
Practical Static Analysis for Inference of Security-Related Program Properties

Yin Liu
Department of Computer Science
Rensselaer Polytechnic Institute

liuy@cs.rpi.edu

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

milanova@cs.rpi.edu

Abstract

We present a static analysis framework for inference of
security-related program properties. Within this framework
we design and implement ownership, immutability and in-
formation flow inference analyses for Java.

We perform empirical investigation on a set of Java com-
ponents, and on a set of established security benchmarks.
The results indicate that the analyses are practical and pre-
cise, and therefore can be integrated in program compre-
hension tools that support reasoning about software secu-
rity and software quality.

1 Introduction

Unintended object access and unintended information
flow can seriously compromise software quality and soft-
ware security. For example, in Java 1.1 the security function
Class.getSigners mistakenly returned a reference to
an internal array; untrusted clients could modify this array
and compromise the security of the system. The problem is
especially relevant in web applications, which often exhibit
vulnerabilities due to unintended information flow [14].
Current languages such as Java do not provide mechanisms
for preventing unintended object access and unintended in-
formation flow; therefore it is important to study reasoning
techniques that can help alleviate this problem.

Our paper proposes a static analysis framework for in-
ference of security-related properties in Java programs.
Specifically, we proposeownership, immutability and in-
formation flowinference analyses; these analyses reveal in-
formation about object access and information flow in the
program, and may help uncover serious vulnerabilities.

Theownership propertyis inferred on instance fields and
variables of class type. A field/variable of typeB in class
A is owned, if every A object controls theB object it ref-
erences through this field/variable (i.e., theA object may
create aB object, pass theB object to other parts of its
representation, but cannot expose theB object outside).

The immutability propertyis inferred on method param-

eters, methods, instance fields and variables of class type.
A parameterp in methodm is inferred asread-only
if no invocation ofm modifies the heap structure rooted
at the object referred byp. A methodm is inferred as
read-only if no invocation of m modifies the visible
state. A field/variable of typeB in classA is inferred as
read-only if no A object ever modifies the heap structure
rooted at theB object referenced through this field/variable.

The information flow propertyis inferred for sensi-
tive fields and variables. A field/variable is inferred as
confidential if there is no information flow from that
field/variable to an untrusted part of the code (i.e., asink).
A field/variable is inferred assafe if there is no informa-
tion flow from an untrusted part of the code (i.e., asource)
to that field/variable.

The proposed framework and inference analyses work
directly on Java programs and do not require annotations by
the programmer. They work on complete programs and on
incomplete programs (i.e., software components). This is
an important feature because the problem of analysis of in-
complete programs arises often (for example, given a set of
interacting classes such as a secure server-side component,
we are interested if there could be compromising object ac-
cess or information flow triggered by a client).

The proposed framework and inference analyses have
several applications. They can be used to (i) verify speci-
fications, (ii) visualize ownership, immutability and infor-
mation flow (e.g., as part of reverse-engineered UML dia-
grams), and (iii) infer ownership, immutability or informa-
tion flow types for the purposes of type checking. The anal-
yses can be used during software development and mainte-
nance to reveal important information about object access
and information flow; they may uncover vulnerabilities.

We have implemented the framework and inference anal-
yses. Our empirical results demonstrate that the analyses
are practical and precise and uncover vulnerabilities in real-
world web applications. Therefore, they can be incorpo-
rated in program comprehension tools that support reason-
ing about software security and software quality.

The contributions of this work are the following:



Register

{owned} {owned}

{owned}

{read-only}

{owned-item}

{read-only}

1

*1

*

{owned-collection}

{read-only}

ProductSpec

{safe} Money price

Sale

makeLineItem(

{read-only} ProductSpec s, int q)

SaleLineItem

getSubTotal(){read-only}

ProductCatalog

getSpec(Integer id) {read-only}

Figure 1. UML class diagram with ownership, immutability and information flow annotations.

• We present a static analysis framework for inference
of security-related properties. Within this framework,
we present run-time models and analyses for several
security-related properties: ownership, immutability
and information flow.

• We present an empirical study on a set of Java compo-
nents and on a set of Java web applications established
as security benchmarks [14, 1]. The study shows that
the analyses are practical and precise, and therefore,
can be integrated in program comprehensive tools.

