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ABSTRACT
Knowing which associations are compositions is important
in a tool for the reverse engineering of UML class diagrams.
Firstly, recovery of composition relationships bridges the gap
between design and code. Secondly, since composition rela-
tionships explicitly state a requirement that certain repre-
sentations cannot be exposed, it is important to determine if
this requirement is met by component code. Verifying that
compositions are implemented properly may prevent serious
program flaws due to representation exposure.

We propose an implementation-level composition model
based on ownership and a novel approach for identifying
compositions in Java software. Our approach uses static
ownership inference based on points-to analysis and is de-
signed to work on incomplete programs. In our experiments,
on average 40% of the examined fields account for relation-
ships that are identified as compositions. We also present a
precision evaluation which shows that for our code base our
analysis achieves almost perfect precision—that is, it almost
never misses composition relationships. The results indicate
that precise identification of interclass relationships can be
done with a simple and inexpensive analysis, and thus can
be easily incorporated in reverse engineering tools that sup-
port iterative model-driven development.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and

reengineering ; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program Analysis

General Terms
Algorithms
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1. INTRODUCTION
In modern software development design recovery through

reverse engineering is performed often; in a typical iterative
development process reverse engineering is performed at the
beginning of every iteration to recover the design from the
previous iteration [15].

UML class diagrams describe the architecture of the pro-
gram in terms of classes and interclass relationships; they are
scalable, informative and widely-used design models. While
the UML concepts of class and inheritance have correspond-
ing first-class concepts in object-oriented programming lan-
guages, the UML concepts of association, aggregation and
composition do not have corresponding language concepts.
Thus, while the reverse engineering of classes and inheri-
tance hierarchies is straightforward, the reverse engineering
of associations presents various challenges.

UML associations model relatively permanent interclass
relationships; conventionally, they are implemented using in-
stance fields of reference type [15] (e.g., an association from
class A to class B is implemented using a reference field of
type B in class A). Thus, reverse engineering tools infer
associations by examining instance fields of reference type;
however, the inference is often non-trivial. One challenge is
the recovery of one-to-many associations implemented using
pseudo-generic containers (e.g., Vector). Another challenge
is the recovery of compositions. Modern reverse engineering
tools such as Rational Rose do not address these challenges
and produce inconsistent class diagrams (see Guéhéneuc and
Albin-Amiot [12] for detailed examples). Clearly, this leads
to a gap between design class diagrams and reverse engi-
neered class diagrams which hinders understanding, round-
trip engineering and identification of design patterns.

Towards the goal of bridging this gap, this paper proposes
a methodology for inference of binary associations for UML
class diagrams. Our major focus is the inference of com-
position relationships, which we believe is challenging and
inadequately addressed in previous work. While the UML
concept of aggregation is ”strictly meaningless” [8, Chapter
5] (i.e., it has no well-defined semantics to distinguishes it
from association), the UML concept of composition has a
well-defined semantics that emphasizes the notion of own-

ership: a ”composition is a strong form of [whole-part] as-
sociation with strong ownership of parts by the composite
and coincident lifetime of parts with the composite. A part
may belong to only one component at a time” [23, Chapter
14]. Therefore, a composition relationship at design level
states the requirement for ownership and no representation

exposure at implementation level (i.e., the owned component



object cannot be exposed outside of its composite owner
object); if composition is implemented correctly ownership
must be preserved.

It is important to investigate techniques for recovery of
composition relationships. Firstly, it helps bridge the gap
between the design class diagram and the reverse engineered
diagram. Secondly, since composition relationships explic-
itly state a requirement that certain representations cannot
be exposed, it is important to determine if this require-
ment is met by component code. Verifying that composi-
tions are implemented properly may prevent serious pro-
gram flaws due to representation exposure such as the well-
known Signers bug in Java 1.1.1

Therefore, the goals of this work are (i) to define an imp-
lementation-level ownership model that captures the no-
tion of composition in design and (ii) to design an analy-
sis algorithm that infers ownership and composition using
this model. Our definition of implementation-level com-
position is based on the owners-as-dominators ownership
model [6, 18]; in this model the owner object (the compos-
ite) should dominate an owned object (a component)—that
is, all access paths to the owned object should pass through
its owner. The owners-as-dominators model defines an own-
ership boundary for each owner; intuitively, an owned object
may be accessed by its owner as well as other objects within
the boundary of the owner (e.g., an owned object stored in
an instance field may be passed to an owned container). As
pointed out by Clarke et al. [6, 18] and observed during our
empirical study, the owners-as-dominators model captures
well the notion of composition in modeling.

We propose a novel static analysis for ownership inference.
If the ownership inference determines that all objects stored
in a field are owned by their enclosing object, the analysis
identifies a composition through that field. Our approach
works on incomplete programs. This is an important fea-
ture because in the context of reverse engineering tools it is
essential to be able to perform separate analysis of software
components. For example, it is typical to have to analyze
a component without having access to the clients of that
component. Our ownership inference analysis is based on
points-to analysis, which determines the set of objects a ref-
erence variable or a reference object field may point to. We
use the points-to analysis solution to approximate the pos-
sible accesses between run-time objects.

We present empirical results on several components. In
our experiments, on average 40% of the examined fields ac-
count for relationships that are identified as compositions.
We also present a precision evaluation which shows that for
our code base, the analysis achieves almost perfect precision—
that is, it almost never misses composition relationships
identified in our model. The results indicate that precise
identification of interclass relationships can be done with
a simple and inexpensive analysis, and thus can be easily
incorporated in reverse engineering tools that support iter-
ative development.

This work has the following contributions:

• We propose an implementation-level ownership and
composition model that captures well the notion of
composition in modeling.

