Dataflow Analysis: Dataflow Frameworks

Outline of Today's Class

- Catch up, four classical dataflow problems
- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm

- Reading:
 - Dragon Book, Chapter 9.2 and 9.3

Dataflow Analysis

10

Exit node:

4. Merge operator V

is predecessor of i

1. Control-flow graph (CFG):

•
$$G = (N, E, 1)$$

- Nodes are basic blocks
- 2. Data
- 3. Dataflow equations out(j) = (in(j) - kill(j)) U gen(j)(gen and kill are parameters)
- in(j) = V out(i)

Problem 1. Reaching Definitions (Reach)

Problem statement: for each CFG node n, compute the set of definitions (x,k) that reach n

- First, define data (i.e., the dataflow facts) to propagate
 - Primitive dataflow facts are definitions (x,k)
 - Reach propagates sets of definitions, e.g., {(i,1),(p,4)}

Reaching Definitions (Reach)

Next, define the dataflow equations (i.e., effect of code at node j on incoming dataflow facts)

```
j: x = y+z } kill(j): all definitions of (x, _) gen(j): this definition of x, (x, _)
```



```
out(j) = (in(j) - kill(j)) U gen(j)
```

E.g., if in(4) = {
$$(x,1)$$
, $(y,2)$, $(x,3)$ }
Node 4 is: $x = y+z$
Then out(4) = { $(y,2)$, $(x,4)$ }

CSCI 4450/6450, A Milanova

Reaching Definitions (Reach)

- Next, define the merge operator V (i.e., how to combine data from incoming paths)
- For Reach, V is the set union U

```
in(j) = { U out(i) | i is predecessor of j }

E.g., if out(2) = { (x,1), (y,2) } and out(3) = { (x,3) } and 2 and 3 are predecessors of 4 in(4) = { (x,1), (x,3), (y,2) }
```


Reaching Definitions

Problem 2. Live Uses of Variables (*Live*)

- We say that a variable x is "live on exit from node j" if there is a live use of x on exit from j (recall the definition of "live use of x on exit from j")
- Problem statement: for each node n,
 compute the set of variables that are live on exit from n

1. x=2; 2. y=4; 3. x=1; if (y>x) then 5. z=y; else 6. z=y*y; 7. x=z;

What variables are live on exit from statement 3? Statement 1?

Live Example

Live Uses of Variables (Live)

Problem statement: for each node n, compute the set of variables that are live on exit from n

$$in_{LV}(j) = (out_{LV}(j) - kill_{LV}(j)) U gen_{LV}(j)$$

 $out_{LV}(j) = \{ U in_{LV}(i) | i is a successor of j \}$

Q: What are the primitive dataflow facts?

Q: What is $gen_{LV}(j)$?

Q: What is $kill_{1}$ \vee (j)?

Live Uses of Variables (Live)

- Data
 - Primitive facts: variables x
 - Propagates sets: {x,y,z}

$$j: X = X + Y$$
 $\text{Koll}_{LV}(j) = \{x, y\}$
 $\text{gen}_{LV}(j) = \{x, y\}$

- Dataflow equations. At j: x = y+z
 - kill_{| \/}(j): {x}
 - gen_{LV}(j): {y,z}

Merge operator: set union U

Live Uses of Variables

Available Expressions

An expression x op y is available at program point n if every path from entry to n evaluates x op y, and there are NO subsequent assignments to x or y after evaluation and prior to reaching n.

Problem 3. Available Expressions (*Avail*)

 Problem statement: For every node n, compute the set of expressions that are available at n

Avail Enables Global Common Subexpression Elimination

Avail Enables Global Common Subexpression Elimination

Can we eliminate w=a*b?

4

Available Expressions (Avail)

- Data?
 - Primitive dataflow facts are expressions, e.g.,
 x+y, a*b, a+2
 - Analysis propagates sets of expressions, e.g., {x+y,a*b}
- Dataflow equations at j: x = y op z?
 - $out_{AE}(j) = (in_{AE}(j) kill_{AE}(j))$ U $gen_{AE}(j)$
 - kill_{AE}(j): all expressions with operand x:
 (x op _) , (_ op x)
 - gen_{AE}(j): new expression: { (y op z) }

Available Expressions (Avail)

- Merge operator?
 - For *Avail*, it is set intersection ∩

$$in_{AE}(j) = \{ \bigcap out_{AE}(i) \mid i \text{ is predecessor of } j \}$$

$$j : X = X \circ p y$$
 $KiU_{A_{\tau}}(j) = (X \circ p -), (-\varphi X)$
 $gen_{A_{\tau}}(j) = \varnothing$

