
Dataflow Analysis, cont.



Announcements

n Monday is Martin Luther King Jr. Day, No 
classes

n HW1 problem set is posted, due Jan 25th

n Work individually or in teams of 2
n Ask questions on forum
n Upload in Submitty
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Outline of Today’s Class

n Classical compiler optimizations
n Building CFG from 3-address code
n Local analysis vs. global analysis
n The four classical dataflow analysis problems

n Reaching definitions
n Live variables
n Available expressions
n Very busy expressions

n Reading: 
n Dragon Book, Chapter 9.2 
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Three Address Code 
Intermediate Representation (IR) 
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1. sum = 0 initialize sum
2. i = 1 initialize loop counter
3. if i > n goto 15 loop test, check for limit
4. t1 = addr(a) – 4
5. t2 = i * 4 a[i]
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i * 4 a[i]
9. t6 = t4[t5]
10. t7 = t3 * t6 a[i]*a[i]
11. t8 = sum + t7
12. sum = t8 increment sum
13. i = i + 1 increment loop counter
14. goto 3

15. …



Control Flow Graph (CFG)
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1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15. …
T

F



Control Flow Graph (CFG)
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1. sum = 0
2. i = 1
3. t1 = addr(a) – 4

4.  if i > n goto 15

5.   t2 = i*4
6.   t3 = t1[t2]
7.   t7 = t3*t3
8.   sum = sum + t7

9.   i = i + 1
10.  goto 3

11. …
T

F



New Control Flow Graph

1.  sum = 0
2.  t1 = addr(a) - 4 
3.  t9 = n * 4
4.  t2 = 4

5.  if t2 > t9 goto 11

6.  t3 = t1[t2]
7.  t7 = t3 * t3
8.  sum = sum + t7
9.  t2 = t2 + 4
10. goto 5

11. …

F

T
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Classical Compiler Optimizations

n To summarize
n Common subexpression elimination
n Copy propagation
n Strength reduction
n Test elision and induction variable elimination
n Constant propagation
n Dead code elimination

n Dataflow analysis enables these 
optimizations
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Building Control Flow Graph
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1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t4[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15. …
T

F



Building the Control Flow Graph

Build the CFG from linear 3-address code:
nStep 1: partition code into basic blocks

n Basic blocks are the nodes of the CFG
nStep 2: add control flow edges

nAside: in Principles of Software, we built a 
CFG from “high-level” structural program 
representation, the AST: 

n S ::= x = y Op z | if (B) then S else S |  
while (B) S | S;S
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Step 1. Partition Code Into Basic 
Blocks

1. Determine the leader statements:
(i) First program statement
(ii) Targets of a goto, conditional or 

unconditional
(iii) Any statement following a goto

2. For each leader, its basic block consists of 
the leader and all statements up to, but not 
including, the next leader or the end of the 
program  
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Question. Find the Leader 
Statements

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …
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Step 2. Add Control Flow Edges

n There is a directed edge from basic block 
B1 to block B2 if B2 can immediately follow 
B1 in some execution sequence

n Determine edges as follows:
(i) There is an edge from B1 to B2 if B2 follows B1 

in three address code, and B1 does not end in 
an unconditional goto

(ii) There is an edge from B1 to B2 if there is a 
goto from the last statement in B1 to the first 
statement in B2
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Question. Add Control Flow 
Edges

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) – 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) – 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. …
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Local Analysis vs. Global Analysis

n Local analysis: analysis within basic block
n Enables optimizations such as local common 

subexpression elimination, dead code 
elimination, constant propagation, copy 
propagation, etc.

n Global analysis: beyond the basic block
n Enables optimizations such as global common 

subexpression elimination, dead code 
elimination, constant propagation, loop 
optimizations, etc.
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Local Common Subexpression 
Elimination

1. t1 = 4 * i
2. t2 = a [ t1 ]
3. t3 = 4 * i
4. t4 = b [ t3 ]
5. t5 = t2 * t4
6. t6 = prod + t5
7. prod = t6
8. t7 = i + 1
9. i = t7
10. if i <= 20 goto 1
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Local Constant Propagation
1. t1 = 1 Assume a, k, t3, and t4 are used beyond basic block:
2. a = t1 1’. a = 1
3. t2 = 1 + a 2’. k = 2
4. k = t2 3’. t4 = 8.2
5. t3 = cvttoreal(k) 4’. t3 = 8.2
6. t4 = 6.2 + t3
7. t3 = t4