1In Java 1.1 the security system function Class.getSigners
returned a pointer to an internal array allowing clients to
modify the array and compromising the security of the sys-
tem.

• We propose a static analysis for identifying composi-
tion relationships in accordance with our model; the
analysis works on incomplete programs.

• We present an empirical study that evaluates our anal-
ysis on several Java components.

2. PROBLEM STATEMENT
Reverse engineering tools typically infer associations by

examining instance fields of reference type in the code. In
our model, an association relationship through a field f is
refined as composition if it can be proven that all objects
referred by f are owned by their enclosing object. Thus,
given a suitable definition of implementation-level owner-
ship and composition, our goal is to design a static anal-
ysis that answers the question: given a set of Java classes
(i.e, a component to be analyzed) for what instance fields
we observe implementation-level composition throughout all
possible executions of arbitrary client code built on top of
these classes? The output is a set of fields for which the
relationship is guaranteed to be a composition for arbitrary
clients.

The input to the analysis contains a set Cls of interact-
ing Java classes. We will use ”classes” to denote both Java
classes and interfaces as the difference is irrelevant for our
purposes. A subset of Cls is designated as the set of acces-

sible classes; these are classes that may be accessed by un-
known client code from outside of Cls. Such client code can
only access fields and methods from Cls that are declared
in some accessible class; these accessible fields and methods
are referred to as boundary fields and boundary methods.

Sections 2.1 and 2.2 describe the ownership model and
the notion of implementation-level composition based on it.
Section 2.3 discusses some constraints to the model that
allow more precise detection of ownership and composition.

2.1 Ownership Model
The ownership model is based on the notion of owners-as-

dominators [6, 5, 18]. It is essentially the model proposed
by Potter et al. [18] with several modifications that allow
more precise handling of popular object-oriented patterns
such as iterators, composites and factories [9]. In this model,
each execution is represented by an object graph which shows
access relationships between run-time objects:

• Let f be a reference instance field in a run-time object

o. There is an edge o
f
→ o′ in the object graph iff field

f in o refers to o′ at some point of program execution.2

• There is an edge o
[]
→ o′ iff some element of array o

refers to o′ at some point of program execution.

• There is an edge o → o′ iff an instance method or
constructor invoked on receiver o has local variable r

that refers to o′, or a static method called from an
instance method or constructor invoked on o, has a
local variable r that refers to o′. There is an edge of
this kind only if there is no edge of the first kind from
o to o′.

2We require that all newly created objects appear in the
object graph explicitly [6]. That is, at the point of creation
a new object is stored in a new local variable; this does not
change program semantics.



public class Vector {
protected Object[] data;

public Vector(int size) {
1 data = new Object[size]; }
public void addElement(Object e,int at) {

2 data[at] = e; }
public Object elementAt(int at) {

3 return data[at]; }
public Enumeration elements() {

4 return new VIterator(this); }
}

final class VIterator implements Enumeration {
Vector vector;

int count;

VIterator(Vector v) {
5 this.vector = v;

6 this.count = 0; }
Object nextElement() {

7 Object[] data = vector.data;

8 int i = this.count;

9 this.count++;

10 return data[i]; }
}

main() {
11 Vector v = new Vector(100);

12 X x = new X();

13 v.addElement(x,0);

14 Enumeration e = v.elements();

15 x = (X) e.nextElement();

16 x.m();

}

Figure 1: Simplified vector and its iterator.

A run-time object o′ is accessed in the context of o iff
there is an edge from o to o′ in the object graph. The start
of program execution is expressed with a special node root.
Context root represents the context for main and for objects
referenced by static fields. For example, executing main in
Figure 1 results in the object graph in Figure 2(a). Node
Vector corresponds to the object created at the new site at
line 11, node Object[] corresponds to the array created at
the site at line 1, node VIterator corresponds to the iterator
created at the site at line 4, and node X corresponds to the
object created at the site at line 12.

The owners-as-dominators model states that the owner
of an object o is the immediate dominator of o in the ob-
ject graph [18].3 Thus, according to this model Object[]
is not owned by its enclosing Vector object for this exe-
cution due to the access relationship (although only tem-
porary) between VIterator and Object[]. To make the
model less restrictive, we introduce the relaxed object graph

which omits edges due to certain temporary access relation-
ships. We consider two kinds of temporary access relation-
ships. The first kind arises when an object is created in one

3Node m dominates node n if every path from the root of the
graph that reaches node n has to pass through node m. The
root dominates all nodes. Node m immediately dominates
node n if m dominates n and there is no node p such that
m dominates p and p dominates n.

(b) Relaxed Object Graph
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Figure 2: Object graphs for Figure 1.

context and immediately passed to another context with-
out being used; the relationship between the creating object
and the new object is only temporary but if shown on the
graph it is likely to restrict ownership. This notion cap-
tures the situations when an object is created and imme-
diately returned (e.g., as in return new VIterator(this); in
method elements in Figure 1) and when an object is cre-
ated and immediately passed to another context (e.g., as
in new BufferedReader(new FileReader(fileName))). This
situation occurs in popular object-oriented design patterns
such as factories, decorators and composites; in these cases
the temporary relationship between the creating object and
the newly created one is a matter of safety and flexibility of
the implementation rather than an intention of the design.
The second kind of temporary access relationships arises
from field read statements r = l.f , where r is not assigned,
passed as an implicit or explicit argument, or returned. This
notion captures the situation that arises in iterators (con-
sider statement data = vector .data in nextElement in Fig-
ure 1)—iterator objects have temporary references to the
representation of their collections, which allows efficient ac-
cess of collection elements; however, the collection object is
always in scope. Therefore, if all accesses of o′ in the con-
text of o are due to such temporary access relationships,
edge o → o′ is not shown in the relaxed object graph.

