
Dataflow Frameworks, cont.

Announcements

n Quiz 1 today
n On four classical dataflow problems

n Homework due Thursday
n Questions?

2

Outline of Today’s Class

n Dataflow framework
n Lattices
n Transfer functions
n Worklist algorithm

n MOP solution vs. MFP solution

n Reading:
n Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova 3

Lattice Theory

n Partial ordering (denoted by ≤ or)
n Relation between pairs of elements
n Reflexive a ≤ a
n Anti-symmetric a ≤ b and b ≤ a ==> a = b
n Transitive a ≤ b and b ≤ c ==> a ≤ c

n Partially ordered set (poset) (set S, ≤)
n 0 element 0 ≤ a, for every a in S
n 1 element a ≤ 1, for every a in S

We don’t necessarily need 0 or 1 element
CSCI 4450/6450, A Milanova 4

Lattice Theory

n Greatest lower bound (glb)
l1, l2 in poset S, a in poset S is the glb(l1,l2) iff
1) a ≤ l1 and a ≤ l2
2) for any b in S, b ≤ l1, b ≤ l2 implies b ≤ a

If glb exists, it is unique. Why? Called meet (denoted by Λ or┌┐) of l1 and l2.

n Least upper bound (lub)
l1, l2 in poset S, c in poset S is the lub(l1,l2) iff
1) c ≥ l1 and c ≥ l2
2) for any d in S, d ≥ l1, d ≥ l2 implies d ≥ c

If lub exists, it is unique. Called join (denoted by V or└┘) of l1 and l2.
5

Definition of a Lattice (L, Λ, V)

n A lattice L is a poset under ≤, such that every pair
of elements has a glb (meet) and lub (join)

n A lattice need not contain a 0 or 1 element
n A finite lattice must contain 0 and 1 elements
n Not every poset is a lattice
n If there is element a such that a ≤ x for every x in

L, then a is the 0 element of L
n If there is a such that x ≤ a for every x in L, then a

is the 1 element of L
CSCI 4450/6450, A Milanova 6

Is This Poset a Lattice

{}

{a} {b} {c}

{a,b} {b,c} {a,c}

{a,b,c}
D = {a,b,c}
The poset is 2D, ≤ is
set inclusion

CSCI 4450/6450, A Milanova 7

CSCI 4450/6450, A Milanova 8

Examples of Lattices

n H = (2D, ∩, U) where D is a finite set
n Partial order is subset
n glb(s1,s2) denoted s1Λs2, is set intersection

s1∩s2
n lub(s1,s2) denoted s1Vs2, is set union s1Us2

n J = (N1, gcd, lcm)
n Partial order is integer division
n lub(n1,n2) denoted n1Vn2 is lcm(n1,n2)
n glb(n1,n2) denoted n1Λn2 is gcd(n1,n2)
(N1 denotes natural numbers starting at 1) 9

Chain

n A poset C where for every pair of elements
c1, c2 in C, either c1 ≤ c2 or c2 ≤ c1.
n E.g., {} ≤ {a} ≤ {a,b} ≤ {a,b,c}
n E.g., from the lattice J as shown here,

1 ≤ 2 ≤ 6 ≤ 30
1 ≤ 3 ≤ 15 ≤ 30

n A lattice s.t. every ascending
chain is finite, is said to satisfy
the Ascending Chain Condition 1

2 3 5

6
10

15

30

CSCI 4450/6450, A Milanova 10

Lattices in Dataflow Analysis

n Lattices define property space

n Lattice properties give rise to certain
properties of the worklist algorithm (standard
way of solving dataflow problems)

CSCI 4450/6450, A Milanova 11

Dataflow Lattices: Reach

{}

{(x,1)} {(x,4)} {(a,3)}

{(x,1),(x,4)} {(x,4),(a,3)} {(x,1),(a,3)}

{(x,1),(x,4),(a,3)}D = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2D, ≤ is the subset relation

1. x=a*b

2. if y<=a*b

3. a=a+1

4. x=a*b

5. goto 3

0

1

CSCI 4450/6450, A Milanova 12

Dataflow Lattices: Avail

{a*b,a+1,y*z}

{a*b,y*z} {a*b,a+1} {a+1,y*z}

{a*b} {y*z}

{}D = all expressions: {a*b,a+1,y*z}
Poset is 2D, ≤ is the superset relation

1. x:=a*b

2. if y*z<=a*b

3. a:=a+1

4. x:=a*b

5. goto 2

{a+1}

Ê 1

0CSCI 4450/6450, A Milanova 13

Property Space

n Property space must be:
1. A lattice L, ≤
2. L satisfies the Ascending Chain Condition

