Dataflow Analysis, cont.

Announcements

- Monday is Martin Luther King Jr. Day, No classes
- HW1 problem set is posted, due Jan $25^{\text {th }}$
- Work individually or in teams of 2
- Ask questions on forum
- Upload in Submitty

Outline of Today's Class

- Classical compiler optimizations
- Building CFG from 3-address code
- Local analysis vs. global analysis
- The four classical dataflow analysis problems
- Reaching definitions
- Live variables
- Available expressions
- Very busy expressions
- Reading:
- Dragon Book, Chapter 9.2

Compilers

Principles, Techniques, \& Tools

Three Address Code Intermediate Representation (IR)

	sum $=0$	\longmapsto initialize sum
	$\mathrm{i}=1$	\checkmark initialize loop counter
	if i > n goto 15	\longmapsto loop test, check for limit
	$\mathrm{t1}=$ addr (a)-4	
	t2 $=$ i * 4	- a[i]
	t3 $=$ t1 [t2]	
	t4 $=$ addr (a) - 4	
	$\mathrm{t} 5=\mathrm{i} * 4$	- a[i]
	$t 6=t 4[\mathrm{t5]}$	
	$t 7=$ t3 * t6	$\longrightarrow a[i] * a[i]$
	$\mathrm{t8}=\mathrm{sum}+\mathrm{t7}$	\square ali]*a[i]
	sum $=$ t8	increment sum
	$i=i+1$	\square increment loop counter
	goto 3	

Control Flow Graph (CFG)

Control Flow Graph (CFG)

New Control Flow Graph

Classical Compiler Optimizations

- To summarize
- Common subexpression elimination
- Copy propagation
- Strength reduction
- Test elision and induction variable elimination
- Constant propagation
- Dead code elimination
- Dataflow analysis enables these optimizations

Building Control Flow Graph

1. $\begin{aligned} & \text { sum }=0 \\ & \text { 2. } \\ & i=1\end{aligned}$	$\begin{array}{\|ll} \hline \text { 1. } & \text { sum }=0 \\ \text { 2. } & i=1 \\ \hline \end{array}$
3. if i $>\mathrm{n}$ goto 15	
4. $\quad \mathrm{t} 1=\operatorname{addr}(\mathrm{a})-4$	3. if i $>\mathrm{n}$ goto 15
5. $\mathrm{t} 2=\mathrm{i}$ * 4	F
6. $t 3=t 1[t 2]$	
7. $\mathrm{t} 4=\mathrm{addr}(\mathrm{a})-4$	4. t1 $=$ addr (a) - 4
8. $\mathrm{t} 5=\mathrm{i}$ * 4	5. t2 = i*4
8. $\mathrm{t} 5=1 * 4$	6. t3 $=$ t1 [t2]
9. $\mathrm{t6}=\mathrm{t5}$ [t5]	7. $t 4=\operatorname{addr}(\mathrm{a})-4$
10. $\mathrm{t} 7=\mathrm{t} 3 * \mathrm{t} 6$	8. $\mathrm{t} 5=\mathrm{i} * 4$
11. $\mathrm{t} 8=\mathrm{sum}+\mathrm{t7}$	9. $\mathrm{t} 6=\mathrm{t} 4[\mathrm{t} 5]$
12. $\mathrm{sum}=\mathrm{t} 8$	10. $\mathrm{t7}=\mathrm{t} 3 * \mathrm{t} 6$
13. $\mathbf{i}=\mathbf{i}+\mathbf{1}$	11. $\mathrm{t} 8=\mathrm{sum}+\mathrm{t7}$
14. goto 3	12. sum $=$ t8
15. ...	13. $i=i+1$ 14. goto 3
CSCI 4450/6450, A Milanova	

Building the Control Flow Graph

Build the CFG from linear 3-address code: -Step 1: partition code into basic blocks

- Basic blocks are the nodes of the CFG
-Step 2: add control flow edges
-Aside: in Principles of Software, we built a CFG from "high-level" structural program representation, the AST:
- $S::=\mathbf{x}=\mathbf{y} O p \mathbf{z} \mid$ if (B) then S else $S \mid$ while (B) $S \mid S ; S$

Step 1. Partition Code Into Basic Blocks

1. Determine the leader statements:
(i) First program statement
(ii) Targets of a goto, conditional or unconditional
(iii) Any statement following a goto
2. For each leader, its basic block consists of the leader and all statements up to, but not including, the next leader or the end of the program

