Dataflow Analysis in Practice:
Program Analysis Frameworks,
Analysis Scope and Approximation

i Announcements

= HW1 due today

= HW2 posted

= Your task is to set this up locally as soon as
possible

CSCI 4450/6450, A Milanova

i So Far and Moving On...

= Dataflow analysis
= Four classical dataflow problems

=« Dataflow frameworks

=« CFGs, lattices, transfer functions and properties,
worklist algorithm, MFP vs. MOP solutions

= Non-distributive analysis

= Constant propagation
= Points-to analysis (will cover in catchup week!)

= Program analysis in practice

CSCI 4450/6450, A Milanova

i Outline of Today’s Class

= Constant propagation (catchup)

= Program analysis in practice

= Program analysis frameworks

= Soot program analysis framework
« Ghidra framework

= Analysis scope and approximation

= Class analysis

CSCI 4450/6450, A Milanova

Constant Propagation fits into

Monotone Dataflow Framework
L.: T
.2 -1 01 2 ..

= Property space
= Product lattice L=L, x L, x ... x L,
« L satisfies the ACC
and

= Function space F: L-> L is monotone

= Thus, analysis fits into the monotone
dataflow framework and can be solved using
the worklist algorithm

CSCI 4450/6450, A Milanova

1

i Exam ple iNn(1)is T = <x>T, y>T, z>T>

1.

if (b>0)
2. 3.
x=1 x=2
y=2 y=1

out(2): <x>1,y>2,z>T> out(3): <x»2, y>1, z>T>

in(4): <x>T,y>T,z>T> 4

out(4): <x>T ,y>T, z>T> Z=Xty

in(5): <x>T, y>T, z>T>

CSCI 4450/6450, A Milanova w=10*z 6

Constant Propagation is
Monotone but Not Distribytiye!

1.
= T,(f5(f;(T))) computes z > 3 if (b>0)

s f,(f3(f;(T))) computesz > 3 /\

= Thus, MOP at 5 2. 3
e N A4

=23 x=1 x.=2

f4(f2(F1(T))) V £,4(f5(F1(T))) y=2' 4 y=1

computes z > 3 out(2): HW: x>2, y>1

in4): x>T,y>T 4

out(4):z> T [Z=X+Y

MFP at 5 computes z > T iy z>T \u MpP= <z=>T)

(i.e., zis NOT a const) 0.
w=10*z 7

i More Product Lattices

= Problem statement: Is integer variable x odd
or even at program point n? x>Ty>T

y=0
x> T,y>even |
= L, if (x=10)
T
x—~> T, y=> even |
odd even X=x+1
y=y+2
S>Ty>
J_ X y—2 even

CSCI 4450/6450, A Milanova (Example program from MIT OCW Program Analysis) 8

i More Product Lattices

= Problem statement: What sign does a
variable hold at a given program point, i.e., is
it positive, negative, or O

T
O Lx:

E.g., <x>+y->T,z50>
1

CSCI 4450/6450, A Milanova

i So far and moving on

= Intraprocedural dataflow analysis

= CFGs, lattices, transfer functions, worklist
algorithm, etc.

= Classical analyses

= Interprocedural analysis
= Analysis scope and approximation

CSCI 4450/6450, A Milanova

10

i Program Analysis in Practice

= Program analysis frameworks

« LLVM C,Ct, .., — LLWM-IR

?
« Ghidra xQ6 men —> PCode —> C -

x Soot jm, 76%« k&é — Jiu /4
j)kLV(j] :72;[)—_

= WALA, other

CSCI 4450/6450, A Milanova

11

Soot: a framework for analysis and
i optimization of Java/Dalvik bytecode

m https://soot-0ss.qithub.io/soot/
O HiStOFy

s Overview of Soot

= From Java bytecode/Dalvik bytecode to typed
3-address code (Jimple)

= 3-address code analysis and optimization
= From Jimple to Java/Dalvik

= Jimple
= Analysis

12

https://soot-oss.github.io/soot/

i History

m https://soot-0ss.qithub.io/soot/

= Started by Prof. Laurie Hendren at McGill

= First paper on Soot came in 1999
= Patrick Lam

= Ondrej Lhotak

= Eric Bodden

= and other...