2 Motivating Example

As a motivating example, consider the UML class dia-
gram in Figure 1. It illustrates the design of a component
of a Point-of-Sale (POS) system [8]. The solid lines repre-
sent permanent associations (implemented through instance
fields), and the dashed lines represent temporary dependen-
cies (typically implemented through local variables). The
Java classes for this example, taken from [8] with minor
modifications, are given in Appendix A.

We have added ownership, immutability and information
flow annotations to the UML class diagram. These annota-
tions formalize the design and security requirements for the
POS system. They represent the desired properties of the
implementation of this design.

A Register object, an abstraction for the cash regis-
ter, controls the sale logic. It creates aProductCatalog
object that stores the specifications of all products (i.e., the
ProductSpec objects). TheRegister object creates
a Sale object, initiates the sale, passes information about
sale items to theSale object and completes the sale. When
a new sale item is processed, theRegister fetches the
correspondingProductSpec object from the catalog, and
passes that object to theSale object. TheSale object cre-
ates a newSaleLineItem object for each sale item and
passes theProductSpec object to it.

The clients of this component access public methods in
Register to perform various tasks such as starting a new
sale, entering a new sale line item, etc. These clients can
be running on store terminals in the case of a classic brick-

and-mortar POS system, or they can be running on remote
computers in a the case of a web-based POS system.

Let us consider several of the specified annotations.
The owned annotations betweenRegister and Sale
specifies that theSale object is part of the inter-
nal representation of theRegister object and should
not be leaked outside (i.e., to potentially untrusted
clients). The read-only annotation on the asso-
ciation betweenSaleLineItem and ProductSpec
specifies thatSaleLineItem has read-only access to
ProductSpec (i.e., it forbids SaleLineItem from
modifying ProductSpec ). The annotation on parameter
s (of type ProductSpec ) in methodmakeLineItem
in classSale , specifies thatmakeLineItem has read-
only access tos (i.e., it forbids makeLineItem from
modifying theProductSpec object referred bys). The
last two annotations formalize the design decision that the
ProductCatalog is the ”information expert” and the
only object that can initialize and update product informa-
tion. Theread-only annotations on methodsgetSpec
in classProductCatalog andgetSubtotal in class
SaleLinItem specify that these methods do not modify
certain visible state.

The safe annotation on fieldprice (of type Money)
in ProductSpec specifies an integrity requirement: it
should not be possible for a client to affect the price of
a product (e.g., a malicious client could modify the prod-
uct price or the computation of the sale total). Note that
ProductSpec objects are owned by theRegister ob-
ject; however, ownership does not prevent deeper informa-
tion flow violations such as leaks or modifications to sensi-
tive data that is part of the ownedProductSpec objects.

Our static analysis infers these properties. Recall the
code in Appendix A. Our analysis infers that fieldsale in
classRegister is owned; this property is visualized as
owned annotation on the association betweenRegister
and Sale in the reverse-engineered UML class diagram.
Visualizing ownership, immutability and information flow
as part of reverse-engineered UML class diagrams, could
help verify security-related design requirements and lead to
higher quality, more secure and understandable software.

2



3 Run-time Models

We consider ownership, immutability and information
flow properties as outlined in the previous sections. There
are two issues. First, we need to define run-time models
for these properties (e.g., what does it mean precisely that a
run-timeRegister object owns the run-timeSale object
that it references? Similarly, what does it mean that field
price is safe ?). Second, we need to design static analy-
ses that answer the following questions: given a propertyc,
does there exist an execution of the program that violatesc
(e.g., does there exist a client such that someRegister
object does not own itsSale object? Similarly, does there
exist a client that modifies the price of some product?).

Below, we briefly describe the models for the ownership,
immutability and information flow properties. We envision
that the framework can be augmented with additional useful
properties and corresponding static analyses.

3.1 Ownership Model

The ownership model is based on the notion ofowners-
as-dominators[5, 4, 19]. Essentially, this model requires
that an owner object controls the owned object—the owner
can create an owned object, pass it to other parts of its rep-
resentation, but cannot expose it to outside objects. This
model intuitively captures the notion of ownership and com-
position in modeling [5].

