Dataflow Analysis: Non-distributive Analysis
Outline of Today’s Class

- Dataflow frameworks, conclusion
 - Lattices (last time)
 - Transfer functions (last time)
 - Worklist algorithm
- MOP solution vs. MFP solution
- Non-distributive analyses
 - Constant propagation
 - Points-to analysis
Monotone Dataflow Framework

- A problem fits into the dataflow framework if
 - its property space is a lattice \mathbf{L}, \leq that satisfies the Ascending Chain Condition
 - its merge operator V is the join of \mathbf{L}
 - and
 - its transfer function space $F : \mathbf{L} \rightarrow \mathbf{L}$ is monotone

- Thus, we can make use of a generic solution procedure, known as the worklist algorithm
 - Computes the so-called MFP solution
Worklist Algorithm for Forward Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */
in(1) = InitialValue; out(1) = f_1(in(1))
for m = 2 to n do in(m) = 0; out(m) = f_m(0)
W = \{2,\ldots,n\} /* put every node but 1 on the worklist */

while W ≠ Ø do {
 remove j from W
 in(j) = \bigvee \{ out(i) \mid i \text{ is predecessor of } j \}
 out(j) = f_j(in(j))
 if out(j) changed then
 W = W U \{ k \mid k \text{ is successor of } j \}
}

\[i_u^t(j) \leq i_u^{tn}(j) \]
\[o_u^t(j) \leq o_u^{tn}(j) \]
Worklist Algorithm on Reach

D = all definitions: {(x,1), (x,4), (a,3)}

Poset is 2^D, \leq is the subset relation \subseteq

1. $x = a * b$
2. if $y \leq a * b$
3. $a = a + 1$
4. $x = a * b$
5. goto 2

$W = \{2, 3, 4, 5\}$

Iter 1
remove 2
$\text{in}(2) = \{x, 4\}$
$\text{out}(2) = \{\}$

Iter 2
remove 3
$\text{in}(3) = \{x\}$
$\text{out}(3) = \{a, 3\}$

Iter 3
remove 4
$\text{in}(4) = \{x, 4\}$
$\text{out}(4) = \{\}$

Iter 4
remove 5
$\text{in}(5) = \{(x, 4), (a, 3)\}$
$\text{out}(5) = \{(a, 3)\}$
Termination Argument

Theorem: the algorithm terminates. Why?

Sketch of argument:

A node \(k \) is placed on worklist only if the \(\text{out}(j) \) of a predecessor \(j \) changes. Monotonicity of \(f \) guarantees \(\text{in}^t(j) \leq \text{in}^{t+1}(j) \) and \(\text{out}^t(j) \leq \text{out}^{t+1}(j) \). (Here \(\text{in}^t(j), \text{out}^t(j) \) are the sets at iteration \(t \).)

\(\text{in} \) and \(\text{out} \) sets are elements of \(L \) and \(L \) satisfies the Ascending Chain Condition; thus, there is only a finite number of times each \(\text{out}(j) \) changes.
Correctness Argument

Theorem: Worklist algorithm computes a solution that satisfies the dataflow equations. Why?

Sketch of argument:
Suppose either (1) \(V_{out}(i) \neq in(j) \) or (2) \(out(j) \neq f_j(in(j)) \). For (1) to hold we must have “grown” \(out(i) \) in some iteration and not added successor \(j \) to worklist; this is impossible.
Theorem: Worklist algorithm computes the least solution of the dataflow equations.

Historically, solution computed by worklist algorithm is called the maximal fixpoint solution (MFP solution).

For every node j, worklist algorithm computes a solution $MFP(j) = (in(j), out(j))$, such that for every solution $(in'(j), out'(j))$ of the dataflow equations we have $in(j) \leq in'(j)$ and $out(j) \leq out'(j)$.
Example (Avail)

1. \(z := x + y \)

 \[
 \text{out}(1) = (\text{in}(1) - E_z) \cup \{x+y\}
 \]

2. if \(z > 500 \)

 \[
 \text{out}(2) = \text{in}(2)
 \]

3. goto 2

\[
\text{in}(3) = \text{out}(2) \\
\text{out}(3) = \text{in}(3)
\]

Equivalent to: \(\text{in}(2) = \{x+y\} \cup \text{in}(2) \)

and recall that \(\cup \) is \(\cap \) (i.e., set intersection).
Outline of Today’s Class

- Dataflow frameworks, conclusion
 - Lattices (last time)
 - Transfer functions (last time)
 - Worklist algorithm
- MOP solution vs. MFP solution

- Non-distributive analyses
 - Constant propagation
 - Points-to analysis
Meet Over All Paths (MOP)

Desired dataflow information at \(n \) is obtained by traversing ALL PATHS from 1 (entry node) to \(n \).