The relaxed object graph for the execution of main in Fig-
ure 1 is shown in Figure 2(b). Edge Vector→VIterator is
omitted because it is due to a temporary access relationship
of the first kind; edge VIterator→Object[] is omitted as
well because it is due to a temporary access relationship of
the second kind. The owner of o is the immediate domina-
tor of o in the relaxed object graph. Thus, root owns X,

Vector and Viterator and Vector owns Object[].

2.2 Implementation-level Composition
Let A be a class in Cls, and f be a field of type B de-

clared in A where B is a reference type (class, interface
or array type [10]). The ownership property holds for f if
throughout all possible executions of arbitrary clients of Cls,
every instance of A owns the instances of B that its f field
refers to. Consider the case when f is a collection field—
that is, all objects stored in the field are arrays or instances
of one of the standard java.util collection classes (e.g.,
java.util.Vector). If every instance of A owns all corre-
sponding instances stored in the collection, there is a one-to-



many composition relationship between A and C, where C is
the lowest common supertype of the instances stored in the
collection4 ; otherwise, there is a one-to-many regular associ-
ation. For collection fields for which the ownership property
holds, there is an attribute of the association {owned collec-

tion} that indicates that the collection is owned by its en-
closing object. Consider the case when f is not a collection
field. If the ownership property holds for f , the association
between A and B is a one-to-one composition; otherwise it
is a regular one-to-one association.

Example. Consider the package in Figure 3. This exam-
ple is based on classes from the standard Java library pack-
age java.util.zip, with some modifications made to sim-
plify the presentation and better illustrate the problem and
our approach. Cls contains the classes from Figure 3 plus
class ZipEntry. The accessible classes are ZipInputStream,
ZipOutputStream and ZipEntry and the boundary methods
are all public methods declared in those classes (i.e., the
component can be accessed from client code through the
public methods declared in these classes).

Clearly, the CRC32 objects are always owned by their en-
closing streams. Thus, there is a one-to-one composition
relationship between class ZipInputStream and class CRC32

through field crc. Similarly, there is a one-to-one com-
position relationship between ZipOutputStream and CRC32

through field crc. There is a regular one-to-one associ-
ation through field entry in ZipInputStream; it is easy
to construct client code on top of these classes such that
the ZipEntry instances created in ZipInputStream objects
are leaked to client code from getNextEntry. Similarly,
there is a regular one-to-one association through entry in
ZipOutputStream because the ZipEntry objects are passed
from client code to putNextEntry. The associations through
fields names and entries are both one-to-many regular as-
sociations between ZipOutputStream and ZipEntry; both
have attribute {owned collection}. The ZipOutputStream

instance trivially owns the Hashtable instance. It owns
the Vector instance as well, although the Vector instance
is referred to in the context of its iterator (recall the ex-
ample in Figure 1); however, the iterator is a local object
owned by the enclosing ZipOutputStream object which en-
sures that the Vector instance is dominated by the enclosing
ZipOutputStream and may be accessed only within its own-
ership boundary.

2.3 Discussion
In order to allow more precise detection of implementation-

level composition, we employ the following constraint, stan-
dard for other problem definitions that require analysis of
incomplete programs [22, 20]. We only consider executions
in which the invocation of a boundary method does not
leave Cls—that is, all of its transitive callees are also in
Cls. In particular, if we consider the possibility of unknown
subclasses, all instance calls from Cls could potentially be
”redirected” to unknown external code that may affect the
composition inference. For example, a field may be iden-
tified as composition in the current set of classes but an
unknown subclass may override some method and the over-
riding method may leak the field (e.g., by passing it to a
static field).

4Note that in Java, a unique non-trivial (i.e., non-Object)
common supertype may not exist. A detailed discussion
appears in [16].

package zip;

public class InflaterInputStream {
protected Inflater inf;

protected byte[] buf;

public InflaterInputStream(Inflater inf,

int size) {
this.inf=inf;

buf=new byte[size]; }
public InflaterInputStream(Inflater inf) {

this(inf, 512); }
// methods read and fill contain instance calls on inf

}

public class ZipInputStream extends

InflaterInputStream {
private ZipEntry entry;

private CRC32 crc=new CRC32();

public ZipInputStream() {
super(new Inflater(true), 512); }

public ZipEntry getNextEntry() {
crc.reset();

inf.reset();

if ((entry=readLOC())==null) return null;

return entry; }
private ZipEntry readLOC() {

ZipEntry e=new ZipEntry();

// code reads and writes fields of e
return e; }

}

public class ZipOutputStream extends

DeflaterOutputStream {
private ZipEntry entry;

private Vector entries=new Vector();

private Hashtable names=new Hashtable();

private CRC32 crc=new CRC32();

public ZipOutputStream() {
super(new Deflater(...)); }

public void putNextEntry(ZipEntry e) {
// code reads and writes fields of e
if (names.put(e.name, e)!=null) { ... }
entries.addElement(e);

entry=e; }
public void closeEntry() {

ZipEntry e=entry;

// code reads and writes fields of e
crc.reset();

entry=null; }
public void finish() {

Enumeration enum=entries.elements();

while (enum.hasMoreElements()) { ... } }
}

Figure 3: Sample package zip.



Thus, Cls is augmented to include the classes that provide
component functionality as well as all other classes transi-
tively referenced. In the experiments presented in Section 5
we included all classes that were transitively referenced by
Cls. This approach restricts analysis information to the cur-
rently ”known world”—that is, the information may be in-
validated in the future when new subclasses are added to
Cls. Another approach is to change the analysis to make
worst case assumptions for calls that may enter some un-
known overriding methods. However, in this case, the anal-
ysis will be overly conservative and likely report fewer com-
positions. Thus, we believe that it is more useful to restrict
the analysis to the known world; of course, the analysis user
must be aware that the information is valid only for the
given set of known classes.