In this model, program execution is represented by an
object graphwhich shows access relationships between
run-time objects. There is an edgeo→o′ from run-time ob-
ject o to run-time objecto′ if and only if at some point of
program execution one of the following is true: (1) fieldf
of o refers too′, or (2) a methodm invoked with receivero
has a local variabler which refers too′. We say thato owns
o′ if and only if o is the immediate dominator ofo′ in the
object graph. Consequently, a fieldf or variablev in class
A of class typeB is owned, if and only if for every pro-
gram execution, each instance ofA owns the corresponding
instances ofB that it references throughf or v.

3.2 Immutability Model

Let e be an execution of a methodm on receiver object
o; e modifies an objecto′ if it triggers a change in the object
structure rooted ato′—that is,e leads to a statementp.f = q
which writes someo′′ reachable fromo′ (i.e.,p refers too′′

and there is a path of field edges fromo′ to o′′).
A parameterpi of methodm(...pi...) is read-only if

no execution of methodm modifies the objecto referred by
pi. A methodm is read-only if the following two con-
ditions are true: 1) all parameters ofm are read-only ,
and 2) no execution ofm modifies an object referred by a
static field.1

1Note that this definition of immutable method misses returned objects
(i.e., it does not include the entire visible state). That is, a methodm

Finally, we say thato has read-only access too′ if no
execution of a method on receivero modifieso′. A field f
or variablev of type B in classA is read-only , if and
only if for every program execution, each instance ofA has
read-only access to the corresponding instances ofB.

3.3 Information Flow Model
Intuitively, there is information flow from variablex to

variabley, denoted byx 7→ y if changes in the input values
of x are observable from the output values ofy. Such flows
aredirect and indirect [6, 7]. Direct flows can beexplicit
(i.e., data-flow based) andimplicit (i.e., control-flow based).
Indirect flows arise from compositions of direct flows. We
consideronly explicit flowwhich we conjecture, is suitable
for the purposes of program comprehension.

We consider the following information flows due to Java
statements. An assignment statementl = (...operator) r
leads to flowr 7→ l. An instance field write statement
l.f = r leads to flowr 7→ o.f (o is the run-time object
referred byl at the point of execution of the statement). An
instance field read statementl = r.f leads to flowo.f 7→ l
(again,o is the run-time object referred byr at the point of
execution of the statement). Finally, a method call statment
l = r0.m(r1, ...) dispatched to methodm′(this, p1, ..., ret)
leads to flowsr0 7→ this, r1 7→ p1, ... andret 7→ l (this
denotes the implicit parameterthis of m ′, pi denote the
formal parameters ofm ′, andret denotes a special variable
that holds the return value ofm ′).

There are two types of indirect flow: shallow flow and
deep flow. There isshallow flowfrom variablel to variable
r if there is a sequence of statements,executed in order, that
leads to indirect flow froml to r. For example, the execution
of statementl1.f = l leads to flowl 7→ o.f , and then the
execution ofl3 = l2.f (l1 and l2 both point to objecto)
leads to flowo.f 7→ l3. Finally the execution ofr = l3 − y
leads to flowl3 7→ r.

Note that whenl is a reference variable, there may be
flow from the object structure rooted atl. There isdeep
flow from the structure ofl to r if and only if there is shal-
low flow from somel′ to r, wherel′ is an alias of some
l.f1.f2...fk. Similarly, whenr is a reference variable, there
may be flow into the object structure rooted atr. There is
deep flow froml into the structure ofr if and only if there
is shallow flow froml into somer′, wherer′ is an alias of
somer.f1.f2...fk.

Certain program variables are designated as untrusted
sinks and other variables are designated as untrusted
sources; the selection of sinks and sources depends on the
security problem. We say that a fieldf or variablev in class
A is confidential , if and only if there is no program

can create an object and return this object to the caller, but our definition
would still considerm immutable. The choice is arbitrary—the definition
and corresponding analyses can be trivially changed to accommodate other
choices.

3



execution for which there is deep flow from the structure of
rooted atf or v to a sink. Similarly, a fieldf in classA is
safe if there is no information flow from a source to the
structure rooted atf or v. Section 4.3.3 and Section 5 give
concrete examples of potentially harmful information flow.

4 Static Analysis Framework

Our static analysis framework handles (i) analysis of
complete programs (whole programs), and (ii) analysis of
incomplete programs (software components). In the latter
case, the component is defined as a set of interacting classes
Cls with designatedaccessiblemethods and fields; a client
accessesCls through these accessible methods and fields.

