Dataflow Analysis: Non-distributive Analysis

Outline of Today's Class

Dataflow frameworks, conclusion

- Lattices (last time)
- Transfer functions (last time)
- Worklist algorithm

MOP solution vs. MFP solution

Non-distributive analyses

- Constant propagation
- Points-to analysis

CSCI 4450/6450, A Milanova

Monotone Dataflow Framework

A problem fits into the dataflow framework if

- its property space is a lattice L, ≤ that satisfies the Ascending Chain Condition
- its merge operator V is the join of L and
- its <u>transfer function</u> space $F: L \rightarrow L$ is monotone
- Thus, we can make use of a generic solution procedure, known as the worklist algorithm
 - Computes the so-called MFP solution

Worklist Algorithm for Forward Dataflow Problems

/* Initialize to initial values; 1 is entry node of CFG */ $in(1) = InitialValue; out(1) = f_1(in(1))$ for m = 2 to n do in(m) = 0; $out(m) = f_m(0)$ $W = \{2, ..., n\}$ /* put every node but 1 on the worklist */ $i_{\iota}(j) \leq i_{\iota}^{t}(j)$ while $W \neq \emptyset$ do { out $t(j) \in out tn(j)$ remove j from W in(j) = V { out(i) | i is predecessor of j } $out(j) = f_i(in(j))$

if out(j) changed then

W = W U { k | k is successor of j }

Worklist Algorithm on Reach

 $D = all definitions:\{(x,1),(x,4),(a,3)\}$ Poset is 2^{D} , \leq is the subset relation \sqsubseteq $W = \{2, 3, 4, 5\}$ iu (1)= ž5 1. x=a*b Iter 1 $\sigma_{1}f(1) = \sum_{i=1}^{n} (x_{i}, 1) \int_{1}^{1} dx_{i}$ remove 2 iu(2)= 23 $m(2) = \frac{2}{5}(x, 1)\frac{2}{5}Out(2) = \frac{2}{5}(x, 1)\frac{2}{5}$ 2. if y<=a*b out(2)= }} Iter 2 iu (3)= }} remove 3 $\Re(3) = \sum_{x, 2}^{x} \Re(3) = \sum_{x, 2}^{x} \Re(3) = \frac{1}{2} \Re(3) = \frac{1}{2}$ remove 3 3. a=a+1 out (3) = { (a, 3) } ĩu (4) = \$] Her 3 4. x=a*b $J_{4}(\underline{x}) = \sum_{(a,3)}^{Z} (x, 1) = Ont(\underline{x}) = \sum_{(a,3)}^{Z} (a, 3) = \sum_{(a,3)}^{Z} (a,$ out (4) = 3 (x,4) 2 n (5) 5. goto 2 Iler wf(5) = 595 W = 2?3(x,4),2 out(5) =remove CSCI 4450/6450, A Milanova

Termination Argument

Theorem: the algorithm terminates. Why?

Sketch of argument:

A node k is placed on worklist only if the out(j) of a predecessor j changes. Monotonicity of f guarantees $in^{t}(j) \leq in^{t+1}(j)$ and $out^{t}(j) \leq out^{t+1}(j)$. (Here $in^{t}(j)$, $out^{t}(j)$ are the sets at iteration t.)

in and out sets are elements of L and L satisfies the *Ascending Chain Condition*; thus, there is only a finite number of times each out(j) changes.

Correctness Argument

Theorem: Worklist algorithm computes a solution that satisfies the dataflow equations. Why?

Sketch of argument:

Suppose either (1) Vout(i) \neq in(j) or (2) out(j) \neq f_j(in(j)) For (1) to hold we must have "grown" out(i) in some iteration and not added successor j to worklist; this is impossible.

Precision Argument

Theorem: Worklist algorithm computes the least solution of the dataflow equations.

- Historically, solution computed by worklist algorithm is called the maximal fixpoint solution (MFP solution)
- For every node j, worklist algorithm computes a solution MFP(j) = (in(j),out(j)), such that for every solution (in'(j),out'(j)) of the dataflow equations we have in(j) ≤ in'(j) and out(j) ≤ out'(j)

Example (Avail)	MFP Solution1	Solution2
1. $z := x + y$ out (1) = (in(1)-E _z) U {x+y}	~ {x+y}	~ {x+y}
$\frac{1}{2. \text{ if } (z > 500)} = \frac{1}{2} \text{ out}(1) \text{ V out}(3)} $	{x+y} {x+y}	Ø
$3. \text{ goto } 2$ $\int in(3) = out(2)$ $out(3) = in(3)$ $\begin{cases} \chi + \gamma \beta \\ \chi \\$	1 ∞ , λ}	Ø
Equivalent to: in(2) = $\{x+y\}$ V in(2) and recall that V is \cap (i.e., set intersection)).	

