A Milanova 11

Question. Find the Leader
Statements

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …

CSCI 4450/6450, A Milanova 12

Step 2. Add Control Flow Edges

n There is a directed edge from basic block
B1 to block B2 if B2 can immediately follow
B1 in some execution sequence

n Determine edges as follows:
(i) There is an edge from B1 to B2 if B2 follows B1

in three address code, and B1 does not end in
an unconditional goto

(ii) There is an edge from B1 to B2 if there is a
goto from the last statement in B1 to the first
statement in B2

CSCI 4450/6450, A Milanova 13

Question. Add Control Flow
Edges

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …

CSCI 4450/6450, A Milanova 14

Local Analysis vs. Global Analysis

n Local analysis: analysis within basic block
n Enables optimizations such as local common

subexpression elimination, dead code
elimination, constant propagation, copy
propagation, etc.

n Global analysis: beyond the basic block
n Enables optimizations such as global common

subexpression elimination, dead code
elimination, constant propagation, loop
optimizations, etc.

CSCI 4450/6450, A Milanova 15

Local Common Subexpression
Elimination

1. t1 = 4 * i
2. t2 = a [t1]
3. t3 = 4 * i
4. t4 = b [t3]
5. t5 = t2 * t4
6. t6 = prod + t5
7. prod = t6
8. t7 = i + 1
9. i = t7
10. if i <= 20 goto 1

CSCI 4450/6450, A Milanova 16

Local Constant Propagation
1. t1 = 1 Assume a, k, t3, and t4 are used beyond basic block:
2. a = t1 1’. a = 1
3. t2 = 1 + a 2’. k = 2
4. k = t2 3’. t4 = 8.2
5. t3 = cvttoreal(k) 4’. t3 = 8.2
6. t4 = 6.2 + t3
7. t3 = t4

David Gries’ algorithm:
•Process 3-address statements in order
•Check if operand is constant; if so, substitute
•If all operands are constant:

Do operation, and add (LHS,value) to map
•If not all operands constant:

Delete (LHS,value) entry from map

Arrays and Pointers Make Things
Harder

n Consider:
1. x = a[k];
2. a[j] = y;
3. z = a[k];

n Can we transform this code into:
1. x = a[k];
2. a[j] = y;
3. z = x;

CSCI 4450/6450, A Milanova 18

Local Analysis vs. Global
Analysis

n Local analysis is generally easy – a single
path from basic block entry to basic block exit

n Global analysis is generally hard – multiple
control-flow paths
n Control flow splits and merges at if-then-else
n Loops!

CSCI 4450/6450, A Milanova 19

Dataflow Analysis

n Collects information for all inputs along all
execution paths
n Control splits and control merges
n Loops (control goes back)

n Dataflow analysis is a powerful framework
n We can define many different dataflow

analysis

CSCI 4450/6450, A Milanova 20

Dataflow Analysis

1
2

3

4

5 6

7

8

9 10

1. Control-flow graph (CFG):

• G = (N, E, 1)

• Nodes are basic blocks

2. Data

3. Dataflow equations

out(j) = (in(j) – kill(j)) U gen(j)

(gen and kill are parameters)

4. Merge operator V

in(j) = V out(i)

i is predecessor of j

Entry node:

Exit node:

21

Four Classical Dataflow
Problems

n Reaching definitions (Reach)
n Live uses of variables (Live)
n Available expressions (Avail)
n Very busy expressions (VeryB)
n Reach and the dual Live enable several classical

optimizations such as dead code elimination, as
well as dataflow-based testing

n Avail enables global common subexpression
elimination

n VeryB enables conservative code motion

CSCI 4450/6450, A Milanova 22

Reaching Definitions

n Definition A statement that may change the
value of a variable (e.g., x=y+z)

n (x,k) denotes definition of x at node k
n A definition (x,k) reaches node n if there is

a path from k to n, free of a definition of x

k

n

x = …

… = x

x = …

CSCI 4450/6450, A Milanova 23

Live Uses of Variables

n Use Appearance of a variable as an operand
of a 3-address statement (e.g., x in y=x+4)

n A use of a variable x at node n is live on exit
from k, if there is a path from k to n clear of
definition of x

k

n

x = …

… = x

x = …

CSCI 4450/6450, A Milanova 24

Def-use Relations

n Use-def chain links a use of x to a definition
of x that reaches that use

n Def-use chain links a definition to a use that
it reaches

k

n

x = …

… = x

x = …

CSCI 4450/6450, A Milanova 25

Def-use Enable Optimizations

n Dead code elimination (Def-use)
n Code motion (Use-def)
n Constant propagation (Use-def)
n Strength reduction (Use-def)
n Test elision (Use-def)
n Copy propagation (Def-use)

n Aside: Def-use enables dataflow-based
testing. (In Principles of Software) 26

Question. What are the Def-use
Chains that start at 2?