3. POINTS-TO ANALYSIS
Points-to analysis determines the set of objects that a

given reference variable or a reference field may point to.
This information has a wide variety of uses in software tools
and optimizing compilers. In this paper, points-to informa-
tion is used for ownership inference. It is needed to con-
struct a graph that approximates all possible object graphs
that can happen when arbitrary client code is built on top
of Cls. There is a large body of work on points-to analy-
sis with different trade-offs between cost and precision. In
this paper, we consider ownership inference based on the
Andersen-style flow- and context-insensitive points-to anal-
ysis for Java from [21].5

3.1 Points-to Analysis for Java
The points-to analysis is defined in terms of three sets. Set

R is the set of locals, formals and static fields of reference
type. Set O is the set of object names; the objects created
at an allocation site si are represented by object name oi ∈
O. Set F contains all instance fields in program classes.
The analysis solution is a points-to graph where the edges
represent the following ”may-refer-to” relationships:

• Let r ∈ R and o ∈ O. An edge r → o in the points-
to graph means that at run time r may refer to some
object that is represented by o.

• Let f ∈ F be a reference instance field in objects rep-

resented by some o ∈ O. An edge o
f
→ o2 means that

at run time field f of some object represented by o

may refer to some object represented by o2.

• If o represents array objects, o
[]
→ o2 shows that some

element of some array represented by o may refer at
run time to an object represented by o2.

The Andersen-style points-to analysis for Java from [21]
is a relatively precise flow- and context-insensitive inclusion-
based analysis. It propagates may-refer-to relationships by
analyzing program statements. For example, when it ana-
lyzes statement ”p = q” it infers that p may refer to any
object that q may refer to.

5Flow-insensitive analyses do not take into account the
flow of control between program points and are less precise
and less expensive than flow-sensitive analyses. Context-
sensitive analyses distinguish between different calling con-
texts of a method and are more precise and more expensive
than context-insensitive ones.

void main() {
ZipEntry ph ZE;

ZipInputStream ph ZIS;

ZipOutputStream ph ZOS;

ph ZE = new ZipEntry();

ph ZIS = new ZipInputStream();

ph ZOS = new ZipOutputStream();

ph ZE.setCRC(0);

ph ZE = ph ZIS.getNextEntry();

ph ZOS.putNextEntry(ph ZE);

ph ZOS.closeEntry();

ph ZOS.finish();

}

Figure 4: Placeholder main method for zip.

3.2 Fragment Points-to Analysis
Points-to analyses and Andersen’s analysis in particular

are typically designed as whole-program analyses; they take
as input a complete program and produce points-to graphs
that reflect relationships in the entire program. However,
the problem considered in this paper requires points-to anal-
ysis of a partial program. The input is a set of classes Cls

and the analysis needs to construct an approximate object
graph that is valid across all possible executions of arbitrary
client code built on top of Cls. To address this problem we
make use of a general technique called fragment analysis due
to Nasko Rountev [19, 22, 20]. Fragment analysis works on
a program fragment rather than on a complete program; in
our case the fragment is the set of classes Cls.

Initially, the fragment analysis produces an artificial main
method that serves as a placeholder for client code written
on top of Cls. Intuitively, the artificial main simulates the
possible flow of objects between Cls and the client code.
Subsequently, the fragment analysis attaches main to Cls

and uses some whole-program analysis engine to compute a
points-to graph which summarizes the possible effects of ar-
bitrary client code. The fragment analysis approach can be
used with a wide variety of points-to and class analyses; for
the purposes of this paper we only consider fragment analy-
sis used with the Andersen-style points-to analysis from [21].

The placeholder main method for the classes from Fig-
ure 3 is shown in Figure 4. The method contains variables
for types from Cls that can be accessed by client code. The
statements represent different possible interactions involv-
ing Cls; their order is irrelevant because the whole-program
analysis is flow-insensitive. Method main invokes all public
methods from the classes in Cls designated as accessible.

The details of the fragment analysis will not be discussed
here; they can be found in [22]. For the purposes of our
analysis we discuss the object reachability [20] property of
the results computed by the fragment analysis. Consider
some client program built on top of Cls and an execution
of this program (the program must satisfy the constraints
discussed in Section 2.3). Let r ∈ R be a variable declared
in Cls and at some point during execution r is the start of
a chain of object references that leads to some heap object.
In the fragment analysis solution, there will be a chain of
points-to edges that starts at r and leads to some object
name o that represents the run-time object. A similar prop-
erty holds if r is declared outside of Cls. In this case, in the
fragment analysis solution, the starting point of the chain is
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Figure 5: Points-to graph computed by the fragment
points-to analysis.

the variable from main that has the same type as r. This
property is relevant for the ownership and composition anal-
ysis described in Section 4 as the points-to graph is used to
approximate all possible object graphs and thus all possible
accesses must be taken into account.

We illustrate this property for our points-to analysis. Con-
sider the example from Figures 3 and 4. There are three
allocation sites in the main method; they are denoted by
names ZE1, ZIS1 and ZOS1. Name byte[] corresponds to
the allocation site in class InflaterInputStream. There
are three allocation sites in class ZipInputStream; they are
denoted by names CRC1, Inflater1 and ZE2. There are four
allocation sites in class ZipOutputStream; they are denoted
by Vector1, Hashtable1, Deflater1 and CRC2. In addi-
tion, we consider the allocation sites in Vector (recall Fig-
ure 1), which are transitively reachable; they are denoted
by Object[] and VIter1. The points-to graph computed
by Andersen’s analysis from the code in Figures 4, 3 and
1 is shown in Figure 5. Heap object names are underlined
and reference variable names are prefixed by the name of
their declaring method. For simplicity, implicit parameters
this and object names Inflater1, byte[], Hashtable1

and Deflater1 are not shown.