Outline of Today's Class

Dataflow frameworks, conclusion

- Lattices (last time)
- Transfer functions (last time)
- Worklist algorithm
- MOP solution vs. MFP solution

Non-distributive analyses

- Constant propagation
- Points-to analysis

CSCI 4450/6450, A Milanova

Meet Over All Paths (MOP) ^{n₂} ⁿ₃ ⁿ_k ⁿ_k ⁿ Desired dataflow information at **n** is obtained by traversing ALL PATHS from 1 (entry node) to **n**.

- For every path p=(1, n₂, n₃ ..., n_k) we compute f_{n_k}(...f_{n₂}(f₁(InitialValue)))
- The MOP at entry of n is V f_{nk}(...f_{n2}(f₁(InitialValue))) over all paths p from 1 to n

MOP vs. MFP

- MOP is an abstraction of the best solution computable with dataflow analysis
 - It is a common assumption in dataflow analysis that all program paths are executable

For *distributive* problems MFP = MOP!

 Unfortunately, for monotone problems this is not true. But we still have a safe solution: it is a theorem that for monotone problems, MFP ≥ MOP

Safety of a Dataflow Solution

■ A safe (also, correct or sound) solution X overestimates the "best" possible dataflow solution, i.e., X ≥ MOP

 Historically, an acceptable solution X is one that is better than what we can do with the MFP, i.e., X ≤ MFP

Safe Solutions: Reach

 $U = all definitions: \{(x,1), (x,4), (a,3)\} \{(x,1), (x,4), (a,3)\}$ Poset is 2^{\cup} , \leq is the subset relation \sqsubseteq 1. x=a*b 2. if y<=a*b $\{(x,1),(x,4)\}$ $\{(x,4),(a,3)\}$ $\{(x,1),(a,3)\}$ 3. a=a+1 $\{(x,1)\}$ $\{(x,4)\}$ $\{(a,3)\}$ 4. x=a*b Tu(5) = {(a3), (X,4)} 5. goto 2 15 CSCI 4450/6450, A Milanova

Safe Solutions: Avail

Outline of Today's Class

Dataflow frameworks, conclusion

- Lattices (last time)
- Transfer functions (last time)
- Worklist algorithm
- MOP solution vs. MFP solution

Non-distributive analyses

- Constant propagation
- Points-to analysis

CSCI 4450/6450, A Milanova

CSCI 4450/6450, A Milanova

Let's Fit Analysis into Monotone Dataflow Framework

If property space has desired properties

- It is a lattice L, ≤ that satisfies the Ascending Chain Condition
- its merge operator is the join of L and
- Function space $F: L \rightarrow L$ is monotone
- Then analysis fits the monotone dataflow framework and can be solved using the worklist algorithm

Constant Propagation: Property Space

Associate one of the following values with variable x at each program point

value	meaning
1 (or T)	x is NOT a constant
С	x has constant value C
0 (or⊥)	x is unknown

Constant Propagation: Lattice

- Dataflow lattice L is the product lattice of L_x
 - **I1,I2** in L, $I1 \le I2$ iff $I1_x \le I2_x$ for every variable x
 - I1 V I2 amounts to $I1_x$ V I2_x for every variable x

Merge operator is join of L

Does the product lattice satisfy the ACC?

Product Lattice

■ E.g.,

$x \rightarrow \perp$, $y \rightarrow 1$, $z \rightarrow T$, $x \rightarrow 1$, $y \rightarrow 2$, $z \rightarrow 3$, etc. are lattice elements

■ E.g.,

<**x**→**1**, **y**→**3**, **z**→T> V <**x**→**T**, **y**→**2**, **z**→T> = <T, T, T>

Product Lattice

Does Product Lattice satisfy the ACC? Leught of maximal ascending chain is 2nN where Nis $\langle x \rightarrow T, y \rightarrow T \rangle$ <×**→**7, y→1> the number of variables The tuple. $\langle x \rightarrow T, y \rightarrow I \rangle$ < x-> 1, y->1> $\langle x \rightarrow 1, y \rightarrow 1 \rangle$ CSCI 4450/6450, A Milanova

Constant Propagation: Transfer Functions

- j: x = C
 - $\textbf{f}_j: \text{ kill } \textbf{x} \rightarrow \textbf{val}, \text{ generate } \textbf{x} \rightarrow \textbf{C}$
- j: x = y
 - **f**_j: kill $\mathbf{x} \rightarrow \mathbf{val}$, add $\mathbf{x} \rightarrow \mathbf{val}$ ', s.t. $\mathbf{y} \rightarrow \mathbf{val}$ ' in **in(j)**. **val** and **val**' are one of
 - L: bottom (unknown)
 - C: constant
 - T: top (not a constant)

Constant Propagation: Transfer Functions

- j: x = y Op z
 - $\mathbf{f}_{\mathbf{j}}$: kill: $\mathbf{x} \rightarrow \mathbf{val}$

gen:

