Dataflow Analysis: Non-distributive
Analysis

i Outline of Today’s Class

s Dataflow frameworks, conclusion
= Lattices (last time)
= [ransfer functions (last time)
= Worklist algorithm

= MOP solution vs. MFP solution

= Non-distributive analyses

= Constant propagation

= Points-to analysis
CSCl 4450/6450, A Milanova

i Monotone Dataflow Framework

= A problem fits into the dataflow framework if

= its property space is a lattice L, < that satisfies
the Ascending Chain Condition

= its merge operator V is the join of L
and
= its transfer function space F: L-> L is monotone

= Thus, we can make use of a generic solution
procedure, known as the worklist algorithm

= Computes the so-called MFP solution

CSCI 4450/6450, A Milanova

Worklist Algorithm for Forward
i Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f,(in(1))

form =2 to n doin(m) = 0; out(m) = f,(0)

W ={2,...,n} /* put every node but 1 on the worklist */

t . .
i(5) < i ¢ ()

whiIeW#@do{ au{t[])éou/b”[jj

remove j from W /0 ~—
in(j) =V {out(i) | i is predecessor of | } 0

out(j) = f(in(j)) @/

if out(j) changed then /

W =W U {k|Kkis successor of j }

Worklist Algorithm on Reach

D = all definitions:{(x,1),(x,4),(a,3)}
[] D [] []
Poset is 2°, < is the sutﬁset relatonE \¢/ - S"(/ 3,4 S}

1u(2)=
1. x=a’b au!(1)=§(x.1)f Ther 1
' 2z 34 remwve 24,
2 if y<=a*b u([:),_, g; ﬂt[?«).:z()(, l}} M&)?B{K}l%
3 . +1 « (Y 3¢ ER’;ZW%W 8 EC"M—)/
- 974 ot (3)= §(2,2)) Ne(3)=S(c)f 0:4(2)= " a2
4 Xla*b ih(l‘—’): ?] %r 3 % (Q)
A out(4)=5 (%%) remove 3(xY),
\ " ﬂt(r):g? ! u(y)=§ vk o3 g,
5. goto 2 !
; rHp)= 1 I‘erreuiiwe 5 W=2%

,Q% k), 77§ 004
CSCI 4450/6450, A Milanov .ﬁg ‘(22?3 (013)’ 37 0t(5)= (d,cBJ}

i Termination Argument

= Theorem: the algorithm terminates. Why?

= Sketch of argument:

A node k is placed on worklist only if the out(j) of a
predecessor | changes. Monotonicity of f
guarantees in'(j) < int*'(j) and out!(j) < out™1(j). (Here
in(j), out!(j) are the sets at iteration t.)

In and out sets are elements of L and L satisfies the
Ascending Chain Condition; thus, there is only a

finite number of times each out(j) changes.
CSCI 4450/6450, A Milanova 6

i Correctness Argument

= Theorem: Worklist algorithm computes a
solution that satisfies the dataflow
equations. Why?

= Sketch of argument:
Suppose either (1) Vout(i) # in(j) or (2) out(j) # fi(in(j))
For (1) to hold we must have “grown” out(i) in some

iteration and not added successor j to worklist; this is
Impossible.

CSCI 4450/6450, A Milanova

i Precision Argument

= Theorem: Worklist algorithm computes
the least solution of the dataflow
equations.

= Historically, solution computed by worklist
algorithm is called the maximal fixpoint
solution (MFP solution)

= For every node j, worklist algorithm
computes a solution MFP(j) = (in(j),out(j)),
such that for every solution (in’(j),out’(j)) of
the dataflow equations we have in(j) < in’(j)
and out(j) < out'(j)

Example (Avall)
Lﬂ-
1. Zz:=x+y

out (1) = (in(1)-E,) U {x+y}

. } in(2) = out(1) V out(3)
2. if (z>500) out(2) = in(2)

15
3. goto 2 in(3) = out(2) I

out(3) =in(3) E)(,_(75

X= 30riAX

MEpP
Solution1
o

{x+y}

{x+y}

{x+y}

Equivalent to: in(2) = {x+y} V in(2)

and recall that V is N (i.e., set intersection).

