Dataflow Analysis: Dataflow Frameworks

Outline of Today's Class

- Catch up, four classical dataflow problems
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm
- Reading:
- Dragon Book, Chapter 9.2 and 9.3

Dataflow Analysis

Entry node:

1. Control-flow graph (CFG):

- $G=(N, E, 1)$
- Nodes are basic blocks

2. Data
3. Dataflow equations out(j) = (in(j) - kill(j)) U gen(j) (gen and kill are parameters)
4. Merge operator V
in(j) $=\mathrm{V}$ out(i$)$
i is predecessor of j

Problem 1. Reaching Definitions (Reach)

- Problem statement: for each CFG node n, compute the set of definitions (\mathbf{x}, \mathbf{k}) that reach n
- First, define data (i.e., the dataflow facts) to propagate
- Primitive dataflow facts are definitions (\mathbf{x}, \mathbf{k})
- Reach propagates sets of definitions, e.g.,

$$
\{(i, 1),(p, 4)\}
$$

Reaching Definitions (Reach)

- Next, define the dataflow equations (i.e., effect of code at node j on incoming dataflow facts)
$j: x=y+z\}$ kill(j): all definitions of ($x, _$)
〕 gen(j): this definition of $\mathbf{x}, \mathbf{(x , j)}$

out(j) = (in(j) - kill(j)) U gen(j)
E.g., if in $(4)=\{(x, 1),(y, 2),(x, 3)\}$ Node 4 is: $\mathbf{x}=\mathbf{y}+\mathbf{z}$
Then out(4) $=\{(y, 2),(x, 4)\}$

Reaching Definitions (Reach)

- Next, define the merge operator V (i.e., how to combine data from incoming paths)
- For Reach, V is the set union U

Reaching Definitions

Problem 2. Live Uses of

 Variables (Live)- We say that a variable \mathbf{x} is "live on exit from node j " if there is a live use of \mathbf{x} on exit from j (recall the definition of "live use of \mathbf{x} on exit from j")
- Problem statement: for each node n, compute the set of variables that are live on exit from n

1. $x=2$; 2. $y=4$; 3. $x=1$; if $(y>x)$ then 5. $z=y$; else 6. $z=y^{*} y$; 7. $x=z$; What variables are live on exit from statement 3 ? Statement $1 ?$

$$
\operatorname{in}(1)=\{e\}
$$

$$
\begin{aligned}
& \sin (1)=\{ \} \\
& \operatorname{out}(1)=\{\xi \\
& \operatorname{in}(2)=\{ \}
\end{aligned}
$$

$$
\operatorname{in}(3)=\{y\}
$$

$$
\operatorname{in}(y)=\{y, x\}
$$

$$
\text { out }(4)=\{y\}
$$

$$
\ln (6)=\{y\}
$$

$$
\operatorname{in}(7)=\{z\}
$$

$7 . x=2$
$\operatorname{out}(7)=\{ \}$

Live Uses of Variables (Live)

- Problem statement: for each node n, compute the set of variables that are live on exit from n

Live Uses of Variables (Live)

- Data
- Primitive facts: variables \mathbf{x}
- Propagates sets: $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$

$$
\begin{aligned}
& j: \quad x=x+y \\
& \operatorname{kil}_{L_{w}(j)}=\{x\} \\
& \operatorname{gen}=\{(j)=\{x, y\}
\end{aligned}
$$

- Dataflow equations. At j: $\mathbf{x}=\mathbf{y}+\mathbf{z}$
- kill $\mathrm{LV}(\mathrm{j}):\{\mathbf{x}\}$
- gen ${ }_{L V}(j):\{y, z\}$
- Merge operator: set union U

Live Uses of Variables

Available Expressions

- An expression \mathbf{x} op y is available at program point n if every path from entry to n evaluates x op y , and there are NO subsequent assignments to x or y after evaluation and prior to reaching n.

Problem 3. Available Expressions (Avail)

- Problem statement: For every node n, compute the set of expressions that are available at n

Avail Enables Global Common Subexpression Elimination

Avail Enables Global Common Subexpression Elimination

Can we eliminate $\mathrm{w}=\mathrm{a} * \mathrm{~b}$?