David Gries’ algorithm:
•Process 3-address statements in order
•Check if operand is constant; if so, substitute
•If all operands are constant:

Do operation, and add (LHS,value) to map
•If not all operands constant:

Delete (LHS,value) entry from map



Arrays and Pointers Make Things 
Harder

n Consider:
1. x = a[k]; 
2. a[j] = y; 
3. z = a[k];

n Can we transform this code into:
1. x = a[k];
2. a[j] = y;
3. z = x;
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Local Analysis vs. Global 
Analysis

n Local analysis is generally easy – a single 
path from basic block entry to basic block exit

n Global analysis is generally hard – multiple 
control-flow paths
n Control flow splits and merges at if-then-else
n Loops!
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Dataflow Analysis

n Collects information for all inputs along all
execution paths
n Control splits and control merges
n Loops (control goes back)

n Dataflow analysis is a powerful framework
n We can define many different dataflow 

analysis
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Dataflow Analysis

1
2

3

4

5 6

7

8

9 10

1. Control-flow graph (CFG):

• G = (N, E, 1)

• Nodes are basic blocks 

2. Data

3. Dataflow equations

out(j) = (in(j) – kill(j)) U gen(j)

(gen and kill are parameters)

4. Merge operator V

in(j) =  V out(i) 

i is predecessor of j

Entry node: 

Exit node: 
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Four Classical Dataflow 
Problems

n Reaching definitions (Reach)
n Live uses of variables (Live)
n Available expressions (Avail)
n Very busy expressions (VeryB)
n Reach and the dual Live enable several classical 

optimizations such as dead code elimination, as 
well as dataflow-based testing

n Avail enables global common subexpression 
elimination

n VeryB enables conservative code motion

CSCI 4450/6450, A Milanova 22



Reaching Definitions

n Definition A statement that may change the 
value of a variable (e.g., x=y+z)

n (x,k) denotes definition of x at node k
n A definition (x,k) reaches node n if there is 

a path from k to n, free of a definition of x

k

n

x = …

… = x

x = …
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Live Uses of Variables

n Use Appearance of a variable as an operand 
of a 3-address statement (e.g., x in y=x+4)

n A use of a variable x at node n is live on exit
from k, if there is a path from k to n clear of 
definition of x

k

n

x = …

… = x

x = …
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Def-use Relations

n Use-def chain links a use of x to a definition 
of x that reaches that use

n Def-use chain links a definition to a use that 
it reaches

k

n

x = …

… = x

x = …
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Def-use Enable Optimizations

n Dead code elimination (Def-use)
n Code motion (Use-def)
n Constant propagation (Use-def)
n Strength reduction (Use-def)
n Test elision (Use-def)
n Copy propagation (Def-use)

n Aside: Def-use enables dataflow-based 
testing. (In Principles of Software) 26



Question. What are the Def-use 
Chains that start at 2?

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a)–4

…
5. t2 = i * 4
…

6. i = i + 1

T

F

Answer:

(2,3)

(2,5)

(2,6)
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Def-use Enables Dead Code 
Elimination

1. sum = 0
2. i = 1

…

3. if t2 > t9 goto 15

4. t3 = t1[t2]
5. t7 = t3 * t3
6. sum = sum + t7
7. t2 = t2 + 4

T

F

After code motion, strength 
reduction, test elision and 
constant propagation, the 
def-use links from 2.i=1
disappear. Thus, 2.i=1
becomes dead code.
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Use-def Enables Constant 
Propagation 

1. i = 1

2. i = 2

3. i = 3

4. p = i*2
5. i = 1

6. q = 5*i+3 = 8
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Answer:

(6,1)

(6,5)

