Dataflow Analysis: Dataflow

!'_ Frameworks

i Outline of Today’s Class

= Catch up, four classical dataflow problems

s Dataflow frameworks
= Lattices
= Transfer functions
= Worklist algorithm

= Reading:
=« Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova

Dataflow Analysis

1. Control-flow graph (CFG):
« G=(N,E, 1)
* Nodes are basic blocks
2. Data

Entry node: j

3. Dataflow equations
out(j) = (in(j) — kill(j)) U gen(j)
(gen and kill are parameters)
4. Merge operator V

in(j) = V out(i)

| is predecessor of j

Exit node:

s

Problem 1. Reaching Definitions
Reach)

s Problem statement: for each CFG node n,
compute the set of definitions (x, k) that
reach n

= First, define data (i.e., the dataflow facts) to
propagate
= Primitive dataflow facts are definitions (x, k)

= Reach propagates sets of definitions, e.g.,
{(1,1),(p,4)}

CSCI 4450/6450, A Milanova

iReaching Definitions (Reach)

= Next, define the dataflow equations (i.e.,
effect of code at node § on incoming

dataflow facts)
kill(j): all definitions of (x,)
gen(j): this definition of x, (x, J)

\ / out(j) = (in(j) — kill(j)) U gen(j)
j E.g., |f|n(4)—{(x 1),(y,2),(x,3)}
Node 4 is: x = y+z

Then out(4) = { (y,2), (x,4)}

5

J: x = y+z

CSCI 4450/6450, A Milanova

iReaching Definitions (Reach)

= Next, define the merge operator V (i.e., how
to combine data from incoming paths)

s For Reach, V iIs the set union U

in(j) = { Uout(i) | iis predecessor of | }

\ / E.g., ifout(2) = { (x,1), (y,2) } and

out(3) = { (x,3) } and

2 and 3 are predecessors of 4
in(4)={(x,1),(x,3),(y,2)}

6

CSCI 4450/6450, A Milanova

i Reaching Definitions

in(i1) in(i2) in(i3)

in(j)
Forward, may 0

dataflow problem

CSCI 4450/6450, A Milanova

Problem 2. Live Uses of
i Variables (Live)

= \We say that a variable x is “live on exit from
node j” if there is a live use of x on exit from
j (recall the definition of “live use of x on exit
from j7)

= Problem statement: for each node n,

compute the set of variables that are live on
exit from n

1. x=2; 2. y=4; 3. x=1; if (y>Xx) then 5. z=y; else 6. z=y*y; 7. x=z;

What variables are live on exit from statement 37 Statement 17

;L((4-) = ?Qé

i Live Uses of Variables (Live)

s Problem statement: for each node n,

compute the set of variables that are live on
exit from n

% / in(i)= (outuy(j) — Killy(i)) U genuy()

X = ytz

/ \ out,\(j) = {Uiny(i) | 1is a successor of j }
Q: What are the primitive dataflow facts?
Q: What is genyy(j)?

Q: What is Kill,,(j)?

CSCI 4450/6450, A Milanova 10

i Live Uses of Variables (Live)

= Data Ji X=Xty
= Primitive facts: variables x K&ULV('J) = x4
= Propagates sets: {x,y, z} J4e (3)= z"'ﬂ

= Dataflow equations. At j: x = y+z
m k|”|_v(J) {X}
= genpy()): {y,z}

= Merge operator: set union U

CSCI 4450/6450, A Milanova 11

i Live Uses of Variables

Backward, may
dataflow problem

out(i1)

CSCI 4450/6450, A Milanova

out(i2)

out(j)

out(i3)

12

iAvaiIabIe Expressions

= An expression x op vy is available at
program point n if every path from entry to n
evaluates x op vy, and there are NO
subsequent assignments to x or y after
evaluation and prior to reaching n.

CSCI 4450/6450, A Milanova 13

Problem 3. Available
iExpressions (Avail)

= Problem statement: For every node n,

compute the set of expressions that are
available at n

1
X op Yy X Oop X X op Yy

CSCI 4450/6450, A Milanova

14

Avail Enables Global Common
i Subexpression Elimination

z=a*b
r=2%*z

w=a*Db

CSCI 4450/6450, A Milanova

15

Avail Enables Global Common
i Subexpression Elimination

Can we eliminate w=a*b?

w=a*Db

CSCI 4450/6450, A Milanova

16

i Available Expressions (Avail)

s Data?

