Dataflow Analysis, cont.

Announcements

Monday is Martin Luther King Jr. Day, No classes

HW1 problem set is posted, due Jan 25th

- Work individually or in teams of 2
- Ask questions on forum
- Upload in Submitty

Outline of Today's Class

- Classical compiler optimizations
- Building CFG from 3-address code
- Local analysis vs. global analysis
- The four classical dataflow analysis problems
 - Reaching definitions
 - Live variables
 - Available expressions
 - Very busy expressions
- Reading:
 - Dragon Book, Chapter 9.2

CSCI 4450/6450, A Milanova

Three Address Code Intermediate Representation (IR)

^{15. ...}

Control Flow Graph (CFG)

CSCI 4450/6450, A Milanova

Control Flow Graph (CFG)

New Control Flow Graph

Classical Compiler Optimizations

To summarize

- Common subexpression elimination
- Copy propagation
- Strength reduction
- Test elision and induction variable elimination
- Constant propagation
- Dead code elimination
- Dataflow analysis <u>enables</u> these optimizations

Building Control Flow Graph

Building the Control Flow Graph

Build the CFG from linear 3-address code:

- Step 1: partition code into basic blocks
 - Basic blocks are the nodes of the CFG
- Step 2: add control flow edges

Aside: in Principles of Software, we built a CFG from "high-level" structural program representation, the AST:

S ::= x = y Op z | if (B) then S else S | while (B) S | S;S Step 1. Partition Code Into Basic Blocks

1. Determine the leader statements:

(i) First program statement

(ii) Targets of a goto, conditional or unconditional

(iii) Any statement following a goto
2. For each leader, its basic block consists of the leader and all statements up to, but not including, the next leader or the end of the program

Question. Find the Leader Statements

```
sum = 0
1
    i = 1
2.
   if i > n goto 15
3.
  t1 = addr(a) - 4
4.
5. t^2 = i^{4}
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.
    •••
```

Step 2. Add Control Flow Edges

- There is a directed edge from basic block
 B₁ to block B₂ if B₂ can immediately follow
 B₁ in some execution sequence
- Determine edges as follows:
 - (i) There is an edge from B_1 to B_2 if B_2 follows B_1 in three address code, and B_1 does not end in an <u>unconditional</u> goto
 - (ii) There is an edge from B_1 to B_2 if there is a goto from the last statement in B_1 to the first statement in B_2

CSCI 4450/6450, A Milanova

Question. Add Control Flow Edges

- 1. sum = 0
- 2. i = 1
- 3. if i > n goto 15
- 4. t1 = addr(a) 4
- 5. $t^2 = i^{4}$
- 6. t3 = t1[t2]
- 7. t4 = addr(a) 4
- 8. t5 = i*4
- 9. t6 = t5[t5]
- 10. t7 = t3 * t6
- 11. t8 = sum + t7
- 12. sum = t8
- 13. i = i + 1
- 14. goto 3

15. CSCI 4450/6450, A Milanova

Local Analysis vs. Global Analysis

Local analysis: analysis within basic block

- Enables optimizations such as local common subexpression elimination, dead code elimination, constant propagation, copy propagation, etc.
- Global analysis: beyond the basic block
 - Enables optimizations such as global common subexpression elimination, dead code elimination, constant propagation, loop optimizations, etc.

Local Common Subexpression Elimination

- 1. t1 = 4 * i
- 2. $t^2 = a [t^1]$
- 3. t3 = 4 * i
- 4. t4 = b [t3]
- 5. t5 = t2 * t4
- 6. t6 = prod + t5
- 7. prod = t6
- 8. t7 = i + 1
- 9. i = t7
- 10. if i <= 20 goto 1

Local Constant Propagation

- 1. t1 = 1 Assume a, k, t3, and t4 are used beyond basic block:
- 2. a = t1
- 3. $t^2 = 1 + a$
- 4. k = t2
- 5. t3 = cvttoreal(k)
- 6. t4 = 6.2 + t3
- 7. t3 = t4

David Gries' algorithm:

•Process 3-address statements in order

•Check if operand is constant; if so, substitute

1'. a = 1

2'. k = 2

3'. t4 = 8.2

4'. t3 = 8.2

•If all operands are constant:

Do operation, and add (LHS,value) to mapIf not all operands constant:

Delete (LHS,value) entry from map

Arrays and Pointers Make Things Harder

- Consider:
- 1. x = a[k];
- 2. a[j] = y;
- 3. z = a[k];
- Can we transform this code into:
- 1. x = a[k];
- 2. a[j] = y;
- 3. z = x;

Local Analysis vs. Global Analysis

Local analysis is generally easy – a single path from basic block entry to basic block exit

- Global analysis is generally hard multiple control-flow paths
 - Control flow splits and merges at if-then-else
 - Loops!