Our framework is based on whole-program analysis. We
address the analysis of incomplete programs by employing
a general technique calledfragment analysis[24]. The frag-
ment analysis reduces the problem from analysis of an in-
complete program to an analysis of a complete program.
The fragment analysis is described in Section 4.1. Further-
more, the analysis problems require points-to information
and we employ a general-purpose points-to analysis. The
points-to analysis is described in Section 4.2.

The fragment analysis and the points-to analysis are a
general foundation that allows building of different client
analyses. These analyses form an inexpensive foundation
— they are dominated by Andersen’s analysis which has
complexityO(n3). So far we have built analyses that in-
fer ownership, immutability and information flow in ac-
cordance with the models outlined in the previous section.
These analyses are relatively inexpensive, both in terms of
worst-case complexity and in terms of running times. The
analyses are described in Section 4.3. We envision that the
framework will be augmented with other properties of in-
terest and corresponding client analyses.

4.1 Fragment Analysis
The fragment analysis produces an artificialmain

method that serves as a placeholder for client code writ-
ten on top ofCls. Intuitively, the artificialmain simulates
the possible flow betweenCls and the client code. Sub-
sequently, the fragment analysis attachesmain to Cls and
uses whole-program analysis to compute information that
approximates flow over all possible clients ofCls [24]. The
main method for our running example is given at the end
of Appendix A.

4.2 Points-to Analysis
Points-to analysis is a well-known program analysis. It

finds the objects that a given reference variable or a ref-
erence object field may point to. Points-to information is
needed by all of our client analyses; most likely it will
be needed by future client analyses as well. There is a
wide variety of points-to analyses, with different degrees
of precision and cost. Our work uses Andersen’s points-to

analysis [23, 9]. This analysis is flow-insensitive, context-
insensitive and inclusion-based; it uses an analysis variable
for each reference variable, and an object name for each
allocation site (i.e., objects are distinguished by their allo-
cation sites). Andersen’s analysis is cubic, and it scales to
large programs.

Most points-to analyses, including Andersen’s points-
to analysis, are formulated as whole-program analyses.
The placeholdermain method constructed by the fragment
analysis ”completes” a component and thus enables the use
of whole-program points-to analysis on the completed com-
ponent. Themain method approximates all possible clients
that could be built on top ofCls and thus the result of
the whole-program points-to analysis includes all points-to
graphs that could result from individual clients [24].

4.3 Client Analyses

So far we have developed ownership, immutability and
information flow inference analyses for Java within this
general framework. They work directly on Java code and
do not require annotations by the programmer; also, they
work on both complete programs and on software compo-
nents. The analyses infer properties in accordance with the
models presented in Section 3.

Next we briefly describe our analyses with illustrat-
ing examples. For the rest of the paper we use notation
h, hi, hj , etc. to denote analysis objects (i.e., the object
names corresponding to allocation sites used by our analysis
to represent run-time objects). In contrast, we use notation
o, oi, oj , etc. to denote run-time objects.

4.3.1 Ownership Client

Using the points-to graph, the ownership analysis first con-
structs theapproximate object graphAg , which approxi-
mates all possible run-time object graphs. The nodes inAg
are object names, and the edges represent ”may-access” re-
lationships. Subsequently, the ownership analysis usesAg
to reason about ownership. It examines an edgehi → hj

in Ag , and finds all the paths fromhi to hj . If all these
paths are confined within the ownership boundary ofhi, the
analysis concludes that foreachrun-time edgeoi → oj rep-
resented byhi → hj , oi dominates and therefore ownsoj .

Recall the code in Appendix A. In theAg for this code,
there is an edge fromhRegister (the object name that cor-
responds to line 33 and represents the instances of class
Register ) to hSale (the object name that corresponds to
line 4 and represents the instances of classSale ); in this
casehRegister is the only object that could accesshSale , and
the analysis concludes thathRegister ownshSale . The anal-
ysis infers that fieldsale in classRegister is owned
and the UML association betweenRegister andSale
is reverse engineered asowned. Thus, the implementation

4



meets the requirement stated in Figure 1. As another exam-
ple, consider the edge fromhRegister to hProductSpec ; there
are many access paths tohProductSpec sincehProductSpec is
passed tohSale and further down. However, all these access
paths are internal to the boundary ofhRegister and the anal-
ysis infers thathRegister ownshProductSpec . Thus, the UML
association betweenRegister and ProductSpec is
owned and the implementation meets the requirement
stated in Figure 1.