= Primitive dataflow facts are expressions, e.g.,
x+y, a*b, a+2

= Analysis propagates sets of expressions, e.g.,
{x+y,a*b}
= Dataflow equationsatj: x = y op 27

= oUtae()) = (inae() — Killag())) U genael))
= Killag()): all expressions with operand x:
(x op _),(_ op x)

= genye(j): new expression: { (y op z)} -

i Available Expressions (Avail)

= Merge operator?
= For Avall, it is set intersection ﬂ

inae(i) = {[outag(i) | i is predecessor of j }

AN _ / J? X=Xopy
@ il ()= (¢ op =), (= 4%

CSCI 4450/6450, A Milanova 18

i Available Expressions (Avail)

in(i1) in(i2) in(i3)

In(j)

(D

Forward, must
dataflow problem

CSCI 4450/6450, A Milanova

n(1)=75}

Example
il.y=a+b nub(n)= §E+65
fu(z)~ ?0.4-6)7

2.x;a*b ot (2) = ga#b,a»“bf
l X u(s)= antb(2)Noni(e) = ngb}
f3.if Y<=a/b ot (3)= 3&&6‘?

l ftf(‘f): ?C\-O'b}
4.a=la+1 ok (4) = 0}
> x=a’h nd () = Fo#b}?
l 77«(6) = fawb}
°-goto 3 614(6) = Joxb]

7. ..

20

Note on Homework

LV .
KiY (By) = 2"'\73

By 10, x = x + b
2.y = x + 1 ?Q“w (Bi)’ ?’(163
3.x = x +y
KD

Xilf (Bs) = M C[e/fw/faus g[y aud X

ge& (Bq)':‘ ?(}/,44), (‘)(,42)3
AE ¢

21

i Very Busy Expressions

= An expression x op vy Is very busy at node
n, if along EVERY path from n to the end of

the program, we come to a computation of
x op y BEFORE any redefinition of x or y.

n

XopY tl1=X op Y tl1=X op Y

tl

CSCI 4450/6450, A Milanova 22

Problem 4. Very Busy
i Expressions (VeryB)

s Problem Statement: For each node n,

compute the set of expressions that are very
busy on exit from n

\ Q: What is the data?
G:x = y+tz_D Q: What are the equations?

/ Q: What is genyg(i)?
Q: What is killyg(i)?

Q: What is the merge operator?

23

Very Busy Expressions (VeryB)

¢

Ji X=Xy
s Data? —
= Primitive dataflow facts are expressions, e.g.,
x+y, a*b

= Analysis propagates sets of expressions, e.g.,
{x+y,a*b}

= Dataflow equationsatj: x = y op 27
= in(j) = gen(j) U (out(j) — kill(j))
= Kill(j): all expressions with operand x:
(x op _),(_ op x)
= gen(j): new expression: { (y op z) }

24

i Very Busy Expressions (VeryB)

= Merge operator?
= For VeryB, it is set intersection A

outyg(j) = {[)inyg(i) | i is successor of j)

CSCI 4450/6450, A Milanova

25

i Very Busy Expressions

Backward, must outyg(j)
dataflow problem

outyg(i1) outyg(i2) outyg(i3)

CSCI 4450/6450, A Milanova 26

i Another Example: Taint Analysis

s Adefinitioni: x = ... (x,1) Istainted if
= i: x = tainted source() is designated as

a taint source
= e.g., deviceld=telephony mgr.getDevicelId()

=m0ri: x = y op zandatainted (y,j) ora
tainted (z, k) reaches program point i
s Problem statement: for each node n,

compute the set of tainted definitions that
reach n

CSCI 4450/6450, A Milanova

Example: Taint Analysis

(explicit flow)

i. x=read ()

2.y=1

|

4.y=x*y

|

\

5.x=x-1

|

6.goto 3

7.z=y-1

Y

28

i Outline of Today’s Class

= Catch up

s Dataflow frameworks
= Lattices
= Transfer functions
= Worklist algorithm

= Reading:
=« Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova

29

i Dataflow Problems

May Problems

Must Problems

Forward Reaching Available
Problems Definitions Expressions
Backward Live Uses of | Very Busy
Problems Variables Expressions

