Dataflow Frameworks, cont.
Announcements

- Quiz 1 today
 - On four classical dataflow problems

- Homework due Thursday
 - Questions?
Outline of Today’s Class

- Dataflow framework
 - Lattices
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution

- Reading:
 - Dragon Book, Chapter 9.2 and 9.3
Lattice Theory

- **Partial ordering** (denoted by ≤ or ⊆)
 - Relation between pairs of elements
 - Reflexive $a ≤ a$
 - Anti-symmetric $a ≤ b$ and $b ≤ a$ $⇒$ $a = b$
 - Transitive $a ≤ b$ and $b ≤ c$ $⇒$ $a ≤ c$

- **Partially ordered set** (poset) (set S, $≤$)
 - 0 element $0 ≤ a$, for every a in S
 - 1 element $a ≤ 1$, for every a in S

We don’t necessarily need 0 or 1 element
Lattice Theory

- Greatest lower bound (glb)
 \(l_1, l_2 \) in poset \(S \), \(a \) in poset \(S \) is the \(\text{glb}(l_1, l_2) \) iff
 1) \(a \leq l_1 \) and \(a \leq l_2 \)
 2) for any \(b \) in \(S \), \(b \leq l_1, b \leq l_2 \) implies \(b \leq a \)

If glb exists, it is unique. Why? Called **meet** (denoted by \(\wedge \) or \(\sqcap \)) of \(l_1 \) and \(l_2 \).

- Least upper bound (lub)
 \(l_1, l_2 \) in poset \(S \), \(c \) in poset \(S \) is the \(\text{lub}(l_1, l_2) \) iff
 1) \(c \geq l_1 \) and \(c \geq l_2 \)
 2) for any \(d \) in \(S \), \(d \geq l_1, d \geq l_2 \) implies \(d \geq c \)

If lub exists, it is unique. Called **join** (denoted by \(\vee \) or \(\sqcup \)) of \(l_1 \) and \(l_2 \).
Definition of a Lattice \((L, \Lambda, V)\)

- A lattice \(L\) is a poset under \(\leq\), such that every pair of elements has a glb (meet) and lub (join)

- A lattice need not contain a 0 or 1 element
- A finite lattice must contain 0 and 1 elements
- Not every poset is a lattice
- If there is element \(a\) such that \(a \leq x\) for every \(x\) in \(L\), then \(a\) is the 0 element of \(L\)
- If there is \(a\) such that \(x \leq a\) for every \(x\) in \(L\), then \(a\) is the 1 element of \(L\)
Is This Poset a Lattice

D = \{a, b, c\}
The poset is 2^D, \leq is set inclusion

$l_1 \leq l_2 \iff l_1 \subseteq l_2$

$\text{glb}(l_1, l_2) = l_1 \cap l_2$

$\text{lub}(l_1, l_2) = l_1 \cup l_2$
Thus: If $\text{glb}(l_1, l_2)$ exists then it is unique.

Suppose $a = \text{glb}(l_1, l_2)$ and $b = \text{glb}(l_1, l_2)$ and $a \neq b$.

By def of glb:

$$a \leq l_1 \quad b \leq l_1$$

$$a \leq l_2 \quad b \leq l_2$$

Since $[a]$ is a glb of l_1 and l_2, any other lower bound $[b]$ is $b \leq a$.

Analogously, $a \leq b$.

By anti-symmetry $[a = b]$.
Examples of Lattices

- $H = (2^D, \cap, U)$ where D is a finite set
 - Partial order is subset
 - $\text{glb}(s_1, s_2)$ denoted $s_1 \Lambda s_2$, is set intersection $s_1 \cap s_2$
 - $\text{lub}(s_1, s_2)$ denoted $s_1 V s_2$, is set union $s_1 U s_2$

- $J = (N_1, \gcd, \text{lcm})$
 - Partial order is integer division
 - $\text{lub}(n_1, n_2)$ denoted $n_1 V n_2$ is $\text{lcm}(n_1, n_2)$
 - $\text{glb}(n_1, n_2)$ denoted $n_1 \Lambda n_2$ is $\gcd(n_1, n_2)$
 (N_1 denotes natural numbers starting at 1)
A poset C where for every pair of elements c_1, c_2 in C, either $c_1 \leq c_2$ or $c_2 \leq c_1$.