Available Expressions (Avail)

- Data?
- Primitive dataflow facts are expressions, e.g., $x+y, a * b, a+2$
- Analysis propagates sets of expressions, e.g., $\{x+y, a * b\}$
- Dataflow equations at \mathbf{j} : $\mathbf{x}=\mathbf{y}$ op \mathbf{z} ?
- out $t_{A E}(\mathrm{j})=\left(\mathrm{in}_{\text {AE }}(\mathrm{j})-\mathrm{kill}_{\text {AE }}(\mathrm{j})\right) \mathrm{U} \operatorname{gen}_{\text {AE }}(\mathrm{j})$
- kill $_{\text {AE }}(\mathrm{j})$: all expressions with operand \mathbf{x} :
(x op _), (_ op x)
- gen $_{\text {AE }}(\mathrm{j})$: new expression: $\left\{\left(\begin{array}{l}\mathrm{y} \text { op } \mathbf{z})\} \\ \text { \} }\end{array}\right.\right.$

Available Expressions (Avail)

- Merge operator?
- For Avail, it is set intersection \bigcap

Available Expressions (Avail)

> Forward, must dataflow problem
$\operatorname{me}(1)=\{ \}$
Example

Note on Homework

AE:

Very Busy Expressions

- An expression x op y is very busy at node n , if along EVERY path from n to the end of the program, we come to a computation of \mathbf{x} op y BEFORE any redefinition of x or y .

Problem 4. Very Busy Expressions (VeryB)

- Problem Statement: For each node n, compute the set of expressions that are very busy on exit from n

Q: What is the data?
Q: What are the equations?
Q : What is $\mathrm{gen}_{\mathrm{VB}}(\mathrm{i})$?
Q: What is kill ${ }_{\mathrm{VB}}(\mathrm{i})$?
Q: What is the merge operator?

Very Busy Expressions (VeryB)

- Data?

$$
j: x=x+y
$$

- Primitive dataflow facts are expressions, e.g., x+y, a*b
- Analysis propagates sets of expressions, e.g., $\{x+y, a * b\}$
- Dataflow equations at \mathbf{j} : $\mathbf{x}=\mathbf{y}$ op \mathbf{z} ?
- in(j) = gen(j) U (out(j) - kill(j))
- kill(j): all expressions with operand \mathbf{x} :
(x op _), (_ op x)
- gen(j): new expression: $\left\{\left(\begin{array}{l}\text { (op } \\ \text { z) \} }\end{array}\right.\right.$

Very Busy Expressions (VeryB)

- Merge operator?
- For VeryB, it is set intersection \bigcap

Very Busy Expressions

Another Example: Taint Analysis

- A definition $i: ~ x=\ldots \quad(x, i)$ is tainted if - i: $\mathbf{x}=$ tainted_source () is designated as a taint source
- e.g., deviceId=telephony_mgr.getDeviceId();
- or $\mathbf{i}: \mathbf{x}=\mathbf{y}$ op \mathbf{z} and a tainted (y, j) or a tainted (\mathbf{z}, k) reaches program point i
- Problem statement: for each node n, compute the set of tainted definitions that reach n

Example: Taint Analysis

 (explicit flow)

Outline of Today's Class

- Catch up
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm
- Reading:
- Dragon Book, Chapter 9.2 and 9.3

Dataflow Problems

	May Problems	Must Problems
Forward Problems	Reaching Definitions	Available Expressions
Backward Problems	Live Uses of Variables	Very Busy Expressions

Similarities

- Analyses operate over similar property spaces
- In all cases, analysis operates over a finite set D of primitive dataflow facts
- Reach: \mathbf{D} is the set of all definitions in the program:

$$
\text { e.g., }\{(x, 1),(y, 2),(x, 4),(y, 5)\}
$$

- Avail and VeryB: \mathbf{D} is the set of all arithmetic expressions: e.g., $\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}$
- Live: \mathbf{D} is the set of all variables
e.g., $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$
- Solution at node n is a subset of \mathbf{D} (e.g., a definition either reaches n or it does not reach n)

Similarities

- Dataflow equations have same form (from now on, we'll focus on forward problems):
out(j$)=(\mathrm{in}(\mathrm{j})-\mathrm{kill}(\mathrm{j})) \mathrm{U} \operatorname{gen}(\mathrm{j})=$ (inf) \cap pres (j)) U gen(j)
$\operatorname{in}(\mathrm{j})=\{\mathrm{V}$ out $(\mathrm{i}) \mid \mathrm{i}$ is predecessor of j$\}$

$$
\operatorname{out}(j)=f_{j}(\operatorname{in}(j))
$$

pres(j) is the complement of kill (j)

- A note: what makes the 4 classical problems special is that sets kill(j)/pres(j) and gen (j) do not depend on inf)
- Set union and set intersection can be implemented as logical OR and AND respectively