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a)–4

…
5. t2 = i * 4
…

6. i = i + 1

T

F

Answer:

(2,3)

(2,5)

(2,6)

CSCI 4450/6450, A Milanova 27

Def-use Enables Dead Code
Elimination

1. sum = 0
2. i = 1

…

3. if t2 > t9 goto 15

4. t3 = t1[t2]
5. t7 = t3 * t3
6. sum = sum + t7
7. t2 = t2 + 4

T

F

After code motion, strength
reduction, test elision and
constant propagation, the
def-use links from 2.i=1
disappear. Thus, 2.i=1
becomes dead code.

CSCI 4450/6450, A Milanova

Use-def Enables Constant
Propagation

1. i = 1

2. i = 2

3. i = 3

4. p = i*2
5. i = 1

6. q = 5*i+3 = 8

CSCI 4450/6450, A Milanova

Answer:

(6,1)

(6,5)

What are the use-def chains
that originate at 6?

29

Def-use Enables Reasoning
about Buffer Overflows

30

Problem 1. Reaching Definitions
(Reach)

n Problem statement: for each CFG node n,
compute the set of definitions (x,k) that
reach n

n First, define data (i.e., the dataflow facts) to
propagate
n Primitive dataflow facts are definitions (x,k)
n Reach propagates sets of definitions, e.g.,
{(i,1),(p,4)}

CSCI 4450/6450, A Milanova

Reaching Definitions (Reach)

n Next, define the dataflow equations (i.e.,
effect of code at node j on incoming
dataflow facts)

j: x = y+z

out(j) = (in(j) – kill(j)) U gen(j)

kill(j): all definitions of (x,_)
gen(j): this definition of x,(x,j)

CSCI 4450/6450, A Milanova

j E.g., if in(4) = {(x,1),(y,2),(x,3)}
Node 4 is: x = y+z
Then out(4) = {(y,2),(x,4)}

32

Reaching Definitions (Reach)

n Next, define the merge operator V (i.e., how
to combine data from incoming paths)

n For Reach, V is the set union U

CSCI 4450/6450, A Milanova

j

33

in(j) = { U out(i) | i is predecessor of j }

E.g., if out(2) = {(x,1),(y,2)} and
out(3) = {(x,3)} and
2 and 3 are predecessors of 4
in(4) = {(x,1),(x,3),(y,2)}

1.x=5

2.y=1

3.x>=2

4.y=x*y

5.x=x-1

6.goto 3

7. …

in(1) = Ø

in(2) = out (1)

in(3) = out(2) U out(6)

in(4) = out(3)

in(5) = out(4)

in(6) = out(5)

in(7) = out(3)

out(1) = (in(1) - Dx) U {(x,1)}

out(3) = in(3)

out(4) = (in(4) - Dy) U {(y,4)}

out(5) = (in(5) - Dx) U {(x,5)}

out(6) = in(6)

Reach: Dataflow Equations

out(2) = (in(2) - Dy) U {(y,2)}

34

in(1) = Ø

in(2) = {(x,1)}

in(3) = {(x,1),(x,5),(y,2),(y,4)}

in(4) = {(x,1),(x,5),(y,2),(y,4)}

in(6) = {(x,5),(y,4)}

in(7) = {(x,1),(x,5),(y,2),(y,4)}

out(1) = {(x,1)}

out(2) = {(x,1), (y,2)}

out(3) = {(x,1),(x,5),(y,2),(y,4)}

out(4) = {(x,1),(x,5),(y,4)}

in(5) = {(x,1),(x,5),(y,4)}

out(5) = {(x,5),(y,4)}

out(6) = {(x,5),(y,4)}

Reach: Solution of Equations
1.x=5

2.y=1

3.x>=2

4.y=x*y

5.x=x-1

6.goto 3

7. …
35

Reaching Definitions

i1 i2 i3

j

in(i1) in(i2) in(i3)

in(j)
Forward, may
dataflow problem

CSCI 4450/6450, A Milanova 36

Problem 2. Live Uses of
Variables (Live)

n We say that a variable x is “live on exit from
node j” if there is a live use of x on exit from
j (recall the definition of “live use of x on exit
from j”)

n Problem statement: for each node n,
compute the set of variables that are live on
exit from n.

1. x=2; 2. y=4; 3. x=1; if (y>x) then 5. z=y; else 6. z=y*y; 7. x=z;

What variables are live on exit from statement 3? Statement 1?

Live Uses of Variables (Live)

n Problem statement: for each node n,
compute the set of variables that are live on
exit from n.

j:

outLV(j) = { U inLV(i) | i is a successor of j }

inLV(j)= (outLV(j) – killLV(j)) U genLV(j)
x = y+z

Q: What are the primitive dataflow facts?
Q: What is genLV(j)?
Q: What is killLV(j)?