4. IDENTIFYING COMPOSITION
RELATIONSHIPS

We propose a novel analysis for ownership inference that is
based on the output of the fragment points-to analysis. The
ownership analysis constructs the approximate object graph

Ag which approximates all possible run-time object graphs
that can happen when client code is built on top of Cls. The
analysis uses Ag to identify a boundary subgraph rooted at o

for each object name o; the subgraph contains paths that are
guaranteed to represent flow within the ownership boundary
of o. Whenever the edge appears in the boundary of its
source for all edges labeled with f , the relationship through
f is identified as composition.

4.1 Approximate Object Graph
The nodes in Ag are taken from the set of object names

O and the edges represent ”may-access” relationships. Fig-
ure 6 outlines the construction of Ag given a points-to graph
Pt . Set Cm denotes the set of object names that represent
the contexts of invocation of method m. If m is an instance
method or constructor, Cm is the points-to set of the implicit

input Stmt : set of statements Pt : R ∪ O → P(O)
output Ag : O → P(O)
[1] foreach

s : l = new C(...) s.t. l not immediately passed or
immediately returned to another context,
s : l = r.m(...) s.t. r 6= this,
s : l = r.f s.t. r 6= this and l assigned to a variable

[2] add {c → oj | c∈CEnclMethod(s) ∧ oj ∈Pt(l)} to Ag

// add access edges due to flow from callees to callers
[3] foreach

s : l = new C(r),
s : l.m(r) s.t. l 6= this,
s : l.f = r s.t. l 6= this

[4] add {oi → oj | oi∈Pt(l) ∧ oj ∈Pt(r)} to Ag

// add access edges due to flow from callers into callees

[5] foreach oi
f
→ oj ∈ Pt label with f each oi → oj ∈ Ag

Figure 6: Construction of Ag. P(X) denotes the
power set of X. Ag is initially empty.

parameter this of m. If m is a static method Cm includes
the union of the points-to sets of this for all instance meth-
ods or constructors that may call m (directly or through a
sequence of static calls); it includes root if m is main or may
be called from main.

Lines 1-2 account for edges due to flow from the contexts
of the callee to the contexts of the caller. For example, at a
constructor call new edges are added to Ag from each con-
text enclosing the call to the name representing the newly
created object. Similarly, at an instance call not through
this new edges are added from each context enclosing the
call to each returned object. Note that when the newly con-
structed object is immediately passed to another context
(e.g., as in new A(new B(...))), or immediately returned to
another context (e.g., as in returnnewV Iterator(this)), no
new edges are added to that object from the contexts enclos-
ing the constructor call. Also, at indirect read statements,
no edges are added when variable l is not assigned or passed
as an explicit or implicit argument later (e.g., it is used only
to access instance or array fields such as in x=l[i]). This is
consistent with the definition of the relaxed object graph in
Section 2.1. Lines 3-4 account for edges due to flow from
the contexts of the caller to the contexts of the callee. For
example, at instance calls edges are added to each object in
the points-to set of a reference argument, from each object
in the points-to set of the receiver. Finally, line 5 labels the
edges with the appropriate field identifier. For brevity, we
omit discussion of static fields. The actual implementation
creates edges from root to each object in the points-to set of
a static field; the case is handled correctly by this algorithm
and by the algorithm in Section 4.2.

We discuss the reachability property of the approximate
object graph. Consider some client program built on top
of Cls and an execution of this program (the program must
satisfy the constraints discussed in Section 2.3). Let c be
a context (i.e., root or a heap object) and at some point
during execution c is the start of a chain in the relaxed ob-
ject graph that leads to some heap object or. In Ag , there
will be a chain of edges that starts at the representative of
c and leads to the representative of or. Figure 7 shows the
approximate object graph computed from the code on Fig-
ures 3, 4 and 1, and the points-to graph in Figure 5 (only
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Figure 7: Approximate object graph computed by
the algorithm in Figure 6.

object names from Figure 5 are shown). For the majority
of edges inference is straight-forward. For example, edges
root→ZIS1, root→ZIS2 and root→ZE1 are due to the con-
structor calls in main and edges ZIS1→CRC1 and ZIS1→ZE2

are due to the constructor calls in class ZipInputStream.
Edge ZOS1→VIter1 is due to call enum=entries.elements()
in method finish. Edge VIter1→Vector1 is due to state-
ment return new VIterator(this) in method elements; note
that there is no edge Vector1→VIter1 due to this state-
ment. Edge root→ZE2 is due to statement ph ZE = ph ZIS .
getNextEntry() in main, and edges ZOS1→ZE2 and ZOS1→ZE1

are due to statement ph ZOS .putNextEntry(ph ZE) in main.
Edges Object[]→ZE2 and Object[]→ZE1 are due to flow at
statement data[at ] = e in addElement.

4.2 Ownership Boundary
Procedure computeBoundary in Figure 8 takes Ag and

object name oi as input and outputs subgraph Bndry(oi).
Subgraph Bndry(oi) contains paths that are guaranteed to
represent flow within the ownership boundary of an instance
represented by oi. More precisely, we have the following
lemma. Let or

i be a heap object represented by oi. For ev-
ery edge e: o → oj ∈ Bndry(oi) we have that if or

i dominates
some or then or

i dominates the or
j that or refers to. There-

fore, for every or
i and run-time path p: or

i → ...or → or
j ,

whose representative is in Bndry(oi), we have that or
i domi-

nates or
j . For example, the boundary of ZOS1 includes nodes

ZOS1,CRC2,Vector1,Object[] and VIter1 and the edges
between them. There are paths ZOS1→CRC2, ZOS1→VIter1,
ZOS1→Vector1, ZOS1→VIter1→Vector1, ZOS1→Vector1→
Object[] and ZOS1→VIter1→Vector1→Object[]. It is easy
to see that for example for every run-time ZOS1r→Vector1r ,
ZOS1r dominates Vector1r.