Dataflow Analysis

- Collects information for all inputs along all execution paths
 - Control splits and control merges
 - Loops (control goes back)
- Dataflow analysis is a powerful framework
- We can define many different dataflow analysis

Dataflow Analysis

- 1. Control-flow graph (CFG):
 - G = (N, E, 1)
 - Nodes are basic blocks

2. Data

- 3. Dataflow equations
- out(j) = (in(j) kill(j)) U gen(j)

(gen and kill are parameters)

4. Merge operator V

in(j) = V out(i)

i is predecessor of j

Four Classical Dataflow Problems

- Reaching definitions (*Reach*)
- Live uses of variables (Live)
- Available expressions (Avail)
- Very busy expressions (VeryB)
- Reach and the dual Live enable several classical optimizations such as dead code elimination, as well as dataflow-based testing
- Avail enables global common subexpression elimination
- VeryB enables conservative code motion

Reaching Definitions

- Definition A statement that may change the value of a variable (e.g., x=y+z)
- (x,k) denotes definition of x at node k
- A definition (x,k) reaches node n if there is a path from k to n, free of a definition of x

Live Uses of Variables

- Use Appearance of a variable as an operand of a 3-address statement (e.g., x in y=x+4)
- A use of a variable x at node n is live on exit from k, if there is a path from k to n clear of definition of x

- Use-def chain links a use of x to a definition of x that reaches that use ____
- Def-use chain links a definition to a use that it reaches ——

Def-use Enable Optimizations

- Dead code elimination (Def-use)
- Code motion (Use-def)
- Constant propagation (Use-def)
- Strength reduction (Use-def)
- Test elision (Use-def)
- Copy propagation (Def-use)
- Aside: Def-use enables dataflow-based testing. (In Principles of Software)

Question. What are the Def-use Chains that start at 2?

CSCI 4450/6450, A Milanova

CSCI 4450/6450, A Milanova

Use-def Enables Constant Propagation

Def-use Enables Reasoning about Buffer Overflows

Problem 1. Reaching Definitions (*Reach*)

- Problem statement: for each CFG node n, compute the set of definitions (x,k) that reach n
- First, define data (i.e., the dataflow facts) to propagate
 - Primitive dataflow facts are definitions (x,k)
 - Reach propagates sets of definitions, e.g., {(i,1), (p,4)}

Reaching Definitions (Reach)

 Next, define the dataflow equations (i.e., effect of code at node j on incoming dataflow facts)

j: x = y+z } $\frac{kill(j): all definitions of (x,_)}{gen(j): this definition of x, (x, j)}$

$$(j) = (in(j) - kill(j)) \cup gen(j)$$

E.g., if in(4) = { (x, 1) , (y, 2) , (x, 3) }
Node 4 is: x = y+z
Then out(4) = { (y, 2) , (x, 4) }

CSCI 4450/6450, A Milanova

Reaching Definitions (Reach)

Next, define the merge operator V (i.e., how to combine data from incoming paths)
 For *Reach*, V is the set union U

CSCI 4450/6450, A Milanova

Reaching Definitions

Problem 2. Live Uses of Variables (*Live*)

We say that a variable x is "live on exit from node j" if there is a live use of x on exit from j (recall the definition of "live use of x on exit from j")

Problem statement: for each node n, compute the set of variables that are live <u>on</u> <u>exit</u> from n.

1. x=2; 2. y=4; 3. x=1; if (y>x) then 5. z=y; else 6. z=y*y; 7. x=z; What variables are live on exit from statement 3? Statement 1?