= Now developed by Eric Bodden and his
group: https://github.com/soot-oss/soot

CSCI 4450/6450, A Milanova

13

https://soot-oss.github.io/soot/

i Overview of Soot

Class files/APK

l

JIMPLIFY

ANALYSIS/
OPTIMIZATION

l

Optimized jimple

|

Some IR

l

Class files/APK

CSCI 4450/6450, A Milanova

14

i Advantages of Jimple and Soot

= Jimple
= Typed local variables

= 16 simple 3-address statements (1 operator per
statement). Bridges gap from analysis
abstraction to analysis implementation

= Soot provides
=« Itraprocedural dataflow analysis framework
= Points-to analysis for Java
= IR from Dalvik and taint analysis
= Other analyses and optimizations s

i Jimple

= Run soot: java soot.Main —jimple A
(need paths)

public class A extends java.lang.Object

{
public class A { public void <init>() {

main(String[] args) { A r0;

A a = new A(); r0 := @this: A;

a.m(); specialinvoke rO0.
} <java.lang.Object: void <init>()>();
public void m() { return;
} }

(continues on next slide...)
CSCl 4450/6450, A Milanova 16

public class A {
main(String[] args) {
Aa = new A();
a.m();

}
public void m() {

}
}

CSCI 4450/6450, A Milanova

Jimple:

Q/&[(.Co-ldtes

bublic vo}d/m() {

ArQ;
r0 .= @thls A,

“return; (u,‘,;biul jxvf(em/a
} rece ivey

17

Jimple:

main(java.lang.String[]) {

ublic class A
P { java.lang.String][] rO; ,«ecﬂ/'l/u

main(String[] args) { ASH. r2:
Aa = .new AQ); r0 := @parameter0: java.lang.String([];
} [r1 =newA; P C;Qowe/&ocl
public void m() { specialinvoke $r1.<A: void <init>()>();
} 2 = $r1 Km asr coucf.(.e Al 4
} [virtualinvoke r2.<A: void m()>();

o ——,

return; Ab7 ENoWN AT ColUPILE
} TIUE

CSCI 4450/6450, A Milanova } 18

i Soot Abstractions. Look up API!

= Abstracts program constructs

m Some basic Soot classes and interfaces

= SootClass
= SootMethod

« SootMethod sm; sm.isMain(), sm.isStatic(), etc.

= Local
« Local l; ... l.getType()

= InstancelnvokeEXxpr

= Represents an instance (as opposed to static) invoke
expression

« InstancelnvokeExpr iie; ... receiver = iie.getBase();
CSCI 4450/6450, A Milanova 19

i Resources

= Github project:
https://github.com/soot-oss/soot

= Javadoc:
https://soot-build.cs.uni-
paderborn.de/public/origin/develop/soot/soot-
develop/jdoc/

CSCI 4450/6450, A Milanova 20

https://github.com/soot-oss/soot
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/jdoc/

4 Kinds of Calls’

= Constructor/Super Call:

A a = new A(); |:> $r1 = new A; o
. specialinvoke $r1.<A: void <init>()>();
=« Virtual Call:
a.m(); mm) virtualinvoke r2.<A: void m()>();
_ acl X A
s Static Call: f AN
sm(); |:> staticinvoke <A: void sm()>(); \“B
= Interface Call: (’/
x.m(); |:> interfaceinvoke r0.<pack2.X: void m()>();

1. We should not need to worry about dynamiclnvoke. (Soot

does support it.) 21

i Outline of Today’s Class

= Program analysis in practice

= Program analysis frameworks

= Soot program analysis framework
« Ghidra framework

= Analysis scope and approximation

= Overview of class analysis framework (HW2)
= Class analysis

CSCI 4450/6450, A Milanova 22

i Analysis Scope

= Intraprocedural analysis
= Scope is the CFG of a single subroutine

= Assumes no call and returns in routine, or
models calls and returns

= What we did so far

= Interprocedural analysis

= Scope of analysis is the ICFG (Interprocedural
CFG), which models flow of control between
routines

CSCI 4450/6450, A Milanova 23

i Analysis Scope

= Whole-program analysis
« Usually, assumes entry point “main”
= Application code + libraries
=« Intricate interdependences, e.g., Android apps
= Modular analysis
= Scope either a library without entry point
= Or application code with missing libraries

= ... or alibrary that depends on other missing
libraries

CSCI 4450/6450, A Milanova

24

i Approximations

= Once we tackle the "whole program”
maintaining a solution per program point (i.e.,
IN(j) and out(j) sets) becomes too expensive