- If $\mathbf{y} \rightarrow \mathbf{c}_1$ and $\mathbf{z} \rightarrow \mathbf{c}_2$ in in(j), then $\mathbf{x} \rightarrow \mathbf{c}_1 Op \mathbf{c}_2$ else if $\mathbf{y} \rightarrow T$ or $\mathbf{z} \rightarrow T$ in in(j), then $\mathbf{x} \rightarrow T$ else $\mathbf{x} \rightarrow \bot$
- Next, we'll argue monotonicity which would give us that Constant Propagation is solvable by the Worklist algorithm

More Product Lattices

Problem statement: What sign does a variable hold at a given program point, i.e., is it positive, negative, or 0

Outline of Today's Class

Dataflow frameworks, conclusion

- Lattices (last time)
- Transfer functions (last time)
- Worklist algorithm
- MOP solution vs. MFP solution

Non-distributive analyses

- Constant propagation
- Points-to analysis

CSCI 4450/6450, A Milanova

Points-to Analysis

Problem statement: What memory locations may a pointer variable point to?

Many applications!

- Enables compiler optimizations
 - 1. a = 1;1. $a = x^*y^*z + x;$ 2. *p = b;2. *p = b;3. $s = a^*a;$ 3. $s = x^*y^*z + x;$
- Static debugging and taint analysis tools

Points-to Graph: Example

Example 1:

int a, b; int *p1, *p2; p1 = &a; p2 = p1; *p2 = 1;

Points-to Graph: Example

Example 2:

int a, b = 15; int *p1, *p2; int **p3; p3 = &p1;p1 = &a;p2 = *p3; *p2 = b;

CSCI 4450/6450, A Milanova

Points-to Analysis (for a C-like language)

Assume the following 4 simple statements
 (1) address taken p = &q
 (2) propagation p = q
 (3) indirect read p = *q
 (4) indirect write (update) *p = q

We can preprocess any C program into a sequence of statements of these kinds

Points-to Analysis: Property Space

■ Lattice L,≤

- Lattice of the subsets over edges p → q where p and q are (names of) memory locations
- ... or in simpler terms, lattice elements are points-to graphs, e.g., p3
- V is points-to graph union
- 0 of L is empty graph
- 1 of L is complete graph

Points-to Graphs Pt

- Nodes are names of memory locations
 - Program variables, a, p:

• p = &a

- But also heap locations:
 - p = malloc(sizeof(int)) // h1
- Edges represent points-to relations
 - E.g., p → a, read: "p points to a"
 - E.g., $p \rightarrow h1$, read: "p points to heap location h1"

Points-to Analysis: Transfer Functions

(1) $\mathbf{f}_{\mathbf{p}=\mathbf{k}\mathbf{q}}$: "kill" all points-to edges from \mathbf{p} and "generate" a new points-to edge from \mathbf{p} to \mathbf{q}

(2) $\mathbf{f}_{\mathbf{p}=\mathbf{q}}$: "kill" all points-to edges from \mathbf{p} ; "generate" new points-to edges from \mathbf{p} to every \mathbf{x} , such that \mathbf{q} points to \mathbf{x} in incoming points-to graph in(j)

Points-to Analysis: Transfer Functions

(3) $\mathbf{f}_{\mathbf{p}=\mathbf{x}_{\mathbf{q}}}$: "kill" all points-to edges from \mathbf{p} ; "generate" new points-to edges from \mathbf{p} to every \mathbf{x} , s.t. there is \mathbf{y} where \mathbf{q} points to \mathbf{y} , and \mathbf{y} points to \mathbf{x} in in(j)

(4) f_{*p=q}: Do not kill! Can you think of a reason why?
"Generate" new points-to edges from every y to every x, such that p points to y and q points to x

Points-to Analysis is Monotone

- To argue monotonicity we must show that if Pt₁ is ≤ (subset of) Pt₂, then f(Pt₁) ≤ f(Pt₂) for each transfer function f
 - (1) $Pt_1 \le Pt_2$ then $\mathbf{f}_{p=\&q}(Pt_1) \le \mathbf{f}_{p=\&q}(Pt_2)$
 - (2) $Pt_1 \le Pt_2$ then $\mathbf{f}_{p=q}(Pt_1) \le \mathbf{f}_{p=q}(Pt_2)$
 - (3) $Pt_1 \le Pt_2$ then $\mathbf{f}_{p=^*q}(Pt_1) \le \mathbf{f}_{p=^*q}(Pt_2)$
 - (4) $Pt_1 \le Pt_2$ then $f_{*p=q}(Pt_1) \le f_{*p=q}(Pt_2)$

... but it is not distributive!

Because of updates!

Points-to Analysis is Not Distributive

What **f** for ***p** = **q** does: Adds edges from each variable that **p** points to (**x** and **z**), to each variable that **q** points to (**y** and **w**). Result is 4 new edges: from **x** to **y** and to **w** and from **z** to **y** and to **w**

 $f(Pt_1 V Pt_2)$:

CSCI 4450/6450, A Milanova

Next Time

Putting this into practice

- Program analysis frameworks
 - Soot
 - Ghidra