CSCI 4450/6450, A Milanova

Solution2
%

{x+y}
%

i Outline of Today’s Class

s Dataflow frameworks, conclusion
= Lattices (last time)
= [ransfer functions (last time)
= Worklist algorithm

s MOP solution vs. MFP solution

= Non-distributive analyses
= Constant propagation

= Points-to analysis
CSCl 4450/6450, A Milanova

10

i Meet Over All Paths (MOP)

1\Q

O\» Nk n

= Desired dataflow information at n is obtained by
traversing ALL PATHS from 1 (entry node) to n.

= For every path p=(1, n,, n, ..., n,) we compute
fnk(...fnz(f1(lnitiaIVaIue)))
= The MOP atentryofnisV fnk(...fnz(f1(|nitiaIVaIue)))

over all paths p from 1 to n

CSCI 4450/6450, A Milanova 11

i MOP vs. MFP

x MOP is an abstraction of the best solution
computable with dataflow analysis

= It is @a common assumption in dataflow analysis
that all program paths are executable

= MFP is the solution computed by the worklist
algorlthm lop : MEps
L (7 Ouk(4)- g//a(éf))
@; fﬁ(Aéfi(M}) \/ Z [5))Zow(z)\/w‘()
fy(flfe(Bat) wfo)= folhi (16D

ot (3) = L3 7[/ (Twit)
fﬂ(Otek [l))Vf‘ﬁ[out(8)) VS 7[11 (oaql?[gzj(\/ oul(3) ?)

CSCl 44 O A Milan

i MOP vs. MFP

= For distributive problems MFP = MOP!

= Unfortunately, for monotone problems this is
not true. But we still have a safe solution: it
Is a theorem that for monotone problems,
MFP = MOP

CSCI 4450/6450, A Milanova 13

i Safety of a Dataflow Solution

= A safe (also, correct or sound) solution X

overestimates the "best” possible dataflow
solution, i.e., X =2 MOP

= Historically, an acceptable solution X is one
that is better than what we can do with the
MFP, i.e., X < MFP MFP

l Acceptable

Safe ‘

MOP \ O/

CSCI 4450/6450, A Milanova 14

d:LSafe Solutions: Reach

= all definitions:{(x,1),(x,4),(a,3)} {(x,1),(x,4),(a,3)} 1
Poset is 2Y, < is the subset relation =

1. x=a"b

/{2. if y<=a*b {(x,1):(x,4)} /?(x 4),(a,3)} j {(x,1),(a,3)}
3. a;a+1 \ ><><

{(x,4)} {(a,3)}

4. x=3* {(x.1)}
AP Juls)
5. goto 2 ﬁg) (¥ &)j

CSCl 4450/6450, A Milanov {} O 15

Safe Solutions: Avail

U = all expressions: {a*b,a+1,y*z} 0 1
Poset is 2Y, < is the superset relation O
1. x:=a"b
|
2. if y*z<=a*b {a”*b} {a+1} {y*z}
3. a:=a+1
4 x=a'b [abyz [fabatt) fa+ly'z)
== Mge” f yb,}
5. goto 2 % %

CSCI 4450/6450, A Milanova {a*b,a+1,y*z} 0 16

i Outline of Today’s Class

s Dataflow frameworks, conclusion
= Lattices (last time)
= [ransfer functions (last time)
= Worklist algorithm

= MOP solution vs. MFP solution

= Non-distributive analyses

= Constant propagation

= Points-to analysis
CSCl 4450/6450, A Milanova

17

i Constant Propagation (Simple)

= Problem statement: Can variable x hold a
constant value at a given program point?

= Example:

CSCI 4450/6450, A Milanova

1.
x=1
if (b>0)

in(1): x

IS not const

out(1): x is 1

in(2): x is 1 /_\ in(3): x is 1

out(2)

2.
y=z+w

4.
z=10*x

3.
y=0

X=2
M

Xis 2

out(3): x is 1

: X is NOT a const!