Question. Find the Leader Statements

```
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.
```


Step 2. Add Control Flow Edges

- There is a directed edge from basic block B_{1} to block B_{2} if B_{2} can immediately follow B_{1} in some execution sequence
- Determine edges as follows:
(1) There is an edge from B_{1} to B_{2} if B_{2} follows B_{1} in three address code, and B_{1} does not end in an unconditional goto
(ii) There is an edge from B_{1} to B_{2} if there is a goto from the last statement in B_{1} to the first statement in B_{2}

Question. Add Control Flow Edges

```
1. sum = 0
2. i}=
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i*4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i*4
9. t6 = t5[t5]
10. t7 = t3*t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
```


Local Analysis vs. Global Analysis

- Local analysis: analysis within basic block
- Enables optimizations such as local common subexpression elimination, dead code elimination, constant propagation, copy propagation, etc.
- Global analysis: beyond the basic block
- Enables optimizations such as global common subexpression elimination, dead code elimination, constant propagation, loop optimizations, etc.

Local Common Subexpression Elimination

1. $\mathrm{t} 1=4$ * i
2. t 2 a a $[\mathrm{t} 1$]
3. $t 3=4$ * \mathbf{i}
4. $t 4=b[t 3]$
5. $\mathrm{t} 5=\mathrm{t} 2$ * t 4
6. $\mathrm{t} 6=\mathrm{prod}+\mathrm{t} 5$
7. $\operatorname{prod}=\mathrm{t} 6$
8. $\mathrm{t7}=\mathrm{i}+1$
9. $i=t 7$
10. if i <= 20 goto 1

Local Constant Propagation

1. $\quad \mathrm{t} 1=1 \quad$ Assume $\mathrm{a}, \mathrm{k}, \mathrm{t} 3$, and t 4 are used beyond basic block:
2. $a=t 1$
3. $\mathrm{t} 2=1+\mathrm{a}$
4. $\mathbf{k}=\mathrm{t} 2$

$$
\text { t3 }=\text { cvttoreal }(k)
$$

$$
\begin{aligned}
& 1^{\prime} . \quad a=1 \\
& 2^{\prime} . \quad k=2 \\
& 3^{\prime} . \quad t 4=8.2 \\
& 4^{\prime} . \quad t 3=8.2
\end{aligned}
$$

$$
\mathrm{t} 4=6.2+\mathrm{t} 3
$$

$$
t 3=t 4
$$

David Gries' algorithm:

- Process 3-address statements in order
-Check if operand is constant; if so, substitute
-If all operands are constant:
Do operation, and add (LHS,value) to map
-If not all operands constant:
Delete (LHS, value) entry from map

Arrays and Pointers Make Things Harder

- Consider:

1. $\mathbf{x}=a[k]$;
2. $a[j]=y$;
3. $z=a[k]$;

- Can we transform this code into:

1. $\mathbf{x}=a[k]$;
2. $a[j]=y$;
3. $\mathbf{z}=\mathbf{x}$;

Local Analysis vs. Global Analysis

- Local analysis is generally easy - a single path from basic block entry to basic block exit
- Global analysis is generally hard - multiple control-flow paths
- Control flow splits and merges at if-then-else
- Loops!

Dataflow Analysis

- Collects information for all inputs along all execution paths
- Control splits and control merges
- Loops (control goes back)
- Dataflow analysis is a powerful framework
- We can define many different dataflow analysis

Dataflow Analysis

Entry node:

1. Control-flow graph (CFG):

- $G=(N, E, 1)$
- Nodes are basic blocks

2. Data
3. Dataflow equations
out(j) = (in(j) - kill(j)) U gen(j)
(gen and kill are parameters)
4. Merge operator V
in(j) $=\mathrm{V}$ out(i$)$
i is predecessor of j

Four Classical Dataflow Problems

- Reaching definitions (Reach)
- Live uses of variables (Live)
- Available expressions (Avail)
- Very busy expressions (VeryB)
- Reach and the dual Live enable several classical optimizations such as dead code elimination, as well as dataflow-based testing
- Avail enables global common subexpression elimination
- VeryB enables conservative code motion

Reaching Definitions

- Definition A statement that may change the value of a variable (e.g., $x=y+z$)
- (\mathbf{x}, \mathbf{k}) denotes definition of \mathbf{x} at node \mathbf{k}
- A definition (\mathbf{x}, \mathbf{k}) reaches node n if there is a path from \mathbf{k} to n , free of a definition of \mathbf{x}