- E.g., $\{\} \leq \{a\} \leq \{a,b\} \leq \{a,b,c\}$
- E.g., from the lattice J as shown here,
 $1 \leq 2 \leq 6 \leq 30$
 $1 \leq 3 \leq 15 \leq 30$

A lattice s.t. every ascending chain is finite, is said to satisfy the *Ascending Chain Condition*.
Lattices in Dataflow Analysis

- Lattices define property space

- Lattice properties give rise to certain properties of the worklist algorithm (standard way of solving dataflow problems)
Dataflow Lattices: \textit{Reach}

\[D = \text{all definitions}: \{(x,1),(x,4),(a,3)\} \quad \{(x,1),(x,4),(a,3)\} \]

Poset is \(2^D\), \(\leq\) is the subset relation \(\subseteq\)

1. \(x = a \ast b\)
2. \(\text{if } y \leq a \ast b\)
3. \(a = a + 1\)
4. \(x = a \ast b\)
5. \(\text{goto 3}\)
Dataflow Lattices: \textit{Avail}

D = all expressions: \{a*b,a+1,y*z\}

Poset is 2^D, \le is the superset relation \supseteq

1. $x := a*b$

2. if $y*z \leq a*b$

3. $a := a+1$

4. $x := a*b$

5. goto 2
Property Space

- Property space must be:
 1. A lattice L, \leq
 2. L satisfies the *Ascending Chain Condition*

 Requires that all ascending chains are finite
Property Space

- **Merge operator** V must be the join of L.
- In dataflow, L is often the lattice of the subsets over a finite set of dataflow facts D.
 - Choose universal set D (e.g., all definitions).
 - Choose ordering operation \leq. Since merge operator must be the join of L, a *may* problem sets \leq to *subset* and a *must* problem sets \leq to *superset*.
Example: *Reach* Lattice

- Property space is the lattice of the subsets
 - \(D \) is the set of all definitions in program
 - \(\leq \) is the *subset* operation
 - Thus, *join* is set union, as needed for *Reach*, which is a *may* problem

- Lattice has a 0 being \(\{\} \), and a 1 being \(D \)
- Lattice satisfies the *Ascending Chain Condition*
Example: *Avail* Lattice

- Property space is the lattice of the subsets

 - \(\mathcal{D} \) is the set of all expressions in the program
 - \(\leq \) is superset
 - Thus, join is set intersection, as needed for *Avail*, which is a *must* problem

- Lattice has a 0 being \(\mathcal{D} \), and a 1 being \(\{\} \)
- Lattice satisfies *Ascending Chain Condition*
(Monotone) Dataflow Framework

- A problem fits into the dataflow framework if:
 - problem’s property space is a lattice \(L, \leq \) that satisfies the \textit{Ascending Chain Condition}
 - problem’s merge operator is the join of \(L \)
 - its transfer function space \(F: L \rightarrow L \) is monotone

- Thus, we can make use of a generic solution procedure, known as the \textit{worklist algorithm} (also the \textit{maximal fixpoint algorithm} or the \textit{fixpoint iteration algorithm})
Outline of Today’s Class

- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution

- Reading:
 - Dragon Book, Chapter 9.2 and 9.3
Transfer Functions

The transfer functions: \(f: L \rightarrow L \). Formally, function space \(F \) is such that

1. \(F \) contains all \(f_j \)
2. \(F \) contains the identity function \(\text{id}(x) = x \)
3. \(F \) is closed under composition
4. Each \(f \) must be monotone

\[
\text{out}(j) = \left(\text{in}(j) - \text{kill}(j) \right) \cup \text{gen}(j)
\]

\[
\text{out}(j) = f_j(\text{in}(j))
\]

\(\gamma = f_j(x) \)
Monotonicity Property

- F: L \rightarrow L is monotone if and only if:
 1. a, b in L, f in F then a \leq b \implies f(a) \leq f(b)
 or (equivalently):
 2. x, y in L, f in F then f(x) \lor f(y) \leq f(x \lor y)

- Theorem: Definitions (1) and (2) are equivalent.
 - Show that (1) implies (2)
 - Show that (2) implies (1)
Monotonicity Property