4.3.2 Immutability Client

The immutability analysis is based on standard side-effect
analysis [25, 17]. This analysis computes a setMod(m)
for each methodm—this set contains the objects that may
by written during an invocation ofm. In addition, we
computeTrClosure(v)—this set contains the objects tran-
sitively reachable fromv on a path of field edges.

Recall that by definition a parameterpi in method
m is read-only if no execution ofm writes an ob-
ject transitively reachable frompi. Thus, if the intersec-
tion of Mod(m) and TrClosure(pi) is empty, the anal-
ysis infers thatpi is read-only . Consider parameter
s in methodmakeLineItem . The analysis computes
Mod(makeLineItem ) = {hVector , hdata , hSaleLineItem}
(i.e., makeLineItem may write (1) the vectorhVector ,
(2) the internal array of the vectorhdata , and (3) the
newly created line item object,hSaleLineItem ). Accord-
ing to the points-to analysis, we haveTrClosure(s)
= {hProductSpec , hMoney1} (i.e., the specification object
hProductSpec itself, and the money objecthMoney1 referred
by its field price). The two sets have empty intersection,
and the analysis infers thats is a read-only parameter;
the implementation meets the requirement in Figure 1.

Recall that methodm is read-only if the follow-
ing two conditions are true: 1) all parameterspi of m
are read-only , and 2) no invocation ofm modifies
a static field. We haveMod(getSpec ) = ∅ and the
analysis infers that methodgetSpec is read-only ;
again, the implementation meets the requirement in Fig-
ure 1. However, assuming a mutableMoney class, we have
thatMod(getSubtotal ) = {hMoney1} which intersects
with TrClosure(getSubtotal .this) and the analysis in-
fers thatgetSubtotal is notread-only ;2 thus the im-
plementationviolatesthe read-only requirement stated
in Figure 1 (theread-only annotation is omitted from
the reverse engineered class diagram).

Finally, recall that a fieldf is read-only if every run-
time instance off ’s enclosing class has read-only access to
its f field. Leth be the analysis name of an instance of the

2Note thatMoney could be mutable or immutable. We assume a mu-
table implementation becausegetTotal in the textbook code wouldn’t
have worked with the immutable one.

enclosing class off . Our analysis considers each methodm
called on receiverh. If for each pairh andm we have that
the intersection ofMod(m) andTrClosure(h.f) is empty,
the analysis determines thatf is read-only . Consider
the call togetSubtotal at line 21. It modifies theprice
field of ProductSpec and the analysis determines that
a SaleLineItem object can modify aProductSpec
object, which is aviolation of the read-only require-
ment on the UML association betweenSaleLineItem
andProductSpec in Figure 1.

4.3.3 Information Flow Client

The information flow analysis consists of three parts: gener-
ation of annotated flow graph, summarization of the effects
of callees on callers, and demand-driven reachability prop-
agation on the summarized graph. This analysis is based on
CFL-reachability [21], and builds on ideas from [20].

There is shallow flow from variables to variabler, if r
could be reached froms through a valid flow path in the
summary flow graph. Tracking of deep flows from variable
s amounts to tracking shallow flows from multiple sources;
these sources are part of the object structure rooted ats.

Consider the code in Appendix A. For the purposes
of this security application, variables inmain (i.e., the
client) are designated as untrusted sources and sinks. Cons-
dier field price in classProductSpec . One can eas-
ily see that there is no shallow flow frommain into this
field. The only shallow flow, from local variableprice
to hProductSpec .price is due to the code at lines 10 and
11 in the constructor ofProductCatalog . However,
there could be deep flow frommain into field price.
First, the analysis infers shallow flow from variableq
in main to hSaleLineItem .quantity , denoted byq ;

hSaleLineItem .quantity . This flow is due to intermediate
flows q ; enterItem.q ; makeLineItem.q ;

SaleLineItem.q ; hSaleLineItem .quantity . Sec-
ond, the analysis infers flowhSaleLineItem .quantity ;

hMoney1 .amt after analysis of line 25 and the code in
methodtimes (hereamt stands for the field of simple
typedouble which holds the numeric value of the money
object). Consequently, the analysis infers that there is
deep flow from variableq in main (i.e., in client code)
to the object structure reachable fromprice (specifically,
price.amt) field price is notsafe . Thus, the implementa-
tion violatedthesafe requirement in Figure 1. The conse-
quences of this violation, and the previous violations, could
be significant—subsequent sales could fetch wrong product
prices and compute incorrect sale totals.