Live Uses of Variables

- Use Appearance of a variable as an operand of a 3-address statement (e.g., x in $y=x+4$)
- A use of a variable \mathbf{x} at node n is live on exit from \mathbf{k}, if there is a path from \mathbf{k} to n clear of definition of \mathbf{x}

Def-use Relations

- Use-def chain links a use of \mathbf{x} to a definition of \mathbf{x} that reaches that use
- Def-use chain links a definition to a use that it reaches

Def-use Enable Optimizations

- Dead code elimination (Def-use)
- Code motion (Use-def)
- Constant propagation (Use-def)
- Strength reduction (Use-def)
- Test elision (Use-def)
- Copy propagation (Def-use)
- Aside: Def-use enables dataflow-based testing. (In Principles of Software)

Question. What are the Def-use Chains that start at 2?

Answer:
$(2,3)$
$(2,5)$
$(2,6)$

Def-use Enables Dead Code Elimination

Use-def Enables Constant Propagation

Def-use Enables Reasoning about Buffer Overflows

Problem 1. Reaching Definitions (Reach)

- Problem statement: for each CFG node n, compute the set of definitions (\mathbf{x}, \mathbf{k}) that reach n
- First, define data (i.e., the dataflow facts) to propagate
- Primitive dataflow facts are definitions (\mathbf{x}, \mathbf{k})
- Reach propagates sets of definitions, e.g.,

$$
\{(i, 1),(p, 4)\}
$$

Reaching Definitions (Reach)

- Next, define the dataflow equations (i.e., effect of code at node j on incoming dataflow facts)
$j: x=y+z\}$ kill(j): all definitions of ($x, _$)
〕 gen(j): this definition of $\mathbf{x}, \mathbf{(x , j)}$

$$
\text { out }(\mathrm{j})=(\mathrm{in}(\mathrm{j})-\text { kill }(\mathrm{j})) \cup \operatorname{gen}(\mathrm{j})
$$

E.g., if in $(4)=\{(x, 1),(y, 2),(x, 3)\}$ Node 4 is: $\mathbf{x}=\mathbf{y}+\mathbf{z}$
Then out(4) $=\{(y, 2),(x, 4)\}$

Reaching Definitions (Reach)

- Next, define the merge operator V (i.e., how to combine data from incoming paths)
- For Reach, V is the set union U

$$
\begin{aligned}
& \operatorname{in}(j)=\{U \text { out }(\mathrm{i}) \mid \mathrm{i} \text { is predecessor of } \mathrm{j}\} \\
& \text { E.g., if out(2) }=\{(x, 1),(y, 2)\} \text { and } \\
& \text { out(} 3)=\{(x, 3)\} \text { and } \\
& 2 \text { and } 3 \text { are predecessors of } 4 \\
& \text { } \operatorname{in}(4)=\{(x, 1),(x, 3),(y, 2)\}
\end{aligned}
$$

Reach: Dataflow Equations

Reach: Solution of Equations

Reaching Definitions

Problem 2. Live Uses of Variables (Live)

- We say that a variable \mathbf{x} is "live on exit from node j " if there is a live use of \mathbf{x} on exit from j (recall the definition of "live use of \mathbf{x} on exit from j")
- Problem statement: for each node n, compute the set of variables that are live on exit from n .

1. $x=2$; 2. $y=4$; 3. $x=1$; if ($y>x$) then 5. $z=y$; else 6. $z=y^{*} y ; 7 . x=z$; What variables are live on exit from statement 3 ? Statement 1 ?

Live Uses of Variables (Live)

- Problem statement: for each node n, compute the set of variables that are live on exit from n .

Live Example

Live Uses of Variables (Live)

- Data
- Primitive facts: variables \mathbf{x}
- Propagates sets: $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$
- Dataflow equations. At \mathbf{j} : $\mathbf{x}=\mathbf{y}+\mathbf{z}$
- kill ${ }_{\text {LV }}(\mathrm{j}):\{\mathbf{x}\}$
- gen ${ }_{L V}(j):\{y, z\}$
- Merge operator: set union U

Live Uses of Variables

Available Expressions

- An expression \mathbf{x} op y is available at program point n if every path from entry to n evaluates x op y , and there are NO subsequent assignments to x or y after evaluation and prior to reaching n.