Available Expressions (Avail)

Forward, must dataflow problem

m(4)= \$} **Example** 1.y=a+bout(1)= } a+6 } iu (2) = } a+b? out (2) = { a+b, a +b} 2.x=a*biu(3)= out(2) 1 out(6) = }axb\$ $3.if y \le a b$ (out (3)= 3 a+63 14(4) = {a+b3 4.a = a + 1 $out(4) = {3}$ 5.x=a*bn1(5) = {a+b} Th (6) = {a+b? 6.goto 3 out (6) = {axb}

Note on Homework

```
B<sub>1</sub> 10, x = x + b
24, y = x + 1
32, x = x + y
```

$$LV:$$
 $kiU_{L}(B_{1}) = \{x, y\}$
 $gen_{W}(B_{1}) = \{x, b\}$

RD
RiU (B₁) =
$$\frac{1}{2}$$
 HU definitions of y and x
gen (B₁) = $\frac{1}{2}$ (y, 11), (x, 12) $\frac{1}{2}$
AE:

Very Busy Expressions

An expression x op y is very busy at node n, if along EVERY path from n to the end of the program, we come to a computation of x op y BEFORE any redefinition of x or y.

Problem 4. Very Busy Expressions (*VeryB*)

Problem Statement: For each node n,
 compute the set of expressions that are very busy on exit from n

Q: What is the data?

Q: What are the equations?

Q: What is $gen_{VB}(i)$?

Q: What is kill_{VB}(i)?

Q: What is the merge operator?

Very Busy Expressions (VeryB)

j: X = X + Y

- Data?
 - Primitive dataflow facts are expressions, e.g.,x+y, a*b
 - Analysis propagates sets of expressions, e.g., {x+y,a*b}
- Dataflow equations at j: x = y op z?
 - in(j) = gen(j) U (out(j) kill(j))
 - kill(j): all expressions with operand x:
 (x op _) , (_ op x)
 - gen(j): new expression: { (y op z) }

Very Busy Expressions (VeryB)

- Merge operator?
 - For VeryB, it is set intersection ()

Very Busy Expressions

Another Example: Taint Analysis

- A definition i: x = ... (x,i) is tainted if
 - i: x = tainted_source() is designated as a taint source
 - e.g., deviceId=telephony_mgr.getDeviceId();
 - or i: x = y op z and a tainted (y,j) or a tainted (z,k) reaches program point i
- Problem statement: for each node n, compute the set of tainted definitions that reach n

Example: Taint Analysis (explicit flow)

Outline of Today's Class

- Catch up
- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm

- Reading:
 - Dragon Book, Chapter 9.2 and 9.3

Dataflow Problems

	May Problems	Must Problems
Forward	Reaching	Available
Problems	Definitions	Expressions
Backward	Live Uses of	Very Busy
Problems	Variables	Expressions

Similarities

- Analyses operate over similar property spaces
- In all cases, analysis operates over a <u>finite</u> set **D** of primitive dataflow facts
 - Reach: D is the set of <u>all</u> definitions in the program:
 e.g., { (x,1), (y,2), (x,4), (y,5) }
 - Avail and VeryB: D is the set of <u>all</u> arithmetic expressions:
 e.g., { a+b,a*b,a+1}
 - Live: D is the set of <u>all</u> variablese.g., {x,y,z}
- Solution at node n is a subset of D (e.g., a definition either reaches n or it does not reach n)

4

Similarities

Dataflow equations have same form (from now on, we'll focus on forward problems):

pres(j) is the complement of kill(j)

- A note: what makes the 4 classical problems special is that sets kill(j)/pres(j) and gen(j) do not depend on in(j)
- Set union and set intersection can be implemented as logical OR and AND respectively

Similarities

Dataflow equation at node j is a transfer function. It takes in(j) as argument and produces out(j) as result:

• out(j) =
$$f_j(in(j))$$

Dataflow Frameworks

- We generalize and study properties of the property space
 - Property space is a lattice
 - Choice of lattice settles merge operator
- We generalize and study properties of the transfer function space
 - Functions are monotone or distributive
- We generalize and study properties of the worklist algorithm that computes a solution

•

Lattices

- Partial ordering (denoted by ≤ or ⊆)
 - Relation between pairs of elements
 - Reflexive a ≤ a
 - Anti-symmetric a ≤ b and b ≤ a ==> a = b
 - Transitive $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c} ==> \mathbf{a} \leq \mathbf{c}$
- Partially ordered set (poset) (set S, ≤)
 - 0 element 0 ≤ a, for every a in S
 - 1 element a ≤ 1, for every a in S