CSCI 4450/6450, A Milanova

30

i Similarities

= Analyses operate over similar property spaces

= In all cases, analysis operates over a finite set D of
primitive dataflow facts

= Reach: D is the set of all definitions in the program:
eg., {(x,1),(y,2),(x,4),(y,5)}

=« Avail and VeryB: D is the set of all arithmetic expressions:
e.dg., {at+b,a*b,a+1}

= Live: D is the set of all variables
eg., {x,y,z}
= Solution at node n is a subset of D (e.g., a definition

either reaches n or it does not reach n)
CSCI 4450/6450, A Milanova 31

i Similarities

= Dataflow equations have same form (from now on,
we’ll focus on forward problems): e
out(j) = (in(j) — kill(j)) U gen(j) = ut (1) =4 (i ()

(in(j) Mpres(j)) U gen(j) presc,;
in(j) = {V out(i) | i is predecessor of j }

pres(j) is the complement of Kill(j)

= A note: what makes the 4 classical problems special is
that sets kill(j)/pres(j) and gen(j) do not depend on in(j)

= Set union and set intersection can be implemented as
logical OR and AND respectively

CSCI 4450/6450, A Milanova 32

i Similarities

= Dataflow equation at node j is a transfer function.

It takes in(j) as argument and produces out(j) as
result:

= out(j) = f;(in(j))

CSCI 4450/6450, A Milanova

33

i Dataflow Frameworks

= \We generalize and study properties of the
property space
= Property space is a lattice
= Choice of lattice settles merge operator

= \We generalize and study properties of the
transfer function space
= Functions are monotone or distributive

= \We generalize and study properties of the
worklist algorithm that computes a solution

CSCI 4450/6450, A Milanova

34

i Lattices

= Partial ordering (denoted by € or C)
= Relation between pairs of elements
=« Reflexive a< a
= Anti-symmetricas<bandb<a==>a=b
= [ransitveas<bandbsc==>asc

= Partially ordered set (poset) (set S, <)
= Delement0<a,foreveryainS
= 1elementas1,foreveryainS

We don’ t necessarily need 0 or 1 element

CSCI 4450/6450, A Milanova

35

D ={a,b,c}
The poset is 2P, < is
set inclusion

CSCI 4450/6450, A Milanova

i Poset Example

{a,b,c} 1

N

IN

{a,b} {b,c} {a,c}

P

{8} {b} {C

_\

g 0

\

}

36

{2
:aLb [li,fz)

’
i Lattice Theory

\& \P/‘*

= Greatest lower bound (glb)
11, 12 in poset S, a in poset S is the glb(I1,12) iff
1Y)asMMandasl2

2)foranybinS,bsl1,b=sI12impliesb <a
If glb exists, it is unique. Why”? Called meet (denoted by A or) of I1 ancHZ.

= Least upper bound (lub) o!w
11, 12 in poset S, ¢ in poset S is the lub(i1,12) y\“"‘z)
1)c2IM1and c 212)
2)foranydinS,d211,d212 impliesd 2c

If lub exists, it is unique. Called join (denoted by V or 1) of 11 and I2.

04 <

37

CSCI 4450/6450, A Milanova

38

i Definition of a Lattice (L, A, V)

= Alattice L is a poset under <, such that every pair
of elements has a glb (meet) and lub (join)

s A lattice need not contain a 0 or 1 element
s A finite lattice must contain O and 1 elements
= Not every poset is a lattice

= If there is element a such that a < x for every x in
L, then a is the 0 element of L

= If there is a such that x £ a for every x in L, then a

IS the 1 element of L
CSCI 4450/6450, A Milanova

39

i A Poset but Not a Lattice

e5 g1 £ €3

—

ce4

1IN

/

4 ¢) <e3, ez<¢eY

e e2

NS

el
There is no lub(e3,e4) in this poset so it is not a lattice.