What are the use-def chains
that originate at 6?
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Def-use Enables Reasoning 
about Buffer Overflows
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Problem 1. Reaching Definitions 
(Reach)

n Problem statement: for each CFG node n, 
compute the set of definitions (x,k) that 
reach n

n First, define data (i.e., the dataflow facts) to 
propagate
n Primitive dataflow facts are definitions (x,k)
n Reach propagates sets of definitions, e.g.,
{(i,1),(p,4)}
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Reaching Definitions (Reach)

n Next, define the dataflow equations (i.e., 
effect of code at node j on incoming 
dataflow facts)

j: x = y+z

out(j) = (in(j) – kill(j)) U  gen(j)

kill(j): all definitions of (x,_)
gen(j): this definition of x,(x,j)
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j E.g., if in(4) = {(x,1),(y,2),(x,3)}
Node 4 is: x = y+z
Then out(4) = {(y,2),(x,4)}

32



Reaching Definitions (Reach)

n Next, define the merge operator V (i.e., how 
to combine data from incoming paths)

n For Reach, V is the set union U
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j

33

in(j) =  {  U out(i) |  i is predecessor of j }

E.g., if out(2) = {(x,1),(y,2)} and 
out(3) = {(x,3)} and
2 and 3 are predecessors of 4
in(4) = {(x,1),(x,3),(y,2)}



1.x=5

2.y=1

3.x>=2 

4.y=x*y

5.x=x-1

6.goto 3

7. …

in(1) = Ø

in(2) = out (1) 

in(3) = out(2) U out(6)

in(4) = out(3)

in(5) = out(4)

in(6) = out(5)

in(7) = out(3)

out(1) = (in(1) - Dx) U {(x,1)}

out(3) = in(3)

out(4) = (in(4) - Dy) U {(y,4)}

out(5) = (in(5) - Dx) U {(x,5)}

out(6) = in(6)

Reach: Dataflow Equations

out(2) = (in(2) - Dy) U {(y,2)}

34



in(1) = Ø

in(2) = {(x,1)}

in(3) = {(x,1),(x,5),(y,2),(y,4)}

in(4) = {(x,1),(x,5),(y,2),(y,4)}

in(6) = {(x,5),(y,4)}

in(7) = {(x,1),(x,5),(y,2),(y,4)}

out(1) = {(x,1)}

out(2) = {(x,1), (y,2)}

out(3) = {(x,1),(x,5),(y,2),(y,4)}

out(4) = {(x,1),(x,5),(y,4)}

in(5) = {(x,1),(x,5),(y,4)}

out(5) = {(x,5),(y,4)}

out(6) = {(x,5),(y,4)}

Reach: Solution of Equations
1.x=5

2.y=1

3.x>=2 

4.y=x*y

5.x=x-1

6.goto 3

7. …
35



Reaching Definitions

i1 i2 i3

j

in(i1) in(i2) in(i3)

in(j)
Forward, may
dataflow problem
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Problem 2. Live Uses of 
Variables (Live)

n We say that a variable x is “live on exit from 
node j” if there is a live use of x on exit from 
j (recall the definition of “live use of x on exit 
from j”)

n Problem statement: for each node n, 
compute the set of variables that are live on 
exit from n.

1. x=2; 2. y=4; 3. x=1; if (y>x) then 5. z=y; else 6. z=y*y; 7. x=z;

What variables are live on exit from statement 3? Statement 1?



Live Uses of Variables (Live)

n Problem statement: for each node n, 
compute the set of variables that are live on 
exit from n.

j:

outLV(j) =  { U inLV(i) | i is a successor of j }

inLV(j)= (outLV(j) – killLV(j)) U genLV(j)
x = y+z

Q: What are the primitive dataflow facts? 
Q: What is genLV(j)?
Q: What is killLV(j)?
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Live Example
1.x=2

2.y=4

3.x=1

4.(y>x) 

5.z=y 6.z=y*y

7.x=z

T F
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Live Uses of Variables (Live)

n Data
n Primitive facts: variables x
n Propagates sets: {x,y,z}

n Dataflow equations. At j: x = y+z
n killLV(j): {x}
n genLV(j): {y,z}

n Merge operator: set union U
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Live Uses of Variables

i1 i2 i3

j

out(i1) out(i2) out(i3)

out(j)
Backward, may 
dataflow problem
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Available Expressions

n An expression x op y is available at 
program point n if every path from entry to n
evaluates x op y, and there are NO 
subsequent assignments to x or y after
evaluation and prior to reaching n.