Similarities

- Dataflow equation at node \mathbf{j} is a transfer function. It takes in(j) as argument and produces out(j) as result:
- out(j) $=\mathrm{f}_{\mathrm{j}}(\mathrm{in}(\mathrm{j}))$

Dataflow Frameworks

- We generalize and study properties of the property space
- Property space is a lattice
- Choice of lattice settles merge operator
- We generalize and study properties of the transfer function space
- Functions are monotone or distributive
- We generalize and study properties of the worklist algorithm that computes a solution

Lattices

- Partial ordering (denoted by \leq or \subseteq)
- Relation between pairs of elements
- Reflexive a sa
- Anti-symmetric $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{a}==>\mathbf{a}=\mathbf{b}$
- Transitive $\mathbf{a} \leq \boldsymbol{b}$ and $\mathbf{b} \leq \mathbf{c}==>\mathbf{a} \leq \mathbf{c}$
- Partially ordered set (poset) (set S, \leq)
- $\mathbf{0}$ element $\mathbf{0} \leq \mathbf{a}$, for every a in S
- 1 element $a \leq 1$, for every a in S

We don' t necessarily need 0 or 1 element

Poset Example

$D=\{a, b, c\}$
The poset is $2^{\mathrm{D}}, \leq$ is set inclusion

Lattice Theory

Greatest lower bound (gib) b,
$\mathbf{I 1}, \mathbf{I 2}$ in poses S, a in poses S is the $\mathbf{g l b}(\mathbf{I 1 , I 2)}$ ff 1) a $\leq \boldsymbol{I}$ and a $\leq \mathbf{I 2}$
2) for any \mathbf{b} in $\mathrm{S}, \mathbf{b} \leq \mathbf{I 1}, \mathbf{b} \leq \mathbf{I 2}$ implies $\mathbf{b} \leq \mathbf{a}$

If gIb exists, it is unique. Why? Called meet (denoted by \wedge or \sqcap) of $I 1$ and $\downarrow 2$.

- Least upper bound (lab)
$\mathbf{I 1}, \mathbf{I 2}$ in poses S, \mathbf{c} in poses S is the $\mathbf{l u b}(11,12)$ if $=\left(\operatorname{luth}_{(1,12)}\right.$

1) $\mathbf{c} \geq \mathbf{I}$ and $\mathbf{c} \geq \mathbf{I} \mathbf{2}$
2) for any \mathbf{d} in $S, \mathbf{d} \geq \mathbf{I 1}, \mathbf{d} \geq \mathbf{I 2}$ implies $\mathbf{d} \geq \mathbf{c}$

If lube exists, it is unique. Called join (denoted by V or \sqcup) of I 1 and I 2 .

Definition of a Lattice (L, $\boldsymbol{\Lambda}, \mathbf{V}$)

- A lattice L is a poset under \leq, such that every pair of elements has a glb (meet) and lub (join)
- A lattice need not contain a 0 or 1 element
- A finite lattice must contain 0 and 1 elements
- Not every poset is a lattice
- If there is element a such that $\mathbf{a} \leq \mathbf{x}$ for every \mathbf{x} in \mathbf{L}, then \mathbf{a} is the 0 element of \mathbf{L}
- If there is a such that $\mathbf{x} \leq \mathbf{a}$ for every \mathbf{x} in \mathbf{L}, then \mathbf{a} is the 1 element of \mathbf{L}

A Poset but Not a Lattice

$$
\begin{aligned}
& e_{1} \leqslant e 3, e_{1} \leq e 4 \\
& e_{2} \leqslant e_{3}, e_{2} \leqslant e 4
\end{aligned}
$$

There is no lub(e3,e4) in this poset so it is not a lattice.
Suppose we add the lub(e3,e4), is it a lattice?

Is This Poset a Lattice

$$
D=\{a, b, c\}
$$

The poset is $2^{D}, \leq$ is set inclusion
$g l b\left(l_{1}, l_{2}\right)=l_{1} \cap l_{2}$ $\operatorname{lub}\left(l_{1}, l_{2}\right)=l_{1} \cup l_{2} \leq$

Examples of Lattices

- $\mathrm{H}=\left(2^{\mathrm{D}}, \cap, \mathrm{U}\right)$ where D is a finite set
- glb(s1,s2) denoted $\mathbf{s} \mathbf{1}$ ^s2, is set intersection s1กs2
- lub(s1,s2) denoted s1Vs2, is set union s1Us2
- J = (N_{1}, gcd, lcm)
- Partial order is integer divide on N_{1}
- lub(n1,n2) denoted $\mathbf{n 1 V n 2}$ is Icm(n1,n2)
- $\mathbf{g l b}(\mathrm{n} 1, \mathrm{n} 2)$ denoted $\mathbf{n 1} \mathbf{\Lambda n 2}$ is $\operatorname{gcd}(\mathbf{n} 1, \mathrm{n} 2)$
(N_{1} denotes natural numbers starting at 1)

