
Dataflow Analysis: Non-distributive
Analysis

Outline of Today’s Class

n Dataflow frameworks, conclusion
n Lattices (last time)
n Transfer functions (last time)
n Worklist algorithm

n MOP solution vs. MFP solution

n Non-distributive analyses
n Constant propagation
n Points-to analysis

CSCI 4450/6450, A Milanova 2

Monotone Dataflow Framework

n A problem fits into the dataflow framework if
n its property space is a lattice L, ≤ that satisfies

the Ascending Chain Condition
n its merge operator V is the join of L
and
n its transfer function space F: Là L is monotone

n Thus, we can make use of a generic solution
procedure, known as the worklist algorithm
n Computes the so-called MFP solution

3CSCI 4450/6450, A Milanova

Worklist Algorithm for Forward
Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f1(in(1))
for m = 2 to n do in(m) = 0; out(m) = fm(0)
W = {2,…,n} /* put every node but 1 on the worklist */

while W ≠ Ø do {
remove j from W
in(j) = V { out(i) | i is predecessor of j }
out(j) = fj(in(j))
if out(j) changed then

W = W U { k | k is successor of j }
}

4

Worklist Algorithm on Reach
D = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2D, ≤ is the subset relation

1. x=a*b

2. if y<=a*b

3. a=a+1

4. x=a*b

5. goto 2

CSCI 4450/6450, A Milanova 5

Termination Argument

n Theorem: the algorithm terminates. Why?

n Sketch of argument:
A node k is placed on worklist only if the out(j) of a
predecessor j changes. Monotonicity of f
guarantees int(j) ≤ int+1(j) and outt(j) ≤ outt+1(j). (Here
int(j), outt(j) are the sets at iteration t.)
in and out sets are elements of L and L satisfies the
Ascending Chain Condition; thus, there is only a
finite number of times each out(j) changes.

6CSCI 4450/6450, A Milanova

Correctness Argument

n Theorem: Worklist algorithm computes a
solution that satisfies the dataflow
equations. Why?

n Sketch of argument:
Suppose either (1) Vout(i) ≠ in(j) or (2) out(j) ≠ fj(in(j))
For (1) to hold we must have “grown” out(i) in some
iteration and not added successor j to worklist; this is
impossible.

CSCI 4450/6450, A Milanova 7

Precision Argument

n Theorem: Worklist algorithm computes
the least solution of the dataflow
equations.
n Historically, solution computed by worklist

algorithm is called the maximal fixpoint
solution (MFP solution)

n For every node j, worklist algorithm
computes a solution MFP(j) = (in(j),out(j)),
such that for every solution (in’(j),out’(j)) of
the dataflow equations we have in(j) ≤ in’(j)
and out(j) ≤ out’(j) 8

Example (Avail)
1. z:=x+y

2. if (z > 500)

3. goto 2

in(2) = out(1) V out(3)

in(3) = out(2)

in(1) = Ø

out(2) = in(2)

out(3) = in(3)

out (1) = (in(1)-Ez) U {x+y}

Equivalent to: in(2) = {x+y} V in(2)
and recall that V is ∩ (i.e., set intersection).

Solution1 Solution2
Ø

{x+y}

{x+y}

{x+y}
Ø

{x+y}

Ø

Ø

CSCI 4450/6450, A Milanova
9

Outline of Today’s Class

n Dataflow frameworks, conclusion
n Lattices (last time)
n Transfer functions (last time)
n Worklist algorithm

n MOP solution vs. MFP solution

n Non-distributive analyses
n Constant propagation
n Points-to analysis

CSCI 4450/6450, A Milanova 10

Meet Over All Paths (MOP)

n Desired dataflow information at n is obtained by
traversing ALL PATHS from 1 (entry node) to n.

n For every path p=(1, n2, n3 ..., nk) we compute
fnk(…fn2(f1(InitialValue)))

n The MOP at entry of n is V fnk(…fn2(f1(InitialValue)))

…

1 n2
n3

nk

over all paths p from 1 to n

n

CSCI 4450/6450, A Milanova 11

MOP vs. MFP

n MOP is an abstraction of the best solution
computable with dataflow analysis
n It is a common assumption in dataflow analysis

that all program paths are executable
n MFP is the solution computed by the worklist

algorithm

CSCI 4450/6450, A Milanova 12

MOP vs. MFP

n For distributive problems MFP = MOP!

n Unfortunately, for monotone problems this is
not true. But we still have a safe solution: it
is a theorem that for monotone problems,
MFP ≥ MOP

CSCI 4450/6450, A Milanova 13

Safety of a Dataflow Solution

n A safe (also, correct or sound) solution X
overestimates the “best” possible dataflow
solution, i.e., X ≥ MOP

n Historically, an acceptable solution X is one
that is better than what we can do with the
MFP, i.e., X ≤ MFP

0

MOP

MFP

Safe
Acceptable

CSCI 4450/6450, A Milanova 14

Safe Solutions: Reach

{}

{(x,1)} {(x,4)} {(a,3)}

{(x,1),(x,4)} {(x,4),(a,3)} {(x,1),(a,3)}

{(x,1),(x,4),(a,3)}U = all definitions:{(x,1),(x,4),(a,3)}
Poset is 2U, ≤ is the subset relation