Below we briefly outline the algorithm and the correctness
argument. The algorithm uses the fact that or

j flows from
object or

i to some object or
k only if one of the following is

true: (1) or
k has a handle to both or

i and or
j (and due to the

reachability property Ag contains edges ok → oi, ok → oj ,
oi → oj), or (2) or

i has a handle to both or
k and or

j (and
Ag contains edges oi → ok, oi → oj , ok → oj). This obser-
vation helps identify encapsulation more precisely. Suppose
that our running example has another input stream object,
created by root and denoted by name ZIS2. The relation-
ship between ZIS2 and its crc object would be represented by
edge ZIS2→CRC1 in Figure 7. A naive algorithm may iden-
tify root as the dominator of the crc objects, and fail to iden-
tify the composition relationship between ZipInputStream

and CRC32. In fact, the CRC1 object is created and domi-
nated by its enclosing ZIS1 object because there is no ok

procedure findClosureSet // of o → oj w.r.t. oi

input Ag : O → P(O) o → oj : O × O oi: O n: Int

output Closure(oi, n): P(O × O) Prt(oi, n): P(O × O)
initializeWl={}, Closure(oi ,n)={}, Prt(oi ,n)={}
[1] mark o → oj , add it to Wl and to Closure(oi ,n)
[2] while Wl not empty
[3] remove o → oj from Wl

[4] foreach ok → oj s.t. ok → o and ok reachable from oi

[5] if ok → oj is unmarked
[6] mark ok → oj , add it to Wl and Closure(oi, n)
[7] add ok → o to Prt(oi, n)
[8] foreach ok → oj s.t. o → ok

[9] if ok → oj is unmarked
[10] mark ok → oj , add it to Wl and Closure(oi, n)
[11] add o → ok to Prt(oi, n)

procedure computeBoundary // of oi

input Ag : O → P(O) oi: O

output Bndry(oi): P(O × O)
initialize n=0
[1] foreach unmarked edge o → oj reachable from oi

[2] findClosureSet(o → oj ,oi,n++)
[3] foreach oi → oj s.t. ∃ok s.t. ok → oi and ok → oj

[4] mark the Closure set of oi → oj as forbidden
[5] while empty Prt(oi, k) and Closure(oi, k) not forbidden
[6] add Closure(oi, k) to Bndry(oi)
[7] foreach e ∈ Closure(oi, k) remove e from each Prt

[8] remove Prt(oi, k) and Closure(oi, k)

Figure 8: Ownership analysis.

such that either ok has handles to both ZIS1 and CRC1, or
ZIS1 has handles to both ok and CRC1; thus, the CRC1 ob-
ject created by the ZIS1 object does not flow to or from any
other context.

The algorithm builds the boundary of an object name oi

by adding edges. First, computeBoundary partitions the
edges reachable from oi into appropriate closure sets using
auxiliary procedure findClosureSet. Intuitively, the clo-
sure set of edge o → oj contains all edges ok → oj in the
transitive closure of oi, such that some or

k and or refer to the
same or

j . For example, the closure set of ZOS1→Vector1 is
{ZOS1→Vector1,VIter1→ Vector1}, and the closure set of
ZOS1→ZE1 is {ZOS1→ZE1,Vector1→ZE1,Object[]→ZE1}.
The role of the parent set Prt (discussed later) is to en-
sure that the relevant paths to o → oj stay in boundary.
Bndry(oi) grows from zero to one edge, oi → oj , when (i)
there is no ok that has handles to both oi and oj and (ii)
there is no ok such that oi has handles to both ok and oj , and
ok has a handle to oj . The first condition is guaranteed by
the check that the Closure set of oi → oj is not forbidden,
and the second condition is guaranteed by the check that
the Prt set of oi → oj is empty; both checks are performed
at line 5. Thus, an edge oi → oj is added to the empty
boundary of oi only when it is guaranteed that the oi object
accesses the oj object exclusively (i.e., no other object has a
handle to it). Examples of such edges are ZIS1→CRC1 and
ZOS1→CRC2. Clearly, the lemma holds in this case.

Consider an edge o → oj that is added to Bndry(oi) at
line 6. Consider some client program built on top of Cls and
an execution of this program (the program must satisfy the
constraints discussed in Section 2.3). Let or

i be any run-time



object represented by oi and or be an object dominated by
or

i . We need to examine all ok such that some or
j referred

by or may flow to or from or
k (i.e., there is an edge or

k → or
j

in the relaxed object graph). If all these or
k are dominated

by or
i then or

j is dominated by or
i .

Object or
j flows from or into some or

k when one of the
following conditions is true. First, or

k has handles to both
or and or

j (e.g., or
j may be returned to or

k from a method
invoked on or, or it may be passed as an argument from or

k

to a method invoked on or). Since or
i dominates or we have

that or
i dominates or

k. This case is examined at lines 4-7 in
findClosureSet and ok → oj is added to the worklist; it
is examined in a subsequent iteration of the while loop in
findClosureSet in order to find the representatives of the
objects that or

j may flow to from or
k. In addition, ok → oj is

added to Closure(oi, n), the closure set of o → oj . Second,
or

j may flow from or into some or
k such that or has handles to

both or
k and or

j . Clearly, in this case we have that o → ok ∈
Bndry(oi) because o → ok is in the Prt set of o → oj ; recall
that an edge is removed from a Prt set only when it is added
to the boundary at lines 6-7 in computeBoundary. We
may assume that the lemma holds for o → ok ∈ Bndry(oi)—
that is, if or

i dominates or then or
i dominates the or

k referred
to by or. Thus, we have that or

i dominates or
k. This case is

examined at lines 8-11 in findClosureSet and appropriate
ok → oj are added to the worklist and to the closure set.