Suppose we add the lub(e3,e4), is it a lattice?
CSCl 4450/6450, A Milanova 40

i Is This Poset a Lattice

D = {a,b,c} {a,b,c}

The poset is 2P, < is

set inclusion

Lh(ls)= 61Nty B {b.c} (ach

gué(éﬂ,)= 4002 £><><
{ay}/{c}

CSCI 4450/6450, A Milanova {}

41

i Examples of Lattices

= H=(2°, N, U)where D is a finite set

= glb(s1,s2) denoted s1As2, is set intersection
s1Ns2

= lub(s1,s2) denoted s1Vs2, is set union s1Us2
= J=(N,, gcd, Icm)

= Partial order is integer divide on N,

= lub(n1,n2) denoted n1Vn2 is lcm(n1,n2)

= glb(n1,n2) denoted n1An2 is gcd(n1,n2)

(N, denotes natural numbers starting at 1)

CSCI 4450/6450, A Milanova 42

i Chain

= A poset C where for every pair of elements
c1,c2inC, eitherc1 £c2orc2=<c1.
« E.g., {} <{a}={a,b} <{a,b,c}
=« E.g., from the lattice J as shown here, 3

1<2<6<30 /I\
5 15

1<3=<15<30
= A lattice s.t. every ascending
chain is finite, is said to satisfy 4_ 3
the Ascending Chain Condition \/

CSCI 4450/6450, A Milanova 43

i Lattices in Dataflow Analysis

= Lattices define property space

= Lattice properties lead to certain properties of
the worklist algorithm (standard way of
solving dataflow problems)

CSCI 4450/6450, A Milanova 44

Dataflow Lattices: Reach

D = all definitions:{(x,1),(x,4),(a,3)} {(x,1),(x,4),(a,3)} 1

Poset is 2P, < is the subset relation £
1. x=a"b / \
/42- fy<=a'b x4} (x4).@3)r {(x1)(a3))
3. a;a+1 \ ><><

Qi {(x,4)} {(a,3)}

\4. x=ab {(x,
5. g‘é)to 3 J \ /

CSCl 4450/6450, A Milanov {} O 45

Dataflow Lattices: Avail

D = all expressions: {a*b,a+1,y*z} 0 1
Poset is 2P, < is the superset relation O

1. x:=a"b

|
2. if y*z<=a*b {a”*b} {a+1} {y*z}

3. a:=a+1 ><><

4. x:=a'b (aby'z} {abatl} {a+1y'z)

5. goto 2 / /
CSCI 4450/6450, A Milanova {a*b,a+1,y*z} 0 46

i Property Space

= Property space must be:
1. Alattice L, =
2. L satisfies the Ascending Chain Condition
Requires that all ascending chains are finite

CSCI 4450/6450, A Milanova

47

i Property Space

= Merge operator V must be the join of L

s In dataflow, L is often the lattice of the
subsets over a finite set of dataflow facts D

= Choose universal set D (e.g., all definitions)

= Choose ordering operation <. Since the merge
operator must be the join of L, a may problem sets
< to subset and a must problem sets < to

superset

CSCI 4450/6450, A Milanova 48

i Example: Reach Lattice

= Property space is the lattice of the subsets

= D is the set of all definitions in program

= S iIs the subset operation

=« Thus, join is set union, as needed for Reach, which is
a may problem

« Lattice has a 0 being {}, and a1 being D
= Lattice satisfies the Ascending Chain Condition

CSCI 4450/6450, A Milanova 49

i Example: Avail Lattice

= Property space is the lattice of the subsets

= D is the set of all expressions in the program

= SIs superset

= Thus, join is set intersection, as needed for Avalil,
which is a must problem

« Lattice has a 0 being D, and a 1 being {}
= Lattice satisfies Ascending Chain Condition

CSCI 4450/6450, A Milanova

50

i (Monotone) Dataflow Framework

= A problem fits into the dataflow framework if

= its property space is a lattice L, < that satisfies
the Ascending Chain Condition

= its merge operator V is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm
(also the maximal fixpoint algorithm or the
fixpoint iteration algorithm)

i Outline of Today’s Class

= Catch up

s Dataflow frameworks
= Lattices
= [ransfer functions
= Worklist algorithm

= Reading:
= Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova

52

i Transfer Functions

= The transfer functions: f: L-> L. Formally,
function space F is such that
1. F contains all f;
2. F contains the identity function id(x) = x
3. F Is closed under composition
+. Each f must be monotone

