!'_ Dataflow Frameworks, cont.

i Announcements

= Quiz 1 today
= On four classical dataflow problems

= Homework due Thursday
= Questions?

i Outline of Today’s Class

s Dataflow framework
= Lattices
= Transfer functions
= Worklist algorithm

= MOP solution vs. MFP solution

= Reading:
= Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova

i Lattice Theory

= Partial ordering (denoted by € or C)
= Relation between pairs of elements
=« Reflexive a< a
= Anti-symmetricas<bandb<a==>a=b
= [ransitveas<bandbsc==>asc

= Partially ordered set (poset) (set S, <)
= Delement0<a,foreveryainS
= 1elementas1,foreveryainS

We don’ t necessarily need 0 or 1 element

CSCI 4450/6450, A Milanova

: < /
i Lattice Theory =gt ¢ ol
! N
b 01 L

= Greatest lower bound (glb)
11, 12 in poset S, a in poset S is the glb(I1,12) iff
1Y)asMMandasl2

2)foranybinS,bsl1,b=sI12impliesb <a
If glb exists, it is unique. Why”? Called meet (denoted by A or) of I1 and I2.

= Least upper bound (lub)
11, 12 in poset S, ¢ in poset S is the lub(l1,12) iff
1)c2IM1and c 212
2)foranydinS,d211,d212 impliesd 2c

If lub exists, it is unique. Called join (denoted by V or 1) of 11 and I2.

i Definition of a Lattice (L, A, V)

= Alattice L is a poset under <, such that every pair
of elements has a glb (meet) and lub (join)

s A lattice need not contain a 0 or 1 element
s A finite lattice must contain O and 1 elements
= Not every poset is a lattice

= If there is element a such that a < x for every x in
L, then a is the 0 element of L

= If there is a such that x £ a for every x in L, then a

IS the 1 element of L
CSCI 4450/6450, A Milanova

i Is This Poset a Lattice
b1 <l iff {a,b,c}

D ={a,b,c} 2

The poset is 20, < is 1ty

set inclusion

&lé{&,)= 01Nty &bl {b,c} {a,c)
&cb(&, /L) =41 V¥, ><><

CSCI 4450/6450, A Milanova {}

/
\

Th. : jf 0066(0,(2) éxists ten 1F i3 uui?ue.

ng ol e —? a_-;ﬁlb[fll gz) o d ésdpéé(&,&) a,kc!@

lb: o<l bL<by
%Q[”fi/ﬂ a <tz b<bz

Smcegr‘-ﬁ a glb of{z aud (z, 04«& ofter
lower bouud s beq.

ﬂuo.lojaw& , as é .

BJ MA'-{/zwaery @

CSCI 4450/6450, A Milanova 8

: C /NSNS T
| Examples of Lattices J S5 s 1.
NIl
s H=(2°, N, U) where D is a finite set s]

= Partial order is subset

= glb(s1,s2) denoted s1As2, is set intersection
s1Ns2

» lub(s1,s2) denoted s1Vs2, is set union s1Us2
= J=(N,, gcd, Icm)
« Partial order is integer division
= lub(n1,n2) denoted n1Vn2 is lcm(n1,n2)
= glb(n1,n2) denoted n1An2 is gcd(n1,n2)
(N, denotes natural numbers starting at 1) :

i Chain

= A poset C where for every pair of elements
c1,c2inC, eitherc1 £c2orc2<c1.
« E.g., {} <{a}={a,b} <{a,b,c} NG
=« E.g., from the lattice J as shown here, 3

1<2<6<30 /I\
5 15

1<3=<15<30
= A lattice s.t. every ascending
chain is finite, is said to satisfy 4_ 3
the Ascending Chain Condition \/

CSCI 4450/6450, A Milanova 10

i Lattices in Dataflow Analysis

= Lattices define property space

= Lattice properties give rise to certain
properties of the worklist algorithm (standard
way of solving dataflow problems)

CSCI 4450/6450, A Milanova

11

Dataflow Lattices: Reach

D = all definitions:{(x,1),(x,4),(a,3)} {(x,1),(x,4),(a,3)} 1

Poset is 2P, < is the subset relation =
1. x=a"b
| ju(2)= ;
/l S {(x,1) x4} {x4).(a3)} {(x1)(a3)}
3. a;a+1 \ ><><

{(x,4)} {(a,3)}

4 x=a'b {(xJ)}
| m(s)E
5. goto 3 ﬁ:% (a,2)§

CSCl 4450/6450, A Milanov {} O 12

Dataflow Lattices: Avail

D = all expressions: {a*b,a+1,y*z} 0 1
Poset is 2P, < is the superset relation O
1. x:=a"b
|
2. if y*z<=a*b {a”*b} {a+1} {y*z}
3. a:=a+1 ><><
4 x:=a'b (aby'z} {a'ba+1} {a+1y'z}
5. goto 2 / /
CSCI 4450/6450, A Milanova {a*b,a+1,y*z} 0

i Property Space

= Property space must be:
1. Alattice L, =
2. L satisfies the Ascending Chain Condition
Requires that all ascending chains are finite