18

Let's Fit Analysis into Monotone
i Dataflow Framework

= |f property space has desired properties

= it is a lattice L, < that satisfies the Ascending
Chain Condition

= its merge operator is the join of L
and

= Function space F: L-> L is monotone

= Then analysis fits the monotone dataflow
framework and can be solved using the
worklist algorithm

CSCI 4450/6450, A Milanova

19

Constant Propagation: Property

i Space

= Associate one of the following values with
variable x at each program point

value meaning
1 (orT) | xis NOT a constant
C X has constant value C

0 (or_|_) X is unknown

CSCI 4450/6450, A Milanova 20

i Constant Propagation: Lattice

= Lattice L,,< _ T oLalte of coustauss
LT B
A<t , 051 L2 (&)/’1 2 .. caver="T
= CIMc2=_{
/24 X=3L,y>T, &->1> — 1

U= <x>1, Y5, 5>0> No

= Dataflow lattice L is the product lattice of L,
« 11,12inL, 1 =12 iff 1, =12, for every variable x
« 1V 12 amounts to 11, V 12, for every variable x
= Merge operator is join of L

= Does the product lattice satisfy the ACC?

21

i Product Lattice

o E.g.,

<x->l1,y>1,z>T>, <x>1,y>2, 253>, elc.

are lattice elements
s E. g.,
<x->1,y->2,z>T> S <x->T,y>2,z>

04, *14 Zx/'7"\/ 1o _7‘4 }-zz:T V

<x->1, y->3, zeT> V <xeT y>2,2z>1> =
<I, I, 1>

CSCI 4450/6450, A Milanova

22

Product Lattice

Does Troduek Lol saha f; te ACC7

Sl sl Ve OZQ ,[4 axstu a/
= 4 <7>Z :
xe>T,)’“’1> aaceacffy chats 7S

/ Tal/ here N 23
4><—>7‘,y~>_l> s huwmber 9/ I/a/z‘aé//éj
/ T 7‘& {'a/oZé
<> L,y=1r>
I
<><—>i,>/~>_L>

S —
CSCI 4450/6450, A Milanova 23

Constant Propagation: Transfer

mj:x=C
f;: kill x > val, generate x > C
mjIX=Y

fi kill x > val, add x > val’, s.t. y > val’ in
in(j). val and val’ are one of

= | : bottom (unknown)

= C: constant

=« [:top (not a constant)

CSCI 4450/6450, A Milanova

24

Constant Propagation: Transfer

fi: kill: x > val
gen:
Ify > ciandz > ¢, inin(j), thenx > ¢, Op ¢,
elseify>Torz->Tinin(j),thenx>T
elsex> 1

= Next, we'll argue monotonicity which would
give us that Constant Propagation is solvable
by the Worklist algorithm

CSCI 4450/6450, A Milanova 25

i Exam ple iNn(1)is T = <x>T, y>T, z>T>

1.

if (b>0)
2. 3.
x=1 X=
y=2 y=1

out(2): <x>1,y>2, z>T> out(3): < ,y=>1,z>T>

in(4): <x>T,y>T,z>T> 4

out(4): <x>T ,y>T, z>T> Z=Xty

in(5): <x>T, y>T, z>T>

CSCI 4450/6450, A Milanova w=10*z 26

Constant Propagation is
Monotone but Not Distribytiye!

1

= f,(f5(f(T))) computes z > 3 f (b>0)

s f,(F4(f,(T))) computes z > 3 /\
= Thus, MOP at 5 - -
fo(F2(F1(T))) V £,4(F5(f41(T))) y=2 y=1

computes z > 3 out(2): X*W)z x>2, y>1

in4): x>T,y>T 4

out(4): z> T | Z=Xty

MFP at 5 computesz 2> T inG):z>7

(i.e., zis NOT a const) 0.
w=10%z 27

i More Product Lattices

= Problem statement: Is integer variable x odd
or even at program point n? x>Ty>T

y=0
x> T,y>even |
= L, if (x=10) T
T :
x—~> T, y=> even |
odd even X=x+1
y=y+2

x> T, y=> even

1

CSCI 4450/6450, A Milanova (Example program from MIT OCW Program Analysis) 28

i More Product Lattices

= Problem statement: What sign does a
variable hold at a given program point, i.e., is
it positive, negative, or O

T
O Lx:

E.g., <x>+y->T,z50>
1

CSCI 4450/6450, A Milanova 29

i Outline of Today’s Class

s Dataflow frameworks, conclusion
= Lattices (last time)
= [ransfer functions (last time)
= Worklist algorithm

= MOP solution vs. MFP solution

= Non-distributive analyses

= Constant propagation

= Points-to analysis
CSCI 4450/6450, A Milanova

30

i Points-to Analysis

= Problem statement: What memory locations
may a pointer variable point to”?