CSCI 4450/6450, A Milanova

53

i Monotonicity Property

= F: L-> L is monotone if and only if:
(1)a,binL, fin Fthenasb => f(a) < f(b)

or (equivalently):
(2) x,yinL, fin F then f(x) V f(y) = f(x Vy)

= Theorem: Definitions (1) and (2) are
equivalent.
= Show that (1) implies (2)
= Show that (2) implies (1)

54

i Monotonicity Property

= Show that (1) implies (2)

CSCI 4450/6450, A Milanova

55

i Distributivity Property

= F: L - L is distributive if and only if
x,yinL, fin Fthen f(x) V f(y) =f(xVy)

s A distributive function is also monotone but
not the other way around

= Distributivity is a very nice property!

CSCI 4450/6450, A Milanova 56

iMonotonicity and Distributivity

s Is classical Reach distributive?
= Yes

= [0 show distributivity:
For each j: ((X, U X,) N pres(j)) U gen(j) =
((XiNpres(j)) U gen(j)) U ((XNpres(j)) U gen(j))

((X;UX;) N pres(j)) U gen(j) =
((Xq N pres(j)) U (X, N pres(j))) U gen(j) =
((X4 N pres(j)) Ugen(j)) U ((X; N pres(j)) U5§7jen(j))

i Monotone Dataflow Framework

= A problem fits into the dataflow framework if

= its property space is a lattice L, < that satisfies
the Ascending Chain Condition

= its merge operator V is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm.

58

Worklist Algorithm for Forward
i Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f,(in(1))

form =2 to n doin(m) = 0; out(m) = f,(0)

W ={2,...,n} /* put every node but 1 on the worklist */

while W # @ do {
remove j from W
in(j) =V { out(i) | i is predecessor of j }
out(j) = f;(in()))
if out(j) changed then
W =W U {k|kis successor of j }

59

Worklist Algorithm on Reach

D = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2P, < is the subset relation =

1. x=a"b

/{ 2. if y<=a*b

3. a=a+1
\4. X=a*b
5. goto 3

CSCI 4450/6450, A Milanov

60

i Termination Argument

= Why does the algorithm terminate?

= Sketch of argument:

A node | is placed on the worklist only if the out(i) of
a predecessor i changes. Monotonicity of f ensures
that ink(i) < ink*1(i) and outk(i) < outk*1(i).

in(i) and out(j) sets and in L and L satisfies

the Ascending Chain Condition; therefore, there is
only a finite number of times each out(i) changes

CSCI 4450/6450, A Milanova 61

i Correctness Argument

= Theorem: Worklist algorithm computes a
solution that satisfies the dataflow equations

= Sketch of argument:
Suppose either (1) Vout(i) =/=in(j) or (2) out(j) =/= f(in(j))
For (1) to hold we must have “grown” out(i) and not added

successor j to worklist or otherwise in(j) would have been
recomputed to account for new out(i); This is impossible.

CSCI 4450/6450, A Milanova 62

i Precision Argument

= Theorem: Worklist algorithm computes
the least solution of the dataflow
equations.

= Historically though, this solution is called the
maximal fixpoint solution (MFP)

= For every node j, worklist algorithm
computes a solution MFP(j) = {in(j),out())},
such that for every solution {in’(j),out’(j)} of
the dataflow equations we have in(j) < in’(j)
and out(j) < out'(j)

CSCI 4450/6450, A Milanova 63

xample

S
1. Zz:=x+y

iNavai(1) =)

OUta,4i(1) = (iNavai(1)-E,) U {X+y}

2. if (z > 500)

INaLai(2) = OUta (1) V outy,.i(3

OUts,i(2) = iNgLi(2)

|

3. skip

iNaLi(3) = Outyyqi(2)
OUta,4i(3) = INyail3)

|

Solution1
%

{x+y}

{x+y}

{x+y}

Equivalent to: iny,.(2) = {x+y} Ving,.(2)

and recall that V is N (i.e., set intersection).

CSCI 4450/6450, A Milanova

64

Solution2
%

{x+y}
%