- Show that (1) implies (2)

\[a \leq b \implies f(a) \leq f(b) \]

We need to show

\[x, y \quad f(x) \lor f(y) \leq f(x \lor y) \]

\[x \leq x \lor y \implies \begin{cases} f(x) \leq f(x \lor y) & \text{(by (1))} \\ f(y) \leq f(x \lor y) & \text{(by (1))} \end{cases} \]

\[f(x \lor y) \text{ is an upper bound of } f(x) \text{ and } f(y) \]

Therefore

\[f(x \lor y) \geq f(x) \lor f(y) \]

the least upper bound
Distributivity Property

- \(F: L \rightarrow L \) is distributive if and only if \(x, y \) in \(L \), \(f \) in \(F \) then \(f(x) \lor f(y) = f(x \lor y) \)

- A distributive function is also monotone but not the other way around
 - Distributivity is a very nice property!
Monotonicity and Distributivity

Is classicalReach distributive?

- Yes

To show distributivity:

\[
\begin{align*}
\text{out}(j) &= (\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j) \\
\text{out}(j) &= (\text{in}(j) \cap \text{pres}(j)) \cup \text{gen}(j)
\end{align*}
\]

For each \(j \):
\[
\begin{align*}
\mathcal{f}_j(X_1 \cup X_2) &= ((X_1 \cup X_2) \cap \text{pres}(j)) \cup \text{gen}(j) \\
\mathcal{f}_j(X_1) &= ((X_1 \cap \text{pres}(j)) \cup \text{gen}(j)) \cup ((X_2 \cap \text{pres}(j)) \cup \text{gen}(j)) \\
\mathcal{f}_j(X_2) &= ((X_1 \cap \text{pres}(j)) \cup \text{gen}(j)) \cup ((X_2 \cap \text{pres}(j)) \cup \text{gen}(j))
\end{align*}
\]
Monotone Dataflow Framework

- A problem fits into the dataflow framework if
 - problem’s **property space** is a lattice \mathbb{L}, \leq that satisfies the *Ascending Chain Condition*
 - problem’s merge operator is the join of \mathbb{L} and
 - its **transfer function** space $F: \mathbb{L} \to \mathbb{L}$ is monotone

- Thus, we can make use of a generic solution procedure, known as the **worklist algorithm**.
Worklist Algorithm for Forward Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f_1(in(1))
for m = 2 to n do in(m) = 0; out(m) = f_m(0)
W = {2,…,n} /* put every node but 1 on the worklist */

while W ≠ Ø do {
 remove j from W
 in(j) = V \{ out(i) | i is predecessor of j \}
 out(j) = f_j(in(j))
 if out(j) changed then
 W = W U \{ k | k is successor of j \}
}
Worklist Algorithm on \textit{Reach}

\[D = \text{all definitions:}\{(x,1),(x,4),(a,3)\} \]

Poset is \(2^D\), \(\leq\) is the subset relation \(\subseteq\)

1. \(x = a \times b\)

2. if \(y \leq a \times b\)

3. \(a = a + 1\)

4. \(x = a \times b\)

5. goto 3
Theorem: the algorithm terminates. Why?

Sketch of argument:

A node k is placed on worklist only if the $\text{out}(j)$ of a predecessor j changes. Monotonicity of f guarantees $\text{in}^n(j) \leq \text{in}^{n+1}(j)$ and $\text{out}^n(j) \leq \text{out}^{n+1}(j)$. (Here $\text{in}^n(j)$, $\text{out}^n(j)$ are the sets at iteration n.)

in and out sets are elements of L and L satisfies the Ascending Chain Condition; thus, there is only a finite number of times each $\text{out}(j)$ changes.
Correctness Argument

Theorem: Worklist algorithm computes a solution that satisfies the dataflow equations. Why?

Sketch of argument:
Suppose either (1) $V_{out}(i) \neq in(j)$ or (2) $out(j) \neq f_j(in(j))$
For (1) to hold we must have “grown” $out(i)$ in some iteration and not added successor j to worklist; this is impossible.
Theorem: Worklist algorithm computes the least solution of the dataflow equations.

Historically, solution computed by worklist algorithm is called the maximal fixpoint solution (MFP solution).