Chain

- A poset C where for every pair of elements c1, c2 in C, either c1 $\leq \mathrm{c} 2$ or $\mathbf{c 2} \leq \mathrm{c} 1$.
- E.g., $\} \leq\{a\} \leq\{a, b\} \leq\{a, b, c\}$
- E.g., from the lattice J as shown here,

30
$1 \leq 2 \leq 6 \leq 30$
$1 \leq 3 \leq 15 \leq 30$

- A lattice s.t. every ascending chain is finite, is said to satisfy the Ascending Chain Condition

Lattices in Dataflow Analysis

- Lattices define property space
- Lattice properties lead to certain properties of the worklist algorithm (standard way of solving dataflow problems)

Dataflow Lattices: Reach

$\mathrm{D}=$ all definitions: $\{(\mathrm{x}, 1),(\mathrm{x}, 4),(\mathrm{a}, 3)\} \quad\{(\mathrm{x}, 1),(\mathrm{x}, 4),(\mathrm{a}, 3)\}$ Poset is $2^{\mathrm{D}}, \leq$ is the subset relation $ㄷ$

Dataflow Lattices: Avail

$D=$ all expressions: $\left\{a^{*} b, a+1, y^{*} z\right\}$
Poset is $2^{\mathrm{D}}, \leq$ is the superset relation \supseteq

Property Space

- Property space must be:

1. A lattice L, \leq
2. L satisfies the Ascending Chain Condition Requires that all ascending chains are finite

Property Space

- Merge operator V must be the join of \mathbf{L}
- In dataflow, L is often the lattice of the subsets over a finite set of dataflow facts \mathbf{D}
- Choose universal set D (e.g., all definitions)
- Choose ordering operation \leq. Since the merge operator must be the join of \mathbf{L}, a may problem sets
\leq to subset and a must problem sets \leq to superset

Example: Reach Lattice

- Property space is the lattice of the subsets
- \mathbf{D} is the set of all definitions in program
- \leq is the subset operation
- Thus, join is set union, as needed for Reach, which is a may problem
- Lattice has a $\mathbf{0}$ being $\}$, and a $\mathbf{1}$ being \mathbf{D}
- Lattice satisfies the Ascending Chain Condition

Example: Avail Lattice

- Property space is the lattice of the subsets
- \mathbf{D} is the set of all expressions in the program
- \leq is superset
- Thus, join is set intersection, as needed for Avail, which is a must problem
- Lattice has a 0 being D, and a 1 being \{\}
- Lattice satisfies Ascending Chain Condition

(Monotone) Dataflow Framework

- A problem fits into the dataflow framework if
- its property space is a lattice L, \leq that satisfies the Ascending Chain Condition
- its merge operator V is the join of L and
- its transfer function space F : $L \rightarrow L$ is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm (also the maximal fixpoint algorithm or the fixpoint iteration algorithm)

Outline of Today's Class

- Catch up
- Dataflow frameworks
- Lattices
- Transfer functions
- Worklist algorithm
- Reading:
- Dragon Book, Chapter 9.2 and 9.3

Transfer Functions

- The transfer functions: f: $L \rightarrow L$. Formally, function space F is such that

1. \mathbf{F} contains all $\boldsymbol{f}_{\mathrm{j}}$
2. \mathbf{F} contains the identity function $\mathrm{id}(\mathbf{x})=\mathbf{x}$
3. \mathbf{F} is closed under composition
4. Each \mathbf{f} must be monotone

Monotonicity Property

- $F: L \rightarrow L$ is monotone if and only if: (1) \mathbf{a}, \mathbf{b} in L, f in F then $\mathbf{a} \leq \boldsymbol{b} \Longrightarrow f(a) \leq f(b)$ or (equivalently):
(2) \mathbf{x}, \mathbf{y} in \mathbf{L}, \mathbf{f} in \mathbf{F} then $f(\mathbf{x}) \mathbf{V} \mathbf{f}(\mathbf{y}) \leq f(\mathbf{x} \mathbf{V} \mathbf{y})$
- Theorem: Definitions (1) and (2) are equivalent.
- Show that (1) implies (2)
- Show that (2) implies (1)

Monotonicity Property

- Show that (1) implies (2)

Distributivity Property

- $F: L \rightarrow L$ is distributive if and only if \mathbf{x}, \mathbf{y} in L, f in F then $f(x) \vee f(y)=f(x \vee y)$
- A distributive function is also monotone but not the other way around
- Distributivity is a very nice property!