38CSCI 4450/6450, A Milanova

Live Example
1.x=2

2.y=4

3.x=1

4.(y>x)

5.z=y 6.z=y*y

7.x=z

T F

39

Live Uses of Variables (Live)

n Data
n Primitive facts: variables x
n Propagates sets: {x,y,z}

n Dataflow equations. At j: x = y+z
n killLV(j): {x}
n genLV(j): {y,z}

n Merge operator: set union U
40CSCI 4450/6450, A Milanova

Live Uses of Variables

i1 i2 i3

j

out(i1) out(i2) out(i3)

out(j)
Backward, may
dataflow problem

CSCI 4450/6450, A Milanova 41

Available Expressions

n An expression x op y is available at
program point n if every path from entry to n
evaluates x op y, and there are NO
subsequent assignments to x or y after
evaluation and prior to reaching n.

x op y
x = …
y = …

x op x
x = …
y = …

x op y
x = …
y = …

n

1

CSCI 4450/6450, A Milanova 42

Problem 3. Available
Expressions (Avail)

n Problem statement: For every node n,
compute the set of expressions that are
available at n

x op y
x = …
y = …

x op x
x = …
y = …

x op y
x = …
y = …

n

1

CSCI 4450/6450, A Milanova 43

Avail Enables Global Common
Subexpression Elimination

z=a*b
r=2*z

q=a*b

u=a*b
z=u/2

w=a*b

CSCI 4450/6450, A Milanova 44

Avail Enables Global Common
Subexpression Elimination

t1=a*b
z=t1
r=2*z

t1=a*b
q=t1

u=t1
z=u/2

w=a*b

Can we eliminate w=a*b?

CSCI 4450/6450, A Milanova 45

Available Expressions (Avail)

n Data?
n Primitive dataflow facts are expressions, e.g.,
x+y, a*b, a+2

n Analysis propagates sets of expressions, e.g.,
{x+y,a*b}

n Dataflow equations at j: x = y op z?
n outAE(j) = (inAE(j) – killAE(j)) genAE(j)
n killAE(j): all expressions with operand x:
(x op _),(_ op x)

n genAE(j): new expression: {(y op z)}

È

46

Available Expressions (Avail)

n Merge operator?
n For Avail, it is set intersection

CSCI 4450/6450, A Milanova 47

j

inAE(j) = { outAE(i) | i is predecessor of j }

Available Expressions (Avail)

i1 i2 i3

j

Forward, must
dataflow problem

x=y+z

CSCI 4450/6450, A Milanova

in(i1) in(i2) in(i3)

in(j)

48

Example
1.y=a+b

2.x=a*b

3.if y<=a*b

4.a=a+1

5.x=a*b

6.goto 3

7. …
49

Note on Homework

50

Very Busy Expressions

n An expression x op y is very busy at node
n, if along EVERY path from n to the end of
the program, we come to a computation of
x op y BEFORE any redefinition of x or y.

X = …
Y = …
t1=X op Y

X = …
Y = …
t1=X op Y

X = …
Y = …
t1=X op Y

n

CSCI 4450/6450, A Milanova 51

Problem 4. Very Busy
Expressions (VeryB)

n Problem Statement: For each node n,
compute the set of expressions that are very
busy on exit from n.

j:x = y+z

Q: What is the data?

Q: What are the equations?

Q: What is genVB(i)?
Q: What is killVB(i)?

Q: What is the merge operator?

52

Very Busy Expressions (VeryB)

n Data?
n Primitive dataflow facts are expressions, e.g.,
x+y, a*b

n Analysis propagates sets of expressions, e.g.,
{x+y,a*b}

n Dataflow equations at j: x = y op z?
n in(j) = gen(j) U (out(j) – kill(j))
n kill(j): all expressions with operand x:
(x op _),(_ op x)

n gen(j): new expression: { (y op z) }
53

Very Busy Expressions (VeryB)

n Merge operator?
n For VeryB, it is set intersection

CSCI 4450/6450, A Milanova 54

j

outVB(j) = { inVB(i) | i is successor of j }

Very Busy Expressions

i1 i2 i3

j
outVB(j)

outVB(i1) outVB(i2) outVB(i3)

Backward, must
dataflow problem

CSCI 4450/6450, A Milanova 55

Dataflow Analysis Problems

May Analyses Must Analyses

Forward
Analyses

Reaching
Definitions

Available
Expressions

Backward
Analyses

Live Uses of
Variables

Very Busy
Expressions

CSCI 4450/6450, A Milanova 56

Similarities

n In all cases, analysis operates on a finite set D of
primitive dataflow facts:
n Reach: D is the set of all definitions in the program:

e.g., {(x,1),(y,2),(x,4),(y,5)}
n Avail and VeryB: D is the set of all arithmetic

expressions:
e.g., { a+b,a*b,a+1}

n Live: D is the set of all variables
e.g., { x,y,z }

n Solution at node n is a subset of D (a definition
either reaches node n or it does not reach node n)

CSCI 4450/6450, A Milanova 57

Similarities

n Dataflow equations (i.e., transfer functions) for
forward problems have generic form:
out(j) = (in(j) – kill(j)) U gen(j) =

(in(j) ∩ pres(j)) U gen(j)
in(j) = { V out(i) | i is predecessor of j }

Note: pres(j) is the complement of kill(j), D – kill(j)
Note: What makes the 4 classical problems special is that

sets pres(j) and gen(j) do not depend on in(j)
n Set union and set intersection can be implemented

as logical OR and AND respectively
58