Problem 3. Available Expressions (Avail)

- Problem statement: For every node n, compute the set of expressions that are available at n

Avail Enables Global Common Subexpression Elimination

Avail Enables Global Common Subexpression Elimination

Can we eliminate $\mathrm{w}=\mathrm{a} * \mathrm{~b}$?

Available Expressions (Avail)

- Data?
- Primitive dataflow facts are expressions, e.g., $\mathrm{x}+\mathrm{y}, \mathrm{a} \mathrm{k}, \mathrm{a}$,
- Analysis propagates sets of expressions, e.g., $\{x+y, a * b\}$
- Dataflow equations at $j: \mathbf{x}=\mathbf{y}$ op \mathbf{z} ?
- out $t_{A E}(\mathrm{j})=\left(\mathrm{in}_{\mathrm{AE}}(\mathrm{j})-\mathrm{kill}_{\mathrm{AE}}(\mathrm{j})\right) \cup$ gen $_{\text {AE }}(\mathrm{j})$
- kill $_{\text {AE }}(\mathrm{j})$: all expressions with operand \mathbf{x} :
(x op _), (_ op x)
- gen $_{\text {AE }}(\mathrm{j})$: new expression: $\left\{\left(\begin{array}{l}\mathrm{y} \text { op } \mathbf{z})\} \\ \text { \} }\end{array}\right.\right.$

Available Expressions (Avail)

- Merge operator?
- For Avail, it is set intersection \bigcap

$$
\mathrm{in}_{A E}(\mathrm{j})=\left\{\bigcap_{\mathrm{out}}^{A E}(\mathrm{i}) \mid \mathrm{i} \text { is predecessor of } \mathrm{j}\right\}
$$

Available Expressions (Avail)

> Forward, must dataflow problem

Note on Homework

Very Busy Expressions

- An expression x op y is very busy at node n , if along EVERY path from n to the end of the program, we come to a computation of x op y BEFORE any redefinition of x or y.

Problem 4. Very Busy Expressions (VeryB)

- Problem Statement: For each node n, compute the set of expressions that are very busy on exit from n .

Q: What is the data?
Q: What are the equations?
Q : What is $\mathrm{gen}_{\mathrm{VB}}(\mathrm{i})$?
Q: What is kill ${ }_{\mathrm{VB}}(\mathrm{i})$?
Q: What is the merge operator?

Very Busy Expressions (VeryB)

- Data?
- Primitive dataflow facts are expressions, e.g., $x+y, a * b$
- Analysis propagates sets of expressions, e.g., $\{x+y, a * b\}$
- Dataflow equations at \mathbf{j} : $\mathbf{x}=\mathbf{y}$ op \mathbf{z} ?
- in(j) = gen(j) U (out(j) - kill(j))
- kill(j): all expressions with operand \mathbf{x} :
(x op _), (_ op x)
- gen(j): new expression: $\left\{\left(\begin{array}{l}\text { (op z) }\end{array}\right\}\right.$

Very Busy Expressions (VeryB)

- Merge operator?
- For VeryB, it is set intersection \bigcap

Very Busy Expressions

Dataflow Analysis Problems

	May Analyses	Must Analyses
Forward Analyses	Reaching Definitions	Available Expressions
Backward Analyses	Live Uses of Variables	Very Busy Expressions

Similarities

- In all cases, analysis operates on a finite set D of primitive dataflow facts:
- Reach: D is the set of all definitions in the program:

$$
\text { e.g., }\{(x, 1),(y, 2),(x, 4),(y, 5)\}
$$

- Avail and VeryB: D is the set of all arithmetic expressions:

$$
\text { e.g., }\{a+b, a * b, a+1\}
$$

- Live: D is the set of all variables e.g., $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$
- Solution at node n is a subset of D (a definition either reaches node n or it does not reach node n)

Similarities

- Dataflow equations (i.e., transfer functions) for forward problems have generic form:
out $(\mathrm{j})=(\mathrm{in}(\mathrm{j})-\mathrm{kill}(\mathrm{j})) \mathrm{U}$ gen(j$)=$
(in(j) \cap pres(j)) U gen(j)
in $(\mathrm{j})=\{\mathrm{V}$ out(i$) \mid \mathrm{i}$ is predecessor of j$\}$

Note: pres(j) is the complement of kill(j), D - kill(j)
Note: What makes the 4 classical problems special is that sets pres(j) and gen(j) do not depend on in(j)

- Set union and set intersection can be implemented as logical OR and AND respectively