Monotonicity and Distributivity

- Is classical Reach distributive?
- Yes
- To show distributivity:

For each j : ($\left(\mathrm{X}_{1} \mathbf{U} \mathrm{X}_{2}\right) \cap$ pres $\left.(\mathrm{j})\right) \mathrm{U}$ gen $(\mathbf{j})=$ $\left(\left(\mathrm{X}_{1} \cap \mathrm{pres}(\mathrm{j})\right) \mathrm{U}\right.$ gen $\left.(\mathrm{j})\right) \mathrm{U}\left(\left(\mathrm{X}_{2} \cap_{\text {pres }}(\mathrm{j})\right) \mathrm{U}\right.$ gen $\left.(\mathrm{j})\right)$
$\left(\left(X_{1} \cup X_{2}\right) \cap \operatorname{pres}(j)\right) \cup$ gen($(\mathrm{j})=$
$\left(\left(X_{1} \cap \operatorname{pres}(j)\right) U\left(X_{2} \cap \operatorname{pres}(j)\right)\right) U$ gen($(\mathrm{j})=$ $\left(\left(X_{1} \cap \operatorname{pres}(j)\right) U \operatorname{gen}(j)\right) U\left(\left(X_{2} \cap \operatorname{pres}(j)\right) U \operatorname{~gen}(j)\right)$

Monotone Dataflow Framework

- A problem fits into the dataflow framework if
- its property space is a lattice \mathbf{L}, \leq that satisfies the Ascending Chain Condition
- its merge operator V is the join of L and
- its transfer function space F : $L \rightarrow L$ is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm.

Worklist Algorithm for Forward Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = $\mathrm{f}_{1}($ (in(1))
for $\mathrm{m}=2$ to n do $\mathrm{in}(\mathrm{m})=\mathbf{0}$; out $(\mathrm{m})=\mathrm{f}_{\mathrm{m}}(\mathbf{0})$
$\mathrm{W}=\{2, \ldots, \mathrm{n}\} /^{*}$ put every node but 1 on the worklist */
while $\mathrm{W} \neq \varnothing$ do \{
remove j from W
in $(\mathrm{j})=\mathbf{V}\{$ out $(\mathrm{i}) \mid \mathrm{i}$ is predecessor of j$\}$
out(j) $=\mathrm{f}_{\mathrm{j}}(\mathrm{in}(\mathrm{j}))$
if out(j) changed then

$$
W=W U\{k \mid k \text { is successor of } j\}
$$

Worklist Algorithm on Reach

D = all definitions:\{(x,1),(x,4),(a,3)\}
Poset is $2^{\mathrm{D}}, \leq$ is the subset relation \sqsubseteq

Termination Argument

- Why does the algorithm terminate?
- Sketch of argument:

A node j is placed on the worklist only if the out(i) of a predecessor i changes. Monotonicity of f ensures that in ${ }^{k}(i) \leq$ in $^{k+1}(i)$ and out ${ }^{k}(i) \leq$ out $^{k+1}(i)$. in(i) and out(j) sets and in \mathbf{L} and \mathbf{L} satisfies the Ascending Chain Condition; therefore, there is only a finite number of times each out(i) changes

Correctness Argument

- Theorem: Worklist algorithm computes a solution that satisfies the dataflow equations
- Why?
- Sketch of argument:

Suppose either (1) Vout(i) =/= in(j) or (2) out(j) =/= $\mathrm{f}_{\mathrm{j}}(\mathrm{in}(\mathrm{j}))$
For (1) to hold we must have "grown" out(i) and not added successor j to worklist or otherwise in(j) would have been recomputed to account for new out(i); This is impossible.

Precision Argument

- Theorem: Worklist algorithm computes the least solution of the dataflow equations.
- Historically though, this solution is called the maximal fixpoint solution (MFP)
- For every node \mathbf{j}, worklist algorithm computes a solution MFP(j) = \{in(j),out(j)\}, such that for every solution \{in'($($),out' $(j)\}$ of the dataflow equations we have in(j) $\leq i n^{\prime}(j)$ and out(j) \leq out $^{\prime}(\mathrm{j})$

Example

Solution2 \varnothing

Equivalent to: $\mathrm{in}_{\text {Avai }}(2)=\{x+y\} \quad \mathbf{V} \mathrm{in}_{\text {Avail }}(2)$ and recall that \mathbf{V} is \cap (i.e., set intersection).