= Approximations
= Transfer function space
= Lattice
= Context sensitivity

= Flow sensitivity
CSCl 4450/6450, A Milanova 25

i Context Sensitivity

= S0 far, we studied intraprocedural analysis

= Once we extend to interprocedural analysis
the issue of “context sensitivity” comes up

= Interprocedural analysis can be context-

Insensitive or context-sensitive

= In our Java homework, we’ll work with context-
Insensitive analyses

=« We'll talk more about context-sensitive analysis

CSCI 4450/6450, A Milanova 26

i Context Insensitivity

= Context-insensitive analysis makes one big
CFG; reduces the problem to standard
dataflow, which we know how to solve

= Treats implicit assignment of actual-to-
parameter and return-to-left_hand_side as

explicit assignment

« E.g., X =id(y) where id: int id(int p) { return p; }
adds p =y // flow of values from arg to param
and x =ret// flow of return to left hand_side

s Can be flow-sensitive or flow-insensitive 27

Context Insensitivity

1.a=5
int id(int p) { |
return p; Call= | % 4?752 g>
} fﬂﬁxfu% 3. reiurn id ’\
q = 5, b = ret 7. entry id
2: b= |d(a)! 4'§:g*b 8.ret=p
X = b*b; |
c =6 caly: [5.p=c 9. exit id
’ call id

S:d= Id(C), Vehuses| 6. return id

CSCI 4450/6450, A Milanova d =ret 28

i Flow Sensitivity

= Flow-sensitive vs. flow-insensitive analysis

= Flow-sensitive analysis maintains the CFG
and computes a solution per each node In
CFG (i.e. each program point)
» Standard dataflow analysis is flow-sensitive

= For large programs, maintaining CFG and
solution per program point does not scale

CSCI 4450/6450, A Milanova

29

i Flow Insensitivity

= Flow-insensitive analysis discards CFG
edges and computes a single solution S

= A “declarative” definition, i.e., specification:
= Least solution S of equations S =f;(S) V S

= Points-to analysis is an example where such a
solution makes sense!

CSCI 4450/6450, A Milanova

30

i Flow Insensitivity

= An “operational” definition. A worklist

algorithm:
S=0,W={1,2,...n}/"all nodes */
while W # @ do {
remove j from W
S=f(S)VS
if S changed then
W=WU{k|kis "successor” of j }
}
= "successor’ is not CFG successor nodes, but
more generally, nodes k whose transfer
function f, may be affected as a result of the
change in S by | 31

i Your Homework

= A bunch of flow-insensitive, context-
insensitive analyses for Java
= RTA, XTA, other
= Simple property space
= Simple transfer functions

« E.g., in fact, RTA gets rid of most CFG nodes,
processes just 2 kinds of nodes!

= Millions of lines of code in seconds

CSCI 4450/6450, A Milanova

32

i Homework

s Install and run starter code

= Please let me as soon as possible if you have
Issues

= Frameworks are very fragile. They anger a lot
= Look into your git_repo/sootOutput directory
and study Jimple

= Study framework code and API

= Soot API
= Class analysis framework API

CSCI 4450/6450, A Milanova

33

i Homework

= Overview of class analysis framework

= We'll discuss more on Thursday
= Come prepared with questions

CSCI 4450/6450, A Milanova

34

i Outline of Today’s Class

= Constant propagation (catchup)

= Program analysis in practice

= Program analysis frameworks

= Soot program analysis framework
« Ghidra framework

= Analysis scope and approximation

s Class analysis

CSCI 4450/6450, A Milanova

35

i Class Analysis

= Problem statement: What are the classes
of objects that a (Java) reference variable
may refer to at runtime?