Live Uses of Variables (Live)

Problem statement: for each node n, compute the set of variables that are live on exit from n.

$$in_{LV}(j)=(out_{LV}(j)-kill_{LV}(j)) \cup gen_{LV}(j)$$

 $out_{LV}(j) = \{ U in_{LV}(i) | i is a successor of j \}$

Q: What are the primitive dataflow facts? Q: What is $gen_{LV}(j)$? Q: What is kill_{LV}(j)?

Live Uses of Variables (Live)

- Data
 - Primitive facts: variables x
 - Propagates sets: {x,y,z}
- Dataflow equations. At j: x = y+z
 - kill_{LV}(j): {x}
 - gen_{LV}(j): {y,z}

Merge operator: set union U

CSCI 4450/6450, A Milanova

Available Expressions

An expression x op y is available at program point n if every path from entry to n evaluates x op y, and there are NO subsequent assignments to x or y after evaluation and prior to reaching n.

Problem 3. Available Expressions (*Avail*)

Problem statement: For every node n, compute the set of expressions that are available at n

Avail Enables Global Common Subexpression Elimination

Avail Enables Global Common **Subexpression Elimination** Can we eliminate w=a*b? t1=a*b t1=a*b z=t1q=t1r=2*zu=t1z=u/2 w=a*b

Available Expressions (Avail)

Data?

- Primitive dataflow facts are expressions, e.g.,
 x+y, a*b, a+2
- Analysis propagates sets of expressions, e.g., {x+y,a*b}
- Dataflow equations at j: x = y op z?
 - $out_{AE}(j) = (in_{AE}(j) kill_{AE}(j)) \cup gen_{AE}(j)$
 - kill_{AE}(j): all expressions with operand x: (x op _), (_ op x)
 - gen_{AE}(j): new expression: { (y op z) }

Available Expressions (Avail)

Merge operator?

For Avail, it is set intersection ()

 $in_{AE}(j) = \{ \bigcap out_{AE}(i) \mid i \text{ is predecessor of } j \}$

Available Expressions (Avail)

Forward, must dataflow problem

Note on Homework

Very Busy Expressions

An expression x op y is very busy at node n, if along EVERY path from n to the end of the program, we come to a computation of x op y BEFORE any redefinition of x or y.

Problem 4. Very Busy Expressions (*VeryB*)

Problem Statement: For each node n, compute the set of expressions that are very busy on exit from n.

Q: What is the data?

- Q: What are the equations?
- Q: What is $gen_{VB}(i)$?
- Q: What is kill_{VB}(i)?

Q: What is the merge operator?

Very Busy Expressions (VeryB)

- Data?
 - Primitive dataflow facts are expressions, e.g.,
 x+y, a*b
 - Analysis propagates sets of expressions, e.g., {x+y,a*b}
- Dataflow equations at j: x = y op z?
 - in(j) = gen(j) U (out(j) kill(j))
 - kill(j): all expressions with operand x: (x op _), (_ op x)
 - gen(j): new expression: { (y op z) }

Very Busy Expressions (VeryB)

Merge operator?

■ For *VeryB*, it is set intersection

 $out_{VB}(j) = \{ \bigcap_{VB}(i) \mid i \text{ is successor of } j \}$

Dataflow Analysis Problems

	May Analyses	Must Analyses
<i>Forward</i>	Reaching	Available
Analyses	Definitions	Expressions
<i>Backward</i>	Live Uses of	Very Busy
Analyses	Variables	Expressions

Similarities

- In all cases, analysis operates on a <u>finite</u> set D of primitive dataflow facts:
 - Reach: D is the set of <u>all</u> definitions in the program:
 e.g., { (x,1), (y,2), (x,4), (y,5) }
 - Avail and VeryB: D is the set of <u>all</u> arithmetic expressions:

e.g., { a+b, a*b, a+1}

- Live: D is the set of all variables
 e.g., { x, y, z }
- Solution at node n is a subset of D (a definition either reaches node n or it does not reach node n)

Similarities

- Dataflow equations (i.e., transfer functions) for forward problems have generic form: out(j) = (in(j) – kill(j)) U gen(j) = (in(j) ∩ pres(j)) U gen(j) in(j) = { V out(i) | i is predecessor of j }
 - Note: pres(j) is the complement of kill(j), D kill(j) Note: What makes the 4 classical problems special is that sets pres(j) and gen(j) do not depend on in(j)
- Set union and set intersection can be implemented as logical OR and AND respectively