For every path \(p = (1, n_2, n_3, ..., n_k) \) we compute
\[
f_{n_k}(\ldots f_{n_2}(f_1(\text{InitialValue})))
\]

The MOP at entry of \(n \) is \(V f_{n_k}(\ldots f_{n_2}(f_1(\text{InitialValue}))) \) over all paths \(p \) from 1 to \(n \).
MOP vs. MFP

- MOP is an abstraction of the best solution computable with dataflow analysis
 - It is a common assumption in dataflow analysis that all program paths are executable

- MFP is the solution computed by the worklist algorithm

CSCI 4450/6450, A Milanova
MOP vs. MFP

- For *distributive* problems \(MFP = MOP \! \)

- Unfortunately, for *monotone* problems this is not true. But we still have a safe solution: it is a theorem that for monotone problems, \(MFP \geq MOP \)
Safety of a Dataflow Solution

- A safe (also, correct or sound) solution X overestimates the “best” possible dataflow solution, i.e., $X \geq \text{MOP}$

- Historically, an acceptable solution X is one that is better than what we can do with the MFP, i.e., $X \leq \text{MFP}$
Safe Solutions: Reach

U = all definitions: {(x,1),(x,4),(a,3)} {(x,1),(x,4),(a,3)}

Poset is 2^U, ≤ is the subset relation ⊆

1. x = a * b
2. if y ≤ a * b
3. a = a + 1
4. x = a * b
5. goto 2

CSCI 4450/6450, A Milanova
Safe Solutions: Avail

U = all expressions: \{a*b, a+1, y*z\}
Poset is 2^U, \leq is the superset relation \supseteq

1. $x := a*b$
2. if $y*z \leq a*b$
3. $a := a+1$
4. $x := a*b$
5. goto 2
Outline of Today’s Class

- Dataflow frameworks, conclusion
 - Lattices (last time)
 - Transfer functions (last time)
 - Worklist algorithm
- MOP solution vs. MFP solution

- Non-distributive analyses
 - Constant propagation
 - Points-to analysis
Constant Propagation (Simple)

- **Problem statement:** Can variable x hold a constant value at a given program point?

- **Example:**

1. $x = 1$

 If $b > 0$

 in: x is not constant

 out: x is 1

2. $y = z + w$

 $x = 2$

 in: x is 1

 out: x is 2

3. $y = 0$

 in: x is 1

 out: x is 1

4. $z = 10 \times x$

 in: x is NOT a constant!
Let’s Fit Analysis into Monotone Dataflow Framework

- If property space has desired properties
 - it is a lattice \(L, \leq \) that satisfies the *Ascending Chain Condition*
 - its merge operator is the join of \(L \)
- Function space \(F: L \rightarrow L \) is monotone
- Then analysis fits the monotone dataflow framework and can be solved using the worklist algorithm
Constant Propagation: Property Space

- Associate one of the following values with variable x at each program point

<table>
<thead>
<tr>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (or T)</td>
<td>x is NOT a constant</td>
</tr>
<tr>
<td>C</td>
<td>x has constant value C</td>
</tr>
<tr>
<td>0 (or ⊥)</td>
<td>x is unknown</td>
</tr>
</tbody>
</table>
Constant Propagation: Lattice

- Lattice L_x, \leq

 $\bot \leq \top$, $0 \leq \top$

 $l_1 = \langle x \mapsto \bot, y \mapsto \top, z \mapsto \bot \rangle$

 $l_2 = \langle x \mapsto \bot, y \mapsto 5, z \mapsto 0 \rangle$

- Dataflow lattice L is the product lattice of L_x

 - l_1, l_2 in L, $l_1 \leq l_2$ iff $l_1_x \leq l_2_x$ for every variable x

 - $l_1 \lor l_2$ amounts to $l_1_x \lor l_2_x$ for every variable x

 - Merge operator is join of L

- Does the product lattice satisfy the ACC?
Product Lattice

- E.g.,
 \(<x \rightarrow \bot, y \rightarrow 1, z \rightarrow T>, <x \rightarrow 1, y \rightarrow 2, z \rightarrow 3>, \text{ etc.}\)

 are lattice elements

- E.g.,
 \(<x \rightarrow 1, y \rightarrow 2, z \rightarrow T> \leq <x \rightarrow T, y \rightarrow 2, z \rightarrow T> \quad \text{where } \begin{align*}
 l_{1x} &= 1 \\ l_{1y} &= 2 \\ l_{1z} &= T \\
 l_{2x} &= T \\ l_{2y} &= T \\ l_{2z} &= T
 \end{align*}

- E.g.,
 \(<x \rightarrow 1, y \rightarrow 3, z \rightarrow T> \lor <x \rightarrow T, y \rightarrow 2, z \rightarrow T> = <T, T, T> \)
Product Lattice

Does Product lattice satisfy the ACC?