5 Empirical Results

The static analysis framework is implemented in Java us-
ing Soot 2.2.3 [29] and Spark [9]. It uses the Andersen-

5



(1)Component (2)Functionality (3)#Class inCls/ (4)#Fields in (5)#Rechable Methods
#Functionality Functionality

gzip GZIP IO streams 199/6 23 3481
zip ZIP IO streams 194/6 43 3506
checked IO streams&checksums 189/4 3 3428
collator text collation 203/15 169 3535
breaks text break 193/13 252 3487
number number formatting 198/10 76 3541

Table 1. Information on Java components.

style points-to analysis provided by Spark. We performed
the analysis with the Sun JDK 1.4.1 libraries. All exper-
iments were done on a 900MHz Sun Fire 380R machine
with 4GB of RAM. The implementation, which includes
Soot and Spark was run with a max heap size of 600MB.

We evaluated the framework and the analyses on sev-
eral Java components from the packagesjava.text and
java.util.zip (these components were used in related
analyses [22] and [16]3). The results on the components are
presented in Section 5.1. We also evaluated the framework
and the analyses on a set of web applications established as
security benchmarks [1, 14]. The results on the web appli-
cations are presented in Section 5.2.

The empirical study addresses two important issues.
First, it addresses the issue ofanalysis precision—that

is, how often the analyses report safe fields, methods and
parameters as unsafe (e.g., how often the information flow
analysis reports safe data as tempered?). Precision is cru-
cial: imprecise analysis is not merely useless, but also con-
fusing, and may discourage developers from using analysis-
based tools. For example, tracking information flow in web
applications requires that a large amount of code in Apache
is examined. Developers could spend valuable time exam-
ining potentially large amount of code until they determine
that the warning is due to analysis imprecision and not to
insecure information flow. It is important to note that the
analyses are safe—that is, if a field is reported asowned,
read-only , confidential or safe , then it is in fact
owned, read-only , confidential or safe .

Second, the study addresses the issue ofanalysis scala-
bility—do the analyses have acceptable cost? Analysis scal-
ability is important as well—if the analysis runs in hours or
days, developers would be less likely to use the tool.

5.1 Software Components

The components are described in the first three columns
of Table 1. Each component contains the set of classes in
Cls (i.e., the classes that provide component functionality
plus all other classes that are directly or transitively refer-

3The current paper does not include one of the 7 components used in
previous work, namelydate . We were unable to run this component with
our current Soot infrastructure.

enced); the total number of classes and the number of func-
tionality classes is shown in column (3). The number of
fields in functionality classes is shown in column (4). The
last column shows the number of methods in all classes (i.e.,
functionality classes and library classes), determined to be
reachable by Spark. The analysis attaches a placeholder
main to Cls and performs ownership, immutability and in-
formation flow analysis. Recall from Section 4.1 thatmain
approximates all possible clients that can be written on top
of Cls— therefore, the analysis results approximate over all
possible clients (e.g., if a fieldf is inferred asowned, then
it is guaranteed that one cannot write a client which exposes
the object stored inf outside of its enclosing object).

We applied theownership analysisdescribed in Sec-
tion 4.3.1 on instance fields in functionality classes. The
results are reported in Table 4. We applied theimmutabil-
ity analysesdescribed in Section 4.3.2 on instance fields in
functionality classes, on methods in functionality classes,
and on parameters of methods in functionality classes. The
results are reported in Table 2. We applied theinforma-
tion flow analysesdescribed in Section 4.3.3 on sensitive
fields (i.e., non-public fields) in functionality classes. In
our security model, the functionality classes are trusted, and
the client code is untrusted. Thus, the set of sinks and
the set of sources consist of all variables in placeholder
main . If a field f in functionality classC is inferred as
confidential (i.e., there is no deep flow fromf to to a
variablev in main ), then there is no client that causes deep
flow from f to the client. The results from confidentiality
and integrity inference are shown in Table 3.

Program #Instance Fields #Owned Fields
(reference type)

gzip 7 4(57%)
zip 10 5(50%)
checked 2 0(0%)
collator 17 9(53%)
breaks 7 0(0%)
number 2 1 (33%)

Table 4. Owned fields.