Requires that all ascending chains are finite

14CSCI 4450/6450, A Milanova

Property Space

n Merge operator V must be the join of L
n In dataflow, L is often the lattice of the

subsets over a finite set of dataflow facts D
n Choose universal set D (e.g., all definitions)
n Choose ordering operation ≤. Since merge
operator must be the join of L, a may problem sets
≤ to subset and a must problem sets ≤ to
superset

15CSCI 4450/6450, A Milanova

Example: Reach Lattice

n Property space is the lattice of the subsets

n D is the set of all definitions in program
n ≤ is the subset operation

n Thus, join is set union, as needed for Reach, which is
a may problem

n Lattice has a 0 being {}, and a 1 being D
n Lattice satisfies the Ascending Chain Condition

CSCI 4450/6450, A Milanova 16

Example: Avail Lattice

n Property space is the lattice of the subsets

n D is the set of all expressions in the program
n ≤ is superset

n Thus, join is set intersection, as needed for Avail,
which is a must problem

n Lattice has a 0 being D, and a 1 being {}
n Lattice satisfies Ascending Chain Condition

CSCI 4450/6450, A Milanova 17

(Monotone) Dataflow Framework

n A problem fits into the dataflow framework if
n problem’s property space is a lattice L, ≤ that

satisfies the Ascending Chain Condition
n problem’s merge operator is the join of L
and
n its transfer function space F: Là L is monotone

n Thus, we can make use of a generic solution
procedure, known as the worklist algorithm
(also the maximal fixpoint algorithm or the
fixpoint iteration algorithm) 18

Outline of Today’s Class

n Dataflow frameworks
n Lattices
n Transfer functions
n Worklist algorithm

n MOP solution vs. MFP solution

n Reading:
n Dragon Book, Chapter 9.2 and 9.3

19CSCI 4450/6450, A Milanova

Transfer Functions

n The transfer functions: f: Là L. Formally,
function space F is such that
1. F contains all fj
2. F contains the identity function id(x) = x
3. F is closed under composition
4. Each f must be monotone

CSCI 4450/6450, A Milanova 20

Monotonicity Property

n F: Là L is monotone if and only if:
(1) a,b in L, f in F then a ≤ b f(a) ≤ f(b)
or (equivalently):
(2) x,y in L, f in F then f(x) V f(y) ≤ f(x V y)

n Theorem: Definitions (1) and (2) are
equivalent.
n Show that (1) implies (2)
n Show that (2) implies (1)

21

Monotonicity Property

n Show that (1) implies (2)

CSCI 4450/6450, A Milanova 22

Distributivity Property

n F: L à L is distributive if and only if
x,y in L, f in F then f(x) V f(y) = f(x V y)

n A distributive function is also monotone but
not the other way around
n Distributivity is a very nice property!

CSCI 4450/6450, A Milanova 23

Monotonicity and Distributivity

n Is classical Reach distributive?
n Yes

n To show distributivity:
For each j: ((X1 U X2) ∩ pres(j)) U gen(j) =
((X1∩pres(j)) U gen(j)) U ((X2∩pres(j)) U gen(j))

((X1 U X2) ∩ pres(j)) U gen(j) =
((X1 ∩ pres(j)) U (X2 ∩ pres(j))) U gen(j) =
((X1 ∩ pres(j)) U gen(j)) U ((X2 ∩ pres(j)) U gen(j))

Monotone Dataflow Framework

n A problem fits into the dataflow framework if
n problem’s property space is a lattice L, ≤ that

satisfies the Ascending Chain Condition
n problem’s merge operator is the join of L
and
n its transfer function space F: Là L is monotone

n Thus, we can make use of a generic solution
procedure, known as the worklist algorithm.

25CSCI 4450/6450, A Milanova

Worklist Algorithm for Forward
Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f1(in(1))
for m = 2 to n do in(m) = 0; out(m) = fm(0)
W = {2,…,n} /* put every node but 1 on the worklist */

while W ≠ Ø do {
remove j from W
in(j) = V { out(i) | i is predecessor of j }
out(j) = fj(in(j))
if out(j) changed then

W = W U { k | k is successor of j }
}

26

Worklist Algorithm on Reach
D = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2D, ≤ is the subset relation

1. x=a*b

2. if y<=a*b

3. a=a+1

4. x=a*b

5. goto 3

CSCI 4450/6450, A Milanova 27

Termination Argument

n Theorem: the algorithm terminates. Why?

n Sketch of argument:
A node k is placed on worklist only if the out(j) of a
predecessor j changes. Monotonicity of f
guarantees inn(j) ≤ inn+1(j) and outn(j) ≤ outn+1(j).
(Here inn(j), outn(j) are the sets at iteration n.)
in and out sets are elements of L and L satisfies the
Ascending Chain Condition; thus, there is only a
finite number of times each out(j) changes.