\(<x \rightarrow T, y \rightarrow T>\)

\(<x \rightarrow T, y \rightarrow 1>\)

\(<x \rightarrow 1, y \rightarrow 1>\)

\(<x \rightarrow 1, y \rightarrow \bot>\)

Length of maximal ascending chain is

\(2 \times N\) where \(N\) is

the number of variables in the tuple.
Constant Propagation: Transfer Functions

- \(j: x = C \)
 \(f_j: \) kill \(x \rightarrow \text{val} \), generate \(x \rightarrow C \)

- \(j: x = y \)
 \(f_j: \) kill \(x \rightarrow \text{val} \), add \(x \rightarrow \text{val'} \), s.t. \(y \rightarrow \text{val'} \) in \(\text{in}(j) \). \(\text{val} \) and \(\text{val'} \) are one of
 - \(\bot \): bottom (unknown)
 - \(C \): constant
 - \(T \): top (not a constant)
Constant Propagation: Transfer Functions

\[j: \ x = y \ Op \ z \]

\[f_j: \ \text{kill: } x \rightarrow \text{val} \]

\[\text{gen:} \]

If \(y \rightarrow c_1 \) and \(z \rightarrow c_2 \) in \(\text{in}(j) \), then \(x \rightarrow c_1 \ Op \ c_2 \)

else if \(y \rightarrow T \) or \(z \rightarrow T \) in \(\text{in}(j) \), then \(x \rightarrow T \)

else \(x \rightarrow \bot \)

Next, we’ll argue monotonicity which would give us that Constant Propagation is solvable by the Worklist algorithm
Example

1. if \(b > 0 \)

2. \(x = 1 \)
 \(y = 2 \)
 out(2): \(<x\rightarrow 1, y\rightarrow 2, z\rightarrow T> \)

3. \(x = 2 \)
 \(y = 1 \)
 out(3): \(<x\rightarrow 2, y\rightarrow 1, z\rightarrow T> \)

4. \(z = x + y \)
 out(4): \(<x\rightarrow T, y\rightarrow T, z\rightarrow T> \)

5. \(w = 10 \times z \)
 in(4): \(<x\rightarrow T, y\rightarrow T, z\rightarrow T> \)

in(1) is \(T = <x\rightarrow T, y\rightarrow T, z\rightarrow T> \)
Constant Propagation is Monotone but Not Distributive!

- $f_4(f_2(f_1(T)))$ computes $z \rightarrow 3$
- $f_4(f_3(f_1(T)))$ computes $z \rightarrow 3$
- Thus, MOP at 5

$f_4(f_2(f_1(T))) \lor f_4(f_3(f_1(T)))$ computes $z \rightarrow 3$

MFP at 5 computes $z \rightarrow T$

(i.e., z is NOT a const)
More Product Lattices

- Problem statement: Is integer variable x odd or even at program point n?
 - $x \rightarrow T$, $y \rightarrow T$

- L_x:

 $$
 \begin{array}{c c c}
 T & \text{odd} & \text{even} \\
 \downarrow & & \\
 y=0 & x \rightarrow T, y \rightarrow \text{even} & \\
 \text{if } (x \geq 10) & x=x+1, y=y+2 & \text{even} \\
 \text{...} & \\
 \end{array}
 $$
Problem statement: What sign does a variable hold at a given program point, i.e., is it positive, negative, or 0

\[L_x: \]

\[\perp \]

\[\begin{array}{ccc}
 + & 0 & - \\
 \downarrow & & \downarrow \\
 \top & & \bot \\
\end{array} \]

E.g., \(< x \rightarrow +, y \rightarrow T, z \rightarrow 0 > \)
Outline of Today’s Class

- Dataflow frameworks, conclusion
 - Lattices (last time)
 - Transfer functions (last time)
 - Worklist algorithm
- MOP solution vs. MFP solution

- Non-distributive analyses
 - Constant propagation
 - Points-to analysis
Points-to Analysis

Problem statement: What memory locations may a pointer variable point to?