CSCI 4450/6450, A Milanova

14

i Property Space

= Merge operator V must be the join of L

s In dataflow, L is often the lattice of the
subsets over a finite set of dataflow facts D

= Choose universal set D (e.g., all definitions)

= Choose ordering operation <. Since merge
operator must be the join of L, a may problem sets
< to subset and a must problem sets < to

superset

CSCI 4450/6450, A Milanova 15

i Example: Reach Lattice

= Property space is the lattice of the subsets

= D is the set of all definitions in program

= S iIs the subset operation

=« Thus, join is set union, as needed for Reach, which is
a may problem

« Lattice has a 0 being {}, and a1 being D
= Lattice satisfies the Ascending Chain Condition

CSCI 4450/6450, A Milanova 16

i Example: Avail Lattice

= Property space is the lattice of the subsets

= D is the set of all expressions in the program

= SIs superset

= Thus, join is set intersection, as needed for Avalil,
which is a must problem

« Lattice has a 0 being D, and a 1 being {}
= Lattice satisfies Ascending Chain Condition

CSCI 4450/6450, A Milanova

17

i (Monotone) Dataflow Framework

= A problem fits into the dataflow framework if

= problem’s property space is a lattice L, < that
satisfies the Ascending Chain Condition

= problem’s merge operator is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm
(also the maximal fixpoint algorithm or the
fixpoint iteration algorithm)

i Outline of Today’s Class

s Dataflow frameworks
= Lattices
= [ransfer functions
= Worklist algorithm

= MOP solution vs. MFP solution

= Reading:
=« Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova

19

i Transfer Functions

= The transfer functions: f: L-> L. Formally,
function space F is such that

1. F contains all f;
2. F contains the identity function id(x) = x

3. F Is closed under composition
+. Each f must be monotone

0ut(j) = ;u_(_l)..m//j))(/(f%‘)
2t(G) = £ (i)
v=Li(x)

CSCI 4450/6450, A Milanova

20

i Monotonicity Property) ¢/

= F: L-> L is monotone if and only if:
(1)a,binL, fin Fthenasb => f(a) < f(b)

or (equivalently):
(2) x,yinL, fin F then f(x) V f(y) = f(x Vy)

= Theorem: Definitions (1) and (2) are
equivalent.
= Show that (1) implies (2)
= Show that (2) implies (1)

21

i Monotonicity Property

= Show that (1) implies (2)
azb => fla) £ L(b)
We weed b oo xy fe)Vv[(y) € Llevy)
X< Xvy => jffx)éof(xvolf[é(? [1))
ey = L) < flxvy) (& (1)

O('(xvd) I an wpper boued %[f[x) aAo/fQ/}
Tegoe f(xvy) > LIV

fle leatr upper bored

CSCI 4450/6450, A Milanova 22

i Distributivity Property

= F: L - L is distributive if and only if
x,yinL, fin Fthen f(x) V f(y) =f(xVy)

= A distributive function is also monotone but

not the other way around
= Distributivity is a very nice property!
% %)
ou+(z1) /ou«l (2)
’ > (5 =6ut(ie) UouHiz)
o@j('“ ()= £i (ad(u) Vat(iz)) = fi(at(i1))u f) (aHe)
23

CSCI 4450/6450, A Milanova

Monotonicity and Distributivity 7
D
= IS classical Reach distributive? @
= YEes o'u,L(J) (’LO)-—IZ,M(/))U eu(j)
nd(5)= (i i (10N () Upas()

= To show dlstrlbutlwty +1(Xa Ux,)

For each j: ((X, U X,) N pres(j)) U gen(j) =

{((XqNpres(j)) U gen(j)) U ((XNpres(j)) U gen(j))
(X4) :/) XZ)

((X Xz) N pres(j)) U gen(j) =

((X4 N pres(j)) U (X, N pres(j))) U gen(j) =

((X1 N pres(j)) Ugen(j)) U ((X; N pres(j)) U gen(j))

i Monotone Dataflow Framework

= A problem fits into the dataflow framework if

= problem’s property space is a lattice L, < that
satisfies the Ascending Chain Condition

= problem’s merge operator is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm.

CSCI 4450/6450, A Milanova 25

Worklist Algorithm for Forward
i Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f,(in(1))

form =2 to n doin(m) = 0; out(m) = f,(0)

W ={2,...,n} /* put every node but 1 on the worklist */

while W # @ do {
remove j from W
in(j) =V { out(i) | i is predecessor of j }
out(j) = f;(in()))
if out(j) changed then
W =W U {k|kis successor of j }

26

Worklist Algorithm on Reach

D = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2P, < is the subset relation =

1. x=a"b

/{ 2. if y<=a*b

3. a=a+1
\4. X=a*b
5. goto 3

CSCI 4450/6450, A Milanov

27

i Termination Argument

= Theorem: the algorithm terminates. Why?