We briefly illustrate the algorithm on our running exam-
ple. Consider the boundary of ZIS1. There is a single closure
set that is not forbidden, Closure(ZIS1, 0)={ZIS1→CRC1}
with corresponding parent set Prt(ZIS1, 0)={} and edge
ZIS1→CRC1 is added to Bndry(ZIS1) at line 6. Consider
the boundary of ZOS1. As a result of findClosureSet in
lines 1-2 there are four closure sets that are not forbidden:
Closure(ZOS1, 0)={ZOS1→CRC2}, Closure(ZOS1, 1) ={ZOS1→
VIter1}, Closure(ZOS1, 2)={ZOS1→Vector1,VIter1→Vect-
or1} and Closure(ZOS1, 3)={Vector1→Object[]}. Their
corresponding parent sets are Prt(ZOS1, 0)={}, Prt(ZOS1, 1)
={}, Prt(ZOS1, 2)={ZOS1→VIter1}, and Prt(ZOS1, 3)={}.
The algorithm processes the first closure set and adds edge
ZOS1→CRC2 to Bndry(ZOS1). Then it adds the second clo-
sure set—that is, edge ZOS1→VIter1 to the boundary and
deletes the edge from the third parent set. The third parent
set becomes empty and ZOS1→Vector1 and VIter1→Vector1

are added to the boundary. Finally, edge Vector1→Object[]

is added to the boundary. Thus we have the following bound-
ary graphs: Bndry(ZIS1) = {ZIS1→CRC1}, Bndry(Vector1)
= {Vector1→Object[]} and Bndry(ZOS1) = {ZOS1→CRC2,
ZOS1→Vector1, ZOS1→VIter1, Vector1→Object[],VIter1
→Vector1}.

A corollary of the lemma is that whenever we have an
edge oi→oj ∈ Bndry(oi) each or

i owns the or
j instances

that it may refer to. If for every edge labeled with f we

have o
f
→ o′ ∈ Bndry(o) the analysis identifies one-to-one

implementation-level composition or collection ownership.
Due to space constraints inference of one-to-many relation-
ships is not discussed here; it is addressed in detail in [16].

4.3 Analysis Complexity
Let N be the size of the program being analyzed (i.e., Cls

and the placeholder main)—that is, the number of state-
ments, the number of object names and the number of refer-
ence variables is of order N . The complexity of the Andersen-
like points-to analysis for Java from [21] is O(N3). The com-

plexity of the construction of the approximate object graph
in Figure 6 is O(N3) as well; there are O(N) statements and
for each statement the algorithm performs at most O(N2)
work (due to lines 2 and 4). Consider procedure compute-
Boundary in Figure 8. The code for partitioning the edges
in the transitive closure of oi into closure sets (lines 1-2) ex-
amines each edge and for each edge performs at most O(N)
work: for edge o → oj there may be at most O(N) nodes ok

such that ok → o and ok → oj (examined at lines 4-7 in find-
ClosureSet); similarly, there may be at most O(N) nodes
ok such that o → ok and ok → oj (examined at lines 8-11
in findClosureSet). Therefore, the complexity of lines 1-2
is O(N3). The while loop that adds edges to the boundary
(lines 5-8) examines each edge at most once, and each edge
is removed from at most O(N) parent sets. Therefore, the
complexity of lines 5-8 is O(N3) as well. To conclude, the
complexity of our analysis is dominated by the computation
of the boundary sets which is worst-case O(N4).

5. EXPERIMENTAL STUDY
The goal of the study is to address two questions. First,

how often does our analysis discover implementation-level
composition? Second, how imprecise the analysis is—that
is, how often it misses implementation-level composition?

We performed experiments on the 7 Java components
listed in Table 1. The analysis implementation is based on
the Soot framework [25]. The components are from the stan-
dard library packages java.text and java.util.zip, also
used in [20]. The components are described briefly in the
first two columns of Table 1. Each component contains the
set of classes in Cls (i.e., the classes that provide component
functionality plus all other classes that are directly or tran-
sitively referenced). The number of classes in Cls and the
number of classes that implement the component function-
ality is shown in column (3). We considered all reference
instance fields in the classes that implement the component
functionality; this number is given in column (4).

5.1 Results
We applied the algorithm described earlier in order to

determine which fields accounted for composition relation-
ships. Column (5) in Table 1 shows how many of the fields
from column (4) are identified as one-to-one compositions
and column (3) shows how many are identified as owned
collections (i.e., arrays and standard java.util collections).
On average, the analysis reported 30% one-to-one composi-
tions and 10% owned collections—that is, 40% of the ref-
erence instance fields account for representation that is not
being exposed outside of its enclosing object.