28CSCI 4450/6450, A Milanova

Correctness Argument

n Theorem: Worklist algorithm computes a
solution that satisfies the dataflow
equations. Why?

n Sketch of argument:
Suppose either (1) Vout(i) ≠ in(j) or (2) out(j) ≠ fj(in(j))
For (1) to hold we must have “grown” out(i) in some
iteration and not added successor j to worklist; this is
impossible.

CSCI 4450/6450, A Milanova 29

Precision Argument

n Theorem: Worklist algorithm computes
the least solution of the dataflow
equations.
n Historically, solution computed by worklist

algorithm is called the maximal fixpoint
solution (MFP solution)

n For every node j, worklist algorithm
computes a solution MFP(j) = (in(j),out(j)),
such that for every solution (in’(j),out’(j)) of
the dataflow equations we have in(j) ≤ in’(j)
and out(j) ≤ out’(j) 30

Example
1. z=x+y

2. if (z > 500)

3. skip

inAvail(2) = outAvail(1) V outAvail(3)

inAvail(3) = outAvail(2)

inAvail(1) = Ø

outAvail(2) = inAvail(2)

outAvail(3) = inAvail(3)

outAvail(1) = (inAvail(1)-Ez) U {x+y}

Equivalent to: inAvail(2) = {x+y} V inAvail(2)
and recall that V is ∩ (i.e., set intersection).

Solution1 Solution2
Ø

{x+y}

{x+y}

{x+y}
Ø

{x+y}

Ø

Ø

CSCI 4450/6450, A Milanova
31

Outline of Today’s Class

n Dataflow frameworks
n Lattices
n Transfer functions
n Worklist algorithm

n MOP solution vs. MFP solution

n Reading:
n Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova 32

Meet Over All Paths (MOP)

n Desired dataflow information at n is obtained by
traversing ALL PATHS from 1 (entry node) to n.

n For every path p=(1, n2, n3 ..., nk) we compute
fnk(…fn2(f1(InitialValue)))

n The MOP at entry of n is V fnk(…fn2(f1(InitialValue)))

…

1 n2
n3

nk

over all paths p from 1 to n

n

CSCI 4450/6450, A Milanova 33

MOP vs. MFP

n MOP is an abstraction of the best solution
computable with dataflow analysis
n It is a common assumption in dataflow analysis

that all program paths are executable
n MFP is the solution computed by the worklist

algorithm

CSCI 4450/6450, A Milanova 34

MOP vs. MFP

n For distributive problems MFP = MOP!

n Unfortunately, for monotone problems this is
not true. But we still have a safe solution: it
is a theorem that for monotone problems,
MFP ≥ MOP

CSCI 4450/6450, A Milanova 35

Safety of a Dataflow Solution

n A safe (also, correct or sound) solution X
overestimates the “best” possible dataflow
solution, i.e., X ≥ MOP

n Historically, an acceptable solution X is one
that is better than what we can do with the
MFP, i.e., X ≤ MFP

0

MOP

MFP

Safe
Acceptable

CSCI 4450/6450, A Milanova 36

Safe Solutions: Reach

{}

{(x,1)} {(x,4)} {(a,3)}

{(x,1),(x,4)} {(x,4),(a,3)} {(x,1),(a,3)}

{(x,1),(x,4),(a,3)}U = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2U, ≤ is the subset relation

1. x=a*b

2. if y<=a*b

3. a=a+1

4. x=a*b

5. goto 3

0

1

CSCI 4450/6450, A Milanova 37

Safe Solutions: Avail

{a*b,a+1,y*z}

{a*b,y*z} {a*b,a+1} {a+1,y*z}

{a*b} {y*z}

{}U = all expressions: {a*b,a+1,y*z}
Poset is 2U, ≤ is the superset relation

1. x:=a*b

2. if y*z<=a*b

3. a:=a+1

4. x:=a*b

5. goto 2

{a+1}

Ê 1

0CSCI 4450/6450, A Milanova 38

Precision of a Dataflow Solution

n Precise solution is one that is “close” to MOP
n A precise solution contains few spurious dataflow

facts (spurious facts is what we call noise)
n Unfortunately, for most problems even the MOP

(an approximation itself!) is undecidable

n MOP ≤ X ≤ Y: X is more precise than Y
n Usually, we can compare two solutions X and Y
n But, for most problems, we have no way of

knowing the “ground truth” 39

Next class: real analyses

n Next time: non-distributive analyses
n Constant propagation
n Pointer analysis

CSCI 4450/6450, A Milanova 40