= Many applications!
= Enables compiler optimizations

1.a=1; 1. a = X*y*z+X;
2.*p = b; 2.*p = b;
3.s=a"a; 3. s = X*y*z+X;

= Static debugging and taint analysis tools

CSCI 4450/6450, A Milanova 31

i Points-to Graph: Example

Example 1:

Int a, b;
int *p1, *p2;
p1 = &a;

p2 = p1;
*p2 = 1;

CSCI 4450/6450, A Milanova

32

i Points-to Graph: Example

Example 2:

inta, b=15;
int *p1, *p2;
int **p3;

p3 = &p1;
p1 = &a;

p2 = *p3;
*n2 = b;

CSCI 4450/6450, A Milanova

33

Points-to Analysis (for a C-like

i language)

Assume the following 4 simple statements

(1) address taken p = &q
(2) propagation P=d

(3) indirect read p =*q
(4) indirect write (update) *P=q

= \We can preprocess any C program into a
sequence of statements of these kinds

CSCI 4450/6450, A Milanova 34

Points-to Analysis: Property

i Space

s Lattice L,S

= Lattice of the subsets over edges p — q where p
and q are (names of) memory locations

= ... Orin simpler terms, lattice elements are

points-to graphs, e.g., 03
o . |
= Vis points-to graph union o1 p2Z
= 0 of L is empty graph —

= 1 of L is complete graph a

CSCI 4450/6450, A Milanova 35

i Points-to Graphs Pt

= Nodes are names of memory locations
= Program variables, a, p:
= p=&a
= But also heap locations:
= p = malloc(sizeof(int)) // h1
= Edges represent points-to relations
= E.g., p — a, read: "p points to a”
= E.g., p — h1, read: “p points to heap location h1”

CSCI 4450/6450, A Milanova 36

Points-to Analysis: Transfer

i Functions

(1) fo=gq: "kill” all points-to edges from p and “generate” a
new points-to edge from p to g

(2) fo=q: “Kill” all points-to edges from p; “generate” new
points-to edges from p to every x, such that g points to x in
incoming points-to graph in(j)

37

Points-to Analysis: Transfer

i Functions

(3) fo==q: " Kill” all points-to edges from p; generate new
points-to edges from p to every X, s. t. there is y where q
points to y, and y points to x in |n(J)

(4) fip=q: DO not kill! Can you think of a reason why?
Generate new points-to edges from every y to every x,
such that p points to y and q points to x

38

i Points-to Analysis is Monotone

= [0 argue monotonicity we must show that if
Pt, is < (subset of) Pt,, then f(Pt,) < f(Pt,)
for each transfer function f
1) Pty = Pty then f_gq (Pty) < p-&q (Pt,)
2 Pty s Pty then £, (Pty) < f-4 (Pt)
@ Pty =Pt then fo., (Pty) < fp_* (Pt,)
« Pty < Pt, then f* =q (Pty) = fipq (PL)

4

CSCI 4450/6450, A Milanova 39

i ... but it is not distributive!

= Because of updates!

CSCI 4450/6450, A Milanova

40

*pP=q

P q P
P || f(P): |
X—sY <

Points-to Analysis is Not Distributive

P q
Pt1 V Ptz :
X y
Z w

What f for *p = g does: Adds edges
from each variable that p points to (x
and z), to each variable that q points
to (y and w). Result is 4 new edges:
fromxtoyandtow
and fromztoyandtow

p q
f(Pt, V Pt,): f\\ [\\<

iMFP vs. MOP for Poir

1. if (n>0)
2 3
P=&X; p=&
q=&y; q=&

Z,

w;

iner(4) =M

4. *p=q
OutpT(4) = f*p:q (InPTJ4))

inp7(5) = outpr(4
S. ...

CSCI 4450/6450, A Milanova

iNpr(4):

iNpr(9):

ts-to

MFP

%]

p q
N
N\

??

42

i Next Time

= Putting this into practice

= Program analysis frameworks

s Soot
= Ghidra

CSCI 4450/6450, A Milanova

43