For every node j, worklist algorithm computes a solution $\text{MFP}(j) = (\text{in}(j), \text{out}(j))$, such that for every solution $(\text{in}'(j), \text{out}'(j))$ of the dataflow equations we have $\text{in}(j) \leq \text{in}'(j)$ and $\text{out}(j) \leq \text{out}'(j)$.
Example

1. \(z = x + y \)

2. if \(z > 500 \)

3. skip

\[\begin{align*}
\text{in}_{\text{Avail}}(1) &= \emptyset \\
\text{out}_{\text{Avail}}(1) &= (\text{in}_{\text{Avail}}(1) - E_z) \cup \{x+y\} \\
\text{in}_{\text{Avail}}(2) &= \text{out}_{\text{Avail}}(1) \lor \text{out}_{\text{Avail}}(3) \\
\text{out}_{\text{Avail}}(2) &= \text{in}_{\text{Avail}}(2) \\
\text{in}_{\text{Avail}}(3) &= \text{out}_{\text{Avail}}(2) \\
\text{out}_{\text{Avail}}(3) &= \text{in}_{\text{Avail}}(3)
\end{align*} \]

Equivalent to: \(\text{in}_{\text{Avail}}(2) = \{x+y\} \lor \text{in}_{\text{Avail}}(2) \) and recall that \(\lor \) is \(\cap \) (i.e., set intersection).

Solution 1
- \(\emptyset \)
- \(\{x+y\} \)

Solution 2
- \(\emptyset \)
- \(\{x+y\} \)
Outline of Today’s Class

- Dataflow frameworks
 - Lattices
 - Transfer functions
 - Worklist algorithm

- MOP solution vs. MFP solution

- Reading:
 - Dragon Book, Chapter 9.2 and 9.3
Meet Over All Paths (MOP)

- Desired dataflow information at \(n \) is obtained by traversing ALL PATHS from 1 (entry node) to \(n \).

- For every path \(p = (1, n_2, n_3, ..., n_k) \) we compute
 \[
 f_{n_k}(\ldots f_{n_2}(f_1(\text{Initial Value})))
 \]

- The MOP at entry of \(n \) is
 \[
 V f_{n_k}(\ldots f_{n_2}(f_1(\text{Initial Value})))
 \]
 over all paths \(p \) from 1 to \(n \)
MOP vs. MFP

- MOP is an abstraction of the best solution computable with dataflow analysis
 - It is a common assumption in dataflow analysis that *all program paths are executable*
- MFP is the solution computed by the worklist algorithm
MOP vs. MFP

- For *distributive* problems $\text{MFP} = \text{MOP}$!

- Unfortunately, for *monotone* problems this is not true. But we still have a *safe* solution: it is a theorem that for monotone problems, $\text{MFP} \geq \text{MOP}$
Safety of a Dataflow Solution

- A safe (also, correct or sound) solution X overestimates the “best” possible dataflow solution, i.e., $X \geq \text{MOP}$

- Historically, an acceptable solution X is one that is better than what we can do with the MFP, i.e., $X \leq \text{MFP}$
Safe Solutions: Reach

\[U = \text{all definitions:} \{(x,1),(x,4),(a,3)\} \quad \{(x,1),(x,4),(a,3)\} \]

Poset is \(2^U\), \(\leq\) is the subset relation \(\subseteq\)

1. \(x = a \cdot b\)
2. if \(y \leq a \cdot b\)
3. \(a = a + 1\)
4. \(x = a \cdot b\)
5. goto 3
Safe Solutions: \textit{Avail}

U = all expressions: \{a*b, a+1, y*z\}

Poset is 2^U, \leq is the superset relation \supseteq

1. $x := a*b$
2. if $y*z \leq a*b$
3. $a := a+1$
4. $x := a*b$
5. goto 2
Precision of a Dataflow Solution

- **Precise** solution is one that is “close” to MOP
 - A precise solution contains few spurious dataflow facts (spurious facts is what we call noise)
 - Unfortunately, for most problems even the MOP (an approximation itself!) is undecidable

- MOP ≤ X ≤ Y: X is more precise than Y
 - Usually, we can compare two solutions X and Y
 - But, for most problems, we have no way of knowing the “ground truth”
Next class: real analyses

- Next time: non-distributive analyses
 - Constant propagation
 - Pointer analysis