We don't necessarily need 0 or 1 element

Poset Example

D = $\{a,b,c\}$ The poset is 2^{D} , \leq is set inclusion

Lattice Theory

- l1 l2 a = glb(l1, l2)
- Greatest lower bound (glb)
 - I1, I2 in poset S, a in poset S is the glb(I1,I2) iff
 - 1) **a** ≤ **I1** and **a** ≤ **I2**
 - 2) for any **b** in S, $\mathbf{b} \le \mathbf{I1}$, $\mathbf{b} \le \mathbf{I2}$ implies $\mathbf{b} \le \mathbf{a}$

If glb exists, it is unique. Why? Called **meet** (denoted by Λ or \square) of I1 and I2.

- Least upper bound (lub)
 - I1, I2 in poset S, c in poset S is the lub(I1,I2) iff
 - 1) **c** ≥ **l1** and **c** ≥ **l2**
 - 2) for any d in S, $d \ge 11$, $d \ge 12$ implies $d \ge c$

If lub exists, it is unique. Called *join* (denoted by V or □) of I1 and I2.

Definition of a Lattice (L, A, V)

- A lattice L is a poset under ≤, such that every pair of elements has a glb (meet) and lub (join)
- A lattice need not contain a 0 or 1 element
- A finite lattice must contain 0 and 1 elements
- Not every poset is a lattice
- If there is element a such that a ≤ x for every x in
 L, then a is the 0 element of L
- If there is a such that x ≤ a for every x in L, then a is the 1 element of L

A Poset but Not a Lattice

There is no lub(e3,e4) in this poset so it is not a lattice.

Suppose we add the **lub(e3,e4)**, is it a lattice?

Is This Poset a Lattice

D = $\{a,b,c\}$ The poset is 2^{D} , \leq is set inclusion

$$glb(l_1, l_2) = l1 \prod l_2$$
 {a,t}
 $lub(l_1, l_2) = l1 \iint l_2 \le l$

4

Examples of Lattices

- $H = (2^D, \cap, U)$ where D is a finite set
 - glb(s1,s2) denoted s1Λs2, is set intersection s1∩s2
 - lub(s1,s2) denoted s1Vs2, is set union s1Us2
- $J = (N_1, gcd, lcm)$
 - Partial order is integer divide on N₁
 - lub(n1,n2) denoted n1Vn2 is lcm(n1,n2)
 - glb(n1,n2) denoted n1\(\Lambdan2 is gcd(n1,n2)
 - (N₁ denotes natural numbers starting at 1)

Chain

- A poset C where for every pair of elements
 c1, c2 in C, either c1 ≤ c2 or c2 ≤ c1.
 - E.g., $\{\} \le \{a\} \le \{a,b\} \le \{a,b,c\}$

E.g., from the lattice J as shown here,

$$1 \le 2 \le 6 \le 30$$

$$1 \le 3 \le 15 \le 30$$

 A lattice s.t. every ascending chain is finite, is said to satisfy the Ascending Chain Condition

Lattices in Dataflow Analysis

Lattices define property space

 Lattice properties lead to certain properties of the worklist algorithm (standard way of solving dataflow problems)

Dataflow Lattices: Reach

D = all definitions: $\{(x,1),(x,4),(a,3)\}$ $\{(x,1),(x,4),(a,3)\}$ Poset is 2^{D} , \leq is the subset relation \sqsubseteq

Dataflow Lattices: Avail

Property Space

- Property space must be:
 - 1. A lattice **L**, ≤
 - 2. L satisfies the *Ascending Chain Condition*Requires that all ascending chains are finite

Property Space

- Merge operator V must be the join of L
- In dataflow, L is often the lattice of the subsets over a finite set of dataflow facts D
 - Choose universal set D (e.g., all definitions)
 - Choose ordering operation ≤. Since the merge operator must be the join of L, a may problem sets
 ≤ to subset and a must problem sets ≤ to superset

Example: Reach Lattice

Property space is the lattice of the subsets

- D is the set of all definitions in program
- ≤ is the subset operation
 - Thus, join is set union, as needed for Reach, which is a may problem
- Lattice has a 0 being {}, and a 1 being D
- Lattice satisfies the Ascending Chain Condition

Example: Avail Lattice

Property space is the lattice of the subsets

- D is the set of all expressions in the program
- ≤ is superset
 - Thus, join is set intersection, as needed for Avail, which is a must problem
- Lattice has a 0 being D, and a 1 being {}
- Lattice satisfies Ascending Chain Condition