1. x=a*b

2. if y<=a*b

3. a=a+1

4. x=a*b

5. goto 2

0

1

CSCI 4450/6450, A Milanova 15

Safe Solutions: Avail

{a*b,a+1,y*z}

{a*b,y*z} {a*b,a+1} {a+1,y*z}

{a*b} {y*z}

{}U = all expressions: {a*b,a+1,y*z}
Poset is 2U, ≤ is the superset relation

1. x:=a*b

2. if y*z<=a*b

3. a:=a+1

4. x:=a*b

5. goto 2

{a+1}

Ê 1

0CSCI 4450/6450, A Milanova 16

Outline of Today’s Class

n Dataflow frameworks, conclusion
n Lattices (last time)
n Transfer functions (last time)
n Worklist algorithm

n MOP solution vs. MFP solution

n Non-distributive analyses
n Constant propagation
n Points-to analysis

CSCI 4450/6450, A Milanova 17

Constant Propagation (Simple)

n Problem statement: Can variable x hold a
constant value at a given program point?

n Example:

CSCI 4450/6450, A Milanova 18

2.
y=z+w
x=2

3.
y=0

4.
z=10*x

1.
x = 1
if (b>0)

in(1): x is not const

out(1): x is 1

in(2): x is 1 in(3): x is 1

out(3): x is 1
out(2): x is 2 in(4): x is NOT a const!

Let’s Fit Analysis into Monotone
Dataflow Framework

n If property space has desired properties
n it is a lattice L, ≤ that satisfies the Ascending

Chain Condition
n its merge operator is the join of L
and

n Function space F: Là L is monotone
n Then analysis fits the monotone dataflow

framework and can be solved using the
worklist algorithm

CSCI 4450/6450, A Milanova 19

Constant Propagation: Property
Space

n Associate one of the following values with
variable x at each program point

value meaning
1 (or T) x is NOT a constant
C x has constant value C
0 (or) x is unknown

CSCI 4450/6450, A Milanova 20

Constant Propagation: Lattice

n Lattice Lx,≤

n Dataflow lattice L is the product lattice of Lx
n l1,l2 in L, l1 ≤ l2 iff l1x ≤ l2x for every variable x
n l1 V l2 amounts to l1x V l2x for every variable x
n Merge operator is join of L

n Does the product lattice satisfy the ACC? 21

T

T

… -2 -1 0 1 2 ...

Product Lattice

n E.g.,
<xà , yà1, zàT>, <xà1, yà2, zà3>, etc.

are lattice elements
n E.g.,
<xà1, yà2, zàT> ≤ <xàT, yà2, zàT>
n E.g.,
<xà1, yà3, zàT> V <xàT, yà2, zàT> =
<T, T, T>
CSCI 4450/6450, A Milanova 22

T

Product Lattice

CSCI 4450/6450, A Milanova 23

Constant Propagation: Transfer
Functions

n j: x = C
fj: kill x à val, generate x à C

n j: x = y
fj: kill x à val, add x à val’, s.t. y à val’ in
in(j). val and val’ are one of
n : bottom (unknown)
n C: constant
n T: top (not a constant)

24CSCI 4450/6450, A Milanova

T

Constant Propagation: Transfer
Functions

n j: x = y Op z
fj: kill: x à val

gen:
If y à c1 and z à c2 in in(j), then x à c1 Op c2

else if y à T or z à T in in(j), then x à T
else x à

n Next, we’ll argue monotonicity which would
give us that Constant Propagation is solvable
by the Worklist algorithm

25

T

CSCI 4450/6450, A Milanova

Example

CSCI 4450/6450, A Milanova 2626

2.
x=1
y=2

3.
x=2
y=1

4.
z=x+y

1.
if (b>0)

5.
w=10*z

out(2): <xà1, yà2, zàT> out(3): <xà2, yà1, zàT>

in(4): <xàT,yàT,zàT>

out(4): <xàT ,yàT, zàT>

in(5): <xàT, yàT, zàT>

in(1) is T = <xàT, yàT, zàT>

Constant Propagation is
Monotone but Not Distributive!

n f4(f2(f1(T))) computes z à 3
n f4(f3(f1(T))) computes z à 3
n Thus, MOP at 5
f4(f2(f1(T))) V f4(f3(f1(T)))
computes z à 3

MFP at 5 computes z à T
(i.e., z is NOT a const)

2727

2.
x=1
y=2

3.
x=2
y=1

4.
z=x+y

1.
if (b>0)

5.
w=10*z

out(2): xà1, yà2 out(3): xà2, yà1

in(4): xà T, yà T

out(4): zà T

in(5): zà T

in(1) is T

More Product Lattices

n Problem statement: Is integer variable x odd
or even at program point n?

n Lx:

CSCI 4450/6450, A Milanova (Example program from MIT OCW Program Analysis) 28

x=x+1
y=y+2

…

if (x≥10) T
F

xà T, yà T

y=0

T

T

odd even

xà T, yà even

xà T, yà even

xà T, yà even

More Product Lattices

n Problem statement: What sign does a
variable hold at a given program point, i.e., is
it positive, negative, or 0

n Lx:

E.g., < xà+,yàT,zà0 >

CSCI 4450/6450, A Milanova 29

T

T

+ 0 -

Outline of Today’s Class

n Dataflow frameworks, conclusion
n Lattices (last time)
n Transfer functions (last time)
n Worklist algorithm

n MOP solution vs. MFP solution

n Non-distributive analyses
n Constant propagation
n Points-to analysis

CSCI 4450/6450, A Milanova 30

Points-to Analysis

n Problem statement: What memory locations
may a pointer variable point to?

n Many applications!
n Enables compiler optimizations

1. a = 1; 1. a = x*y*z+x;
2. *p = b; 2. *p = b;
3. s = a*a; 3. s = x*y*z+x;

n Static debugging and taint analysis tools
CSCI 4450/6450, A Milanova 31

Example 1:

int a, b;
int *p1, *p2;
p1 = &a;
p2 = p1;
*p2 = 1;

Points-to Graph: Example

CSCI 4450/6450, A Milanova
32

Points-to Graph: Example

Example 2:

int a, b = 15;
int *p1, *p2;
int **p3;
p3 = &p1;
p1 = &a;
p2 = *p3;
*p2 = b;

CSCI 4450/6450, A Milanova
33

Points-to Analysis (for a C-like
language)

n Assume the following 4 simple statements
(1) address taken p = &q
(2) propagation p = q
(3) indirect read p = *q
(4) indirect write (update) *p = q

n We can preprocess any C program into a
sequence of statements of these kinds

CSCI 4450/6450, A Milanova 34

Points-to Analysis: Property
Space

n Lattice L,≤
n Lattice of the subsets over edges p q where p

and q are (names of) memory locations
n … or in simpler terms, lattice elements are

points-to graphs, e.g.,

n V is points-to graph union
n 0 of L is empty graph
n 1 of L is complete graph

CSCI 4450/6450, A Milanova 35

p3

p1 p2

a

Points-to Graphs Pt

n Nodes are names of memory locations
n Program variables, a, p:

n p = &a
n But also heap locations:

n p = malloc(sizeof(int)) // h1

n Edges represent points-to relations
n E.g., p a, read: “p points to a”
n E.g., p h1, read: “p points to heap location h1”

CSCI 4450/6450, A Milanova 36

Points-to Analysis: Transfer
Functions

(1) fp=&q: “kill” all points-to edges from p and “generate” a
new points-to edge from p to q

(2) fp=q: “kill” all points-to edges from p; “generate” new
points-to edges from p to every x, such that q points to x in
incoming points-to graph in(j)

37

Points-to Analysis: Transfer
Functions

(3) fp=*q: “kill” all points-to edges from p; “generate” new
points-to edges from p to every x, s.t. there is y where q
points to y, and y points to x in in(j)

(4) f*p=q: Do not kill! Can you think of a reason why?
“Generate” new points-to edges from every y to every x,
such that p points to y and q points to x

38

Points-to Analysis is Monotone

n To argue monotonicity we must show that if
Pt1 is ≤ (subset of) Pt2, then f(Pt1) ≤ f(Pt2)
for each transfer function f

(1) Pt1 ≤ Pt2 then fp=&q (Pt1) ≤ fp=&q (Pt2)
(2) Pt1 ≤ Pt2 then fp=q (Pt1) ≤ fp=q (Pt2)
(3) Pt1 ≤ Pt2 then fp=*q (Pt1) ≤ fp=*q (Pt2)
(4) Pt1 ≤ Pt2 then f*p=q (Pt1) ≤ f*p=q (Pt2)

CSCI 4450/6450, A Milanova 39

… but it is not distributive!

n Because of updates!

40CSCI 4450/6450, A Milanova

Points-to Analysis is Not Distributive
p=&x;
q=&y;

p=&z;
q=&w;

*p=q

p q

x y
Pt1:

p q

z w
Pt2:

p q

x y
f(Pt1):

p q

z w
f(Pt2):

f(Pt1) V f(Pt2):

p q

x y
z w

Pt1 V Pt2 :

p q

x y
z w

f(Pt1 V Pt2):

p q

x y
z w

What f for *p = q does: Adds edges
from each variable that p points to (x
and z), to each variable that q points
to (y and w). Result is 4 new edges:

from x to y and to w
and from z to y and to w

MFP vs. MOP for Points-to

inPT(4) = outPT(2) V outPT(3)

outPT(4) = f*p=q (inPT(4))

MFP MOP?
Ø Ø

2.
p=&x;
q=&y;

3.
p=&z;
q=&w;

4. *p=q

1. if (n>0)

5. …
inPT(5) = outPT(4)

inPT(4):
p q

x y
z w

p q

x y
z w

p q

x y

z w

inPT(5): ??

CSCI 4450/6450, A Milanova 42

Next Time

n Putting this into practice

n Program analysis frameworks
n Soot
n Ghidra

CSCI 4450/6450, A Milanova 43