Many applications!

- Enables compiler optimizations
 1. a = 1;
 2. *p = b;
 3. s = a*a;
 1. a = x*y*z+x;
 2. *p = b;
 3. s = x*y*z+x;

- Static debugging and taint analysis tools
Example 1:

```c
int a, b;
int *p1, *p2;
p1 = &a;
p2 = p1;
*p2 = 1;
```
Points-to Graph: Example

Example 2:

```c
int a, b = 15;
int *p1, *p2;
int **p3;
p3 = &p1;
p1 = &a;
p2 = *p3;
*p2 = b;
```
Points-to Analysis (for a C-like language)

- Assume the following 4 simple statements
 (1) address taken
 \[p = &q \]
 (2) propagation
 \[p = q \]
 (3) indirect read
 \[p = *q \]
 (4) indirect write (update)
 \[*p = q \]

- We can preprocess any C program into a sequence of statements of these kinds
Points-to Analysis: Property Space

- **Lattice \(L, \leq \)**
 - Lattice of the subsets over edges \(p \rightarrow q \) where \(p \) and \(q \) are (names of) memory locations
 - ... or in simpler terms, lattice elements are points-to graphs, e.g.,
 - \(V \) is points-to graph union
 - \(0 \) of \(L \) is empty graph
 - \(1 \) of \(L \) is complete graph
Points-to Graphs Pt

- Nodes are names of memory locations
 - Program variables, a, p:
 - \(p = \& a \)
 - But also heap locations:
 - \(p = \text{malloc}(\text{sizeof}(\text{int})) \) // h1

- Edges represent points-to relations
 - E.g., \(p \rightarrow a \), read: “p points to a”
 - E.g., \(p \rightarrow h1 \), read: “p points to heap location h1”
Points-to Analysis: Transfer Functions

(1) \(f_{p=q} \): “kill” all points-to edges from \(p \) and “generate” a new points-to edge from \(p \) to \(q \)

(2) \(f_{p=q} \): “kill” all points-to edges from \(p \); “generate” new points-to edges from \(p \) to every \(x \), such that \(q \) points to \(x \) in incoming points-to graph in(j)
Points-to Analysis: Transfer Functions

(3) $f_{p=q}$: “kill” all points-to edges from p; “generate” new points-to edges from p to every x, s.t. there is y where q points to y, and y points to x in $\text{in}(j)$

(4) $f_{p=q}$: Do not kill! Can you think of a reason why? “Generate” new points-to edges from every y to every x, such that p points to y and q points to x
Points-to Analysis is Monotone

To argue monotonicity we must show that if \(Pt_1\) is \(\leq\) (subset of) \(Pt_2\), then \(f(Pt_1) \leq f(Pt_2)\) for each transfer function \(f\)

\[
\begin{align*}
(1) & \quad Pt_1 \leq Pt_2 \text{ then } f_{p=q} (Pt_1) \leq f_{p=q} (Pt_2) \\
(2) & \quad Pt_1 \leq Pt_2 \text{ then } f_{p=q} (Pt_1) \leq f_{p=q} (Pt_2) \\
(3) & \quad Pt_1 \leq Pt_2 \text{ then } f_{p=*q} (Pt_1) \leq f_{p=*q} (Pt_2) \\
(4) & \quad Pt_1 \leq Pt_2 \text{ then } f_{*p=q} (Pt_1) \leq f_{*p=q} (Pt_2)
\end{align*}
\]
... but it is not distributive!

- Because of updates!
Points-to Analysis is Not Distributive

\[p = \&x; \]
\[q = \&y; \]

\[p = \&z; \]
\[q = \&w; \]

\[*p = q \]

What \(f \) for \(*p = q \) does: Adds edges from each variable that \(p \) points to (\(x \) and \(z \)), to each variable that \(q \) points to (\(y \) and \(w \)). Result is 4 new edges:
- from \(x \) to \(y \) and to \(w \)
- and from \(z \) to \(y \) and to \(w \)
MFP vs. MOP for Points-to

1. if (n>0)

2. p=&x; q=&y;
3. p=&z; q=&w;

4. *p=q

in\textsubscript{PT}(4) = out\textsubscript{PT}(2) \lor out\textsubscript{PT}(3)

5. ...

out\textsubscript{PT}(4) = f\ast p=q (in\textsubscript{PT}(4))

in\textsubscript{PT}(5) = out\textsubscript{PT}(4)

CSCI 4450/6450, A Milanova
Next Time

- Putting this into practice

- Program analysis frameworks
 - Soot
 - Ghidra