(Monotone) Dataflow Framework

- A problem fits into the dataflow framework if
 - its <u>property space</u> is a lattice L, ≤ that satisfies the Ascending Chain Condition
 - its merge operator V is the join of L and
 - its <u>transfer function space</u> F: L→ L is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm (also the maximal fixpoint algorithm or the fixpoint iteration algorithm)

Outline of Today's Class

- Catch up
- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm
- Reading:
 - Dragon Book, Chapter 9.2 and 9.3

Transfer Functions

- The transfer functions: f: L→ L. Formally, function space F is such that
 - _{1.} **F** contains all **f**_j
 - **F** contains the identity function id(x) = x
 - F is closed under composition
 - Each f must be monotone

-

Monotonicity Property

- F: L→ L is monotone if and only if:
 - (1) a,b in L, f in F then $a \le b \implies f(a) \le f(b)$
 - or (equivalently):
 - (2) x,y in L, f in F then f(x) V $f(y) \le f(x)$ V f(y)

- Theorem: Definitions (1) and (2) are equivalent.
 - Show that (1) implies (2)
 - Show that (2) implies (1)

Monotonicity Property

Show that (1) implies (2)

Distributivity Property

F: L → L is distributive if and only if x,y in L, f in F then f(x) V f(y) = f(x V y)

 A distributive function is also monotone but not the other way around

Distributivity is a very nice property!

Monotonicity and Distributivity

- Is classical Reach distributive?
 - Yes

To show distributivity:

```
For each \mathbf{j}: ((X_1 \cup X_2) \cap pres(\mathbf{j})) \cup gen(\mathbf{j}) = ((X_1 \cap \mathsf{pres}(\mathbf{j})) \cup gen(\mathbf{j})) \cup ((X_2 \cap \mathsf{pres}(\mathbf{j})) \cup gen(\mathbf{j})) \cup ((X_1 \cup X_2) \cap pres(\mathbf{j})) \cup gen(\mathbf{j}) = ((X_1 \cap \mathsf{pres}(\mathbf{j})) \cup ((X_2 \cap \mathsf{pres}(\mathbf{j}))) \cup gen(\mathbf{j}) = ((X_1 \cap \mathsf{pres}(\mathbf{j})) \cup gen(\mathbf{j})) \cup ((X_2 \cap \mathsf{pres}(\mathbf{j})) \cup gen(\mathbf{j})) \cup gen(\mathbf{j})
```


Monotone Dataflow Framework

- A problem fits into the dataflow framework if
 - its <u>property space</u> is a lattice L, ≤ that satisfies the Ascending Chain Condition
 - its merge operator V is the join of L and
 - its <u>transfer function</u> space F: L→ L is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm.

Worklist Algorithm for Forward Dataflow Problems

```
/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f_1(in(1))
for m = 2 to n do in(m) = 0; out(m) = f_m(0)
W = \{2,...,n\} /* put every node but 1 on the worklist */
while W \neq \emptyset do {
  remove j from W
   in(j) = V { out(i) | i is predecessor of j }
  out(j) = f_i(in(j))
   if out(j) changed then
     W = W U { k | k is successor of j }
```

Worklist Algorithm on Reach

D = all definitions: $\{(x,1),(x,4),(a,3)\}$ Poset is 2^{D} , \leq is the subset relation \sqsubseteq

Termination Argument

Why does the algorithm terminate?

Sketch of argument:

A node j is placed on the worklist only if the out(i) of a predecessor i changes. Monotonicity of **f** ensures that $in^k(i) \le in^{k+1}(i)$ and $out^k(i) \le out^{k+1}(i)$. in(i) and out(j) sets and in **L** and **L** satisfies the *Ascending Chain Condition*; therefore, there is only a finite number of times each out(i) changes

Correctness Argument

 Theorem: Worklist algorithm computes a solution that satisfies the dataflow equations

- Why?
- Sketch of argument:

```
Suppose either (1) Vout(i) =/= in(j) or (2) out(j) =/= f_j(in(j)) For (1) to hold we must have "grown" out(i) and not added successor j to worklist or otherwise in(j) would have been recomputed to account for new out(i); This is impossible.
```


Precision Argument

- Theorem: Worklist algorithm computes the least solution of the dataflow equations.
 - Historically though, this solution is called the maximal fixpoint solution (MFP)
 - For every node j, worklist algorithm computes a solution MFP(j) = {in(j),out(j)}, such that for every solution {in'(j),out'(j)} of the dataflow equations we have in(j) ≤ in'(j) and out(j) ≤ out'(j)

Equivalent to: $in_{Avail}(2) = \{x+y\} \ V \ in_{Avail}(2)$ and recall that V is \cap (i.e., set intersection).