x op y
x = …
y = …

x op x
x = …
y = …

x op y
x = …
y = …

n

1
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Problem 3. Available 
Expressions (Avail)

n Problem statement: For every node n, 
compute the set of expressions that are 
available at n

x op y
x = …
y = …

x op x
x = …
y = …

x op y
x = …
y = …

n

1
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Avail Enables Global Common 
Subexpression Elimination

z=a*b
r=2*z

q=a*b

u=a*b
z=u/2

w=a*b
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Avail Enables Global Common 
Subexpression Elimination

t1=a*b
z=t1
r=2*z

t1=a*b
q=t1

u=t1
z=u/2

w=a*b

Can we eliminate w=a*b? 
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Available Expressions (Avail)

n Data?
n Primitive dataflow facts are expressions, e.g.,     
x+y, a*b, a+2

n Analysis propagates sets of expressions, e.g.,  
{x+y,a*b}

n Dataflow equations at j: x = y op z?
n outAE(j) = (inAE(j) – killAE(j))      genAE(j)
n killAE(j): all expressions with operand x: 
(x op _),(_ op x)

n genAE(j): new expression: {(y op z)}

È
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Available Expressions (Avail)

n Merge operator? 
n For Avail, it is set intersection   

CSCI 4450/6450, A Milanova 47

j



inAE(j) = {    outAE(i) | i is predecessor of j }



Available Expressions (Avail)

i1 i2 i3

j

Forward, must 
dataflow problem

x=y+z
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in(i1) in(i2) in(i3)

in(j)
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Example
1.y=a+b

2.x=a*b

3.if y<=a*b

4.a=a+1

5.x=a*b

6.goto 3

7. …
49



Note on Homework
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Very Busy Expressions

n An expression x op y is very busy at node 
n, if along EVERY path from n to the end of 
the program, we come to a computation of    
x op y BEFORE any redefinition of x or y.

X = …
Y = …
t1=X op Y

X = …
Y = …
t1=X op Y

X = …
Y = …
t1=X op Y

n
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Problem 4. Very Busy 
Expressions (VeryB)

n Problem Statement: For each node n, 
compute the set of expressions that are very 
busy on exit from n.

j:x = y+z

Q: What is the data?

Q: What are the equations?

Q: What is genVB(i)?
Q: What is killVB(i)?

Q: What is the merge operator?
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Very Busy Expressions (VeryB)

n Data?
n Primitive dataflow facts are expressions, e.g.,     
x+y, a*b

n Analysis propagates sets of expressions, e.g.,  
{x+y,a*b}

n Dataflow equations at j: x = y op z?
n in(j) = gen(j) U (out(j) – kill(j))
n kill(j): all expressions with operand x: 
(x op _),(_ op x)

n gen(j): new expression: { (y op z) }
53



Very Busy Expressions (VeryB)

n Merge operator? 
n For VeryB, it is set intersection   
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outVB(j) = {    inVB(i) | i is successor of j }



Very Busy Expressions

i1 i2 i3

j
outVB(j)

outVB(i1) outVB(i2) outVB(i3)

Backward, must 
dataflow problem
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Dataflow Analysis Problems

May Analyses Must Analyses

Forward
Analyses

Reaching 
Definitions

Available 
Expressions

Backward 
Analyses 

Live Uses of 
Variables

Very Busy 
Expressions
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Similarities

n In all cases, analysis operates on a finite set D of 
primitive dataflow facts:
n Reach: D is the set of all definitions in the program:

e.g.,  {(x,1),(y,2),(x,4),(y,5)} 
n Avail and VeryB: D is the set of all arithmetic 

expressions:
e.g., { a+b,a*b,a+1}

n Live: D is the set of all variables
e.g., { x,y,z }

n Solution at node n is a subset of D (a definition 
either reaches node n or it does not reach node n) 
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Similarities

n Dataflow equations (i.e., transfer functions) for 
forward problems have generic form:
out(j)   =   (in(j) – kill(j)) U gen(j) =

(in(j) ∩ pres(j))  U gen(j)
in(j) = { V out(i) | i is predecessor of j }

Note: pres(j) is the complement of kill(j), D – kill(j)
Note: What makes the 4 classical problems special is that 

sets pres(j) and gen(j) do not depend on in(j)
n Set union and set intersection can be implemented 

as logical OR and AND respectively
58