= Sketch of argument:

A node k is placed on worklist only if the out(j) of a
predecessor | changes. Monotonicity of f
guarantees in"(j) < in"*(j) and out"(j) < out"1(j).
(Here in"(j), out"(j) are the sets at iteration n.)

in and out sets are elements of L and L satisfies the
Ascending Chain Condition; thus, there is only a

finite number of times each out(j) changes.
CSCl 4450/6450, A Milanova 28

i Correctness Argument

= Theorem: Worklist algorithm computes a
solution that satisfies the dataflow
equations. Why?

= Sketch of argument:
Suppose either (1) Vout(i) # in(j) or (2) out(j) # fi(in(j))
For (1) to hold we must have “grown” out(i) in some

iteration and not added successor j to worklist; this is
Impossible.

CSCI 4450/6450, A Milanova

29

i Precision Argument

= Theorem: Worklist algorithm computes
the least solution of the dataflow
equations.

= Historically, solution computed by worklist
algorithm is called the maximal fixpoint
solution (MFP solution)

= For every node j, worklist algorithm
computes a solution MFP(j) = (in(j),out(j)),
such that for every solution (in’(j),out’(j)) of
the dataflow equations we have in(j) < in’(j)
and out(j) < out'(j)

30

xample

" Al
1. z=x+y

iNavai(1) = %,

OUta,ai(1) = (iNayai(1)-
1

IN4y4i(2) = OUta 4

2. if (z > 500)

|

3. skip

)
OUts,i(2) = iNgLi(2)

E,) U {x+y}
V outy, (3

iNaLi(3) = Outyyqi(2)
OUta,4i(3) = INyail3)

|

Solution1
%

{x+y}

{x+y}

{x+y}

Equivalent to: iny,.(2) = {x+y} Ving,.(2)

and recall that V is N (i.e., set intersection).

CSCI 4450/6450, A Milanova

31

Solution2
%

{x+y}
%

i Outline of Today’s Class

s Dataflow frameworks
= Lattices
= Transfer functions
= Worklist algorithm

s MOP solution vs. MFP solution

= Reading:
= Dragon Book, Chapter 9.2 and 9.3

CSCI 4450/6450, A Milanova

32

i Meet Over All Paths (MOP)

1\Q

O\» Nk n

= Desired dataflow information at n is obtained by
traversing ALL PATHS from 1 (entry node) to n.

= For every path p=(1, n,, n, ..., n,) we compute
fnk(...fnz(f1(lnitiaIVaIue)))
= The MOP atentryofnisV fnk(...fnz(f1(|nitiaIVaIue)))

over all paths p from 1 to n

CSCI 4450/6450, A Milanova 33

i MOP vs. MFP

» MOP is an abstraction of the best solution
computable with dataflow analysis

= It is @a common assumption in dataflow analysis
that all program paths are executable

= MFP is the solution computed by the worklist
algorithm

CSCI 4450/6450, A Milanova 34

i MOP vs. MFP

= For distributive problems MFP = MOP!

= Unfortunately, for monotone problems this is
not true. But we still have a safe solution: it
Is a theorem that for monotone problems,
MFP = MOP

CSCI 4450/6450, A Milanova 35

i Safety of a Dataflow Solution

= A safe (also, correct or sound) solution X

overestimates the "best” possible dataflow
solution, i.e., X =2 MOP

= Historically, an acceptable solution X is one
that is better than what we can do with the
MFP, i.e., X < MFP MFP

l Acceptable

Safe ‘

MOP \ O/

CSCI 4450/6450, A Milanova 36

d:LSafe Solutions: Reach

all definitions:{(x,1),(x,4),(a,3)} {(x,1),(X,

1. x=a"b

/{ 2. if y<=a*b

3. a=a+1

\

\4. x=a*b
5. goto 3

CSCI 4450/6450, A Milanov

/

{(x,1)

{(x,

(x:4)} {(x,4),

S

1)} {(x,

4).(a,3); 1

Poset is 2Y, < is the subset relationg/\

(@3)r {(x,1).(a,3);

><

4)} {(a,3)}

~

0 0

1. x:=la*b

!

2. if y*z<=a*b

3. a:=a+1

4. x:=a*b

5. goto 2

CSCI 4450/6450, A Milanova

U = all expressions: {a*b,a+1,y*z}
Poset is 2Y, < is the superset relation O

{a"b}

{a*b,y*z}

Safe Solutions: Avail

{}

{a+1}

{a*b,a+1}

{a*b,a+1,y*z}

—

y'z}

{a+1,y*z}

i Precision of a Dataflow Solution

s Precise solution is one that is “close” to MOP

= A precise solution contains few spurious dataflow
facts (spurious facts is what we call noise)

« Unfortunately, for most problems even the MOP
(an approximation itself!) is undecidable

= MOP < X =Y: Xis more precise than Y
=« Usually, we can compare two solutions X and Y

= But, for most problems, we have no way of
knowing the “ground truth” 39

i Next class: real analyses

= Next time: non-distributive analyses
= Constant propagation
= Pointer analysis

CSCI 4450/6450, A Milanova

40