For each of the three analyses we examined manually the

6



Program #Fields #Immutable Fields #Methods #Immutable Methods #Parameters #Immutable Parameters
(reference type)

gzip 7 1 (14.29%) 25 1(4%) 33 3(9%)
zip 10 0 (0.00%) 48 11(23%) 60 16(27%)
checked 2 2 (100%) 11 5(45%) 14 7(50%)
collator 17 5 (29.41%) 80 51(64%) 100 63(63%)
breaks 7 6 (85.71%) 56 36(64%) 55 37(67%)
number 3 0 (0.0%) 81 42(52%) 100 47(47%)

Table 2. Immutable fields, methods and parameters.

Program #Fields #Leaked #Leaked #Tempered #Tempered
(non-public) (shallow) (shallow or deep) (shallow) (shallow or deep)

gzip 15 2(13.33%) 2(13.33%) 5(33%) 5(33%)
zip 29 9(31.03%) 13(44.83%) 16(55%) 18(62%)
checked 3 3(100%) 3(100%) 2(67%) 2(67%)
collator 134 22(16.42%) 33(24.63%) 11(8%) 16(12%)
breaks 241 6 (2.49%) 7 (2.90%) 5(2%) 5(2%)
number 66 22 (33.3%) 25 (37.88%) 6(9%) 6(9%)

Table 3. Confidentiality (fields leaked to client code) and integrity (fields tempered by client code).

reported results. We examined each non-owned field, muta-
ble field/parameter/method, and leaked/tempered field, and
attempted to construct a client that would expose appropri-
ate non-ownership, mutability or information flow. In all
cases, we were able to construct such a client. Thus the
analysis is precise—fields reported as non-owned are in-
deed non-owned; fields, parameters and methods reported
as mutable are indeed mutable; and fields reported as leaked
or tempered are indeed leaked or tempered.

In terms of cost, all analyses scale well. The ownership
analysis typically runs within 20 seconds (times range from
19s to 29s). The immutability analysis, which includes the
analysis of fields, methods and parameters, runs within sec-
onds as well (times range from 18s to 40s). The information
flow analysis, which includes both confidentiality and in-
tegrity inference, runs within 11 seconds on all components.

5.2 Web Applications
We use SecuriBench [1, 14], a set of Java Web appli-

cations established as benchmarks for research on program
security.4 Information about these benchmarks is presented
in Table 5.

We use the security model in [14]. In this model,
the untrusted sources are return variables from particu-
lar methods (e.g., methodgetParameter() in class
javax.servlet.ServletRequest ) and parameters
of particular methods (e.g., the parameter ofmain ). The
sources are classified in the following categories of security
attacks: (i) HTTP header manipulation, (ii) parameter ma-
nipulation, (iii) cookie poisoning and (iv) non-web sources
(i.e., the parameters ofmain ). We specified as sources the

4We include 6 of the 9 benchmarks. Applicationsblojsom and
road2hibernate were not available for download, andsnipsnap did
not run through Soot.

returned variables and parameters as described in [14, 13].
The number of sources is shown in column (3) of Table 5.

The set of sensitive variables (i.e., trusted pro-
gram data that should besafe and never tempered
by flow from untrusted sources) includes arguments
passed to security-sensitive methods such as SQL queries
(e.g.,executeQuery(String) ), HTTP response (e.g.,
sendRedirect(String) ), server-side output streams
(e.g., JspWriter .print(String) ), file paths (e.g.
File(String) ), and commands executed by the system
(e.g., Runtime.exec(String) ). The sensitive vari-
ables represent different categories of security vulnerabil-
ities: (i) SQL injection, (ii) HTTP response splitting, (iii)
cross-site scripting, (iv) path traversal, and (v) command in-
jection(stealth commanding). Again, we specified the sen-
sitive variables as in [14, 13]. The number of sensitive vari-
ables is shown in column (4) of Table 5; we report a larger
number of sources and sensitive variables than [14] because
we include non-String parameters, and because our anal-
ysis includes a larger number of reachable methods.

Column (5) in Table 5 shows the number of methods,
including library methods, reachable by Spark.

We applied theinformation flow analysis described in
Section 4.3.3, to track information flow from sources to sen-
sitive data. The results of our analysis are shown in Table 6.