5.2 Analysis Precision
The issue of analysis precision is of crucial importance for

software tools. If an analysis is imprecise, it may report
that the relationship between two classes is not a composi-
tion while in reality it is, or that a collection is not owned
while in reality it is owned (i.e., the analysis reports that
certain representation may be exposed while in fact it is
not). Such information is not useful and may confuse the
user and even render the tool unusable. For example, if a
user attempts to ensure the consistency between the code
and the composition relationships in UML design class dia-
grams, imprecision will mean that a large chunk of code will
have to be examined manually. Since imprecision results in



(1)Component (2)Functionality (3)#Classes (4)#Fields Compositions

Cls/Functionality (5)#One-to-one (6)#Owned collections

Analysis Perfect Analysis Perfect

gzip GZIP IO streams 199/6 7 4(57%) 4(57%) 0(0%) 0(0%)
zip ZIP IO streams 194/6 10 3(30%) 3(30%) 2(20%) 2(20%)
checked IO streams with checksums 189/4 2 0(0%) 0(0%) 0(0%) 0(0%)
collator text collation 203/15 24 10(42%) 10(42%) 6(25%) 6(25%)
date date formatting 205/17 20 3(15%) 4(20%) 5(25%) 5(25%)
number number formatting 198/10 3 2(67%) 2(67%) 0(0%) 0(0%)
boundary iter. over boundaries in text 199/13 7 0(0%) 0(0%) 0(0%) 0(0%)
Average 30% 31% 10% 10%

Table 1: Java components and implementation-level compositions.

waste of human time, analysis designers must carefully and
precisely identify and evaluate any sources of imprecision.

In our experiments, we examined the fields that were
not identified as compositions or owned collections. We at-
tempted to prove that it was possible to write client code
s.t. an object stored in such a field would be exposed (i.e.,
it would not be owned by its enclosing object in accordance
with the ownership model in Section 2.1). In all cases, ex-
cept one, we were able to prove exposure (the case is de-
scribed in detail in [16]). Thus, on our code base, the anal-
ysis achieves almost perfect precision.

5.3 Conclusions
Our results indicate that the ownership model captures

conceptual composition relationships appropriately—we en-
countered several cases when values of private fields were
stored in other parts of the object representation. Thus, a
model based on exclusive ownership (i.e., a model which re-
quires that an owned object is referenced only by its owner)
would not have been sufficient. The results also show that
composition relationships occur often. Therefore, the anal-
ysis can provide useful information for reverse engineering
tools. It is important that precise results can be obtained
with practical analysis—the combined running time of the
points-to and composition inference analyses does not ex-
ceed 10 seconds on any component (executed on a 900MHz
Sun Fire 380R). Of course, a threat to the validity of our
results is the relatively small code base used in the experi-
ments; the results need to be confirmed on more components.

6. RELATED WORK
Work by Kollmann and Gogolla [14] and more recently by

Guéhéneuc and Albin-Amiot [12] presents definitions and
identification algorithms for implementation-level associa-
tion, composition and aggregation relationships. Our work
focuses on compositions and differs from [14] and [12] in both
the definition of implementation-level composition and in
the identification algorithm. The definition of composition
in [14] and [12] is based on exclusive ownership. This may
not be sufficient to model commonly used patterns such as
iterators, decorators, and factories [9], as well as the com-
mon situation when instance fields refer to owned objects
that are temporarily accessed by other parts of the rep-
resentation of the owner. Our definition is based on the
owners-as-dominators model which does not require exclu-
sive relationship with the owner; as observed by us and other
researchers [6, 18], this model captures well the notion of
composition in modeling [23].

We present an identification algorithm that may be more
appropriate. Guéhéneuc and Albin-Amiot propose the use
of dynamic analysis, but point out serious disadvantages.
First, dynamic analysis is slow, second, it requires a com-
plete program, and third, the results that are obtained may
be incomplete because they are based on particular runs of
particular clients of the component. Kollmann and Gogolla
use dynamic analysis as well. Our detection algorithm is
based on practical static analysis that works on incomplete
programs and produces a solution that is valid over all un-
known clients of the component.

Work in [13] and [24] addresses the issue of recovering
one-to-many associations through containers, since reverse
engineering tools typically loose the association between the
enclosing class and the class whose instances are stored in
the container field (recall the entries field of Vector type
in Figure 3). Identification of composition is not addressed
in these papers. Although our work focuses on identification
of compositions, our methodology identifies one-to-many as-
sociations as well as described in [16].

Ownership type systems disallow certain accesses of object
representation [17, 6, 5, 1, 3]. These systems require type
annotations and typically do not include automatic inference
algorithms or empirical investigations. In contrast, we infer
ownership automatically and present an empirical study of
the effectiveness of our approach; we believe that our analy-
sis can be usefully incorporated in software tools for reverse
engineering of class diagrams from Java code. The only type
annotation inference analysis that we are aware of is given
by Aldrich et al. [1] for the purposes of alias understand-
ing. Similarly to [12], the owned annotation is used only
when the analysis is able to prove exclusive ownership; in
the majority of cases it infers alias parameters. Our work
focuses on a different problem, composition inference, and
infers ownership using a model that captures better the no-
tion of composition in modeling. Grothoff et al. [11] and
Clarke et al. [7] present tools for checking of confinement
within a package and within a class respectively. They de-
fine confinement rules and the tools check if code conforms
to these rules. Our work focuses on a different problem,
composition inference, and takes a different approach, the
use of semantic analysis that is based on points-to analy-
sis. We believe that such analysis may be more appropriate
than confinement rules for the purposes of the identification
of object ownership and composition; for example, the rules
in [11] and [7] do not handle pseudo-generic containers well.

Bruel et al. [4] and Barbier et al. [2] formalize UML inter-
class relationships by defining sets of characteristics for asso-



ciation, aggregation and composition; they do not address
implementation-level relationships and the problem of re-
verse engineering. In contrast, we consider implementation-
level relationships and propose a methodology for their re-
verse engineering with an empirical investigation.

7. CONCLUSIONS AND FUTURE WORK
We present an analysis that identifies composition rela-

tionships in Java components. We define an ownership-
based implementation-level composition model and a static
analysis that infers composition relationships in incomplete
programs. Our experimental study indicates that (i) the
ownership-based model captures well the notion of composi-
tion in modeling and (ii) implementation-level compositions
occur often and almost all such compositions can be iden-
tified. Clearly, no definitive conclusions can be drawn from
these limited experiments. In the future, we plan to focus
on further empirical investigation.
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