= Class Hierarchy Analysis (CHA)
= Rapid Type Analysis (RTA)

s XTA

= 0-CFA

= Points-to Analysis (PTA)

CSCI 4450/6450, A Milanova

i Applications of Class Analysis

= Call graph construction
= At virtual call r.m(), what methods may be

called? (Assuming r is of static type A.) o
B M) ¢cmi)
i - N
= Virtual call resolution b E

=« If analysis proves that a virtual call has a single
target, it can replace it with a direct call

= An OOPSLA'96 paper by Holzle and Driesen
reports that C++ programs spend 5% of their

time in dispatch code. For “all virtual®, it is 14%
CSCI 4450/6450, A Milanova 37

i Boolean Expression Hierarchy

public abstract class BoolExp {
public boolean evaluate(Context c);
}

public class Constant extends BoolExp {
private boolean constant;
public boolean evaluate(Context c) {
return constant;

}

}

public class VarExp extends BoolExp {
private String name;
public boolean evaluate(Context c) {
return c.lookup(name);

}

}

38

i Boolean Expression Hierarchy

public class AndExp extends BoolExp {
private BoolExp left;
private BoolExp right;

public AndExp(BoolExp left, BoolExp right) {
this.left = left;
this.right = right;

}

public boolean evaluate(Context c) {
return left.evaluate(c) && right.evaluate(c);

}
}

CSCI 4450/6450, A Milanova

39

i Boolean Expression Hierarchy

public class OrExp extends BoolExp {
private BoolExp left;
private BoolExp right;

public OrExp(BoolExp left, BoolExp right) {
this.left = left;
this.right = right;

}

public boolean evaluate(Context c) {
return left.evaluate(c) || right.evaluate(c);

}
}

CSCI 4450/6450, A Milanova

40

A Client of the Boolean
i Expression Hierarchy

main() {
Context theContext = new ...
BoolExp x = new VarExp(“X");
BoolExp y = new VarExp(“Y");

BoolExp exp = new AndExp(
new Constant(true), new OreExp(x, y));

theContext.assign(x, true);
theContext.assign(y, false);
boolean result = exp.evaluate(theContext);

) exp: {AndExp}

At runtime, exp can refer to an object of class AndExp,
but it cannot refer to objects of class OrExp, Constant or VarExp!

i Call Graph Example (Partial)

main

l exp.evaluate

AndExp.evaluate

left.evaluate right.evaluate

Constant.evaluate OrExp.evaluate

left.evaluate
right.evaluate

VarExp.evaluate

CSCI 4450/6450, A Milanova

42

i Class Hierarchy Analysis (CHA)

s Attributed to Dean, Grove and Chambers:

« Jeff Dean, David Grove, and Craig Chambers,
“Optimization of OO Programs Using Static
Class Hierarchy Analysis”, ECOOP’ 95

= Simplest way of inferring information about
reference variables --- just look at class
hierarchy

CSCI 4450/6450, A Milanova 43

i Class Hierarchy Analysis (CHA)

= In Java, if a reference variable r has type A,
r can refer only to objects that are concrete
subclasses of A. Denoted by SubTypes(A)
= Note: refers to Java subtype, not true subtype
= Note: SubTypes(A) notation due to Tip and

Palsberg (OOPSLA'00)
= At virtual call site r.m(), we can find what

methods may be called based on the
hierarchy information

CSCI 4450/6450, A Milanova 44

Example

A M0
public class A {
public static void main() { \
A a;
D 3 = new D(); B M ¢ 0
E e = new E(); /\
if (...)a=d; elsea=e; m()
a.m(); ¢ > F

}
}

public class B extends A {
public void foo() {
G g = new G();
}

} ... /I no other creation sites or calls in the program 45

Example

public class A {
public static void main() {

A a;
D d = new D();
E e = new E();
if (...)a=d; else a=e;
a.m();
}
}
public class B extends A {
public void foo() {
G g = new G();
}

}...

A M0

g m() A m()

A SubTypes(C)
m()

G D E

SubTypes(A)={A,B,C,D,E,G}
SubTypes(B)={B, G}

46

Example

A m()
public class A {
public static void main() { \
A a;
D d = new D(); B M ¢ 0
E e = new E(); /\
if (...)a=d; else a=e; Gm() v L
a.m(); .
a: SubTypes(StaticType(a)) = SubTypes(A)
) } ={A,B,C,D,E, G}

public class B extends A { main

public void foo() { :
G g = new G(); a.m()ﬂ\

} A.m B.m C.m G.m

} ... *

CHA as Reachability Analysis

R denotes the set of reachable methods

1. {main }£ R /] Algo: initialize R with main

2. for each method m& R,
each virtual call y.n(z) in m,
each class C in SubTypes(StaticType(y)) and
n’, where n’ = resolve(C,n)
{n}ER I/l Algo: add n’ to R

(Practical concerns: must consider direct calls too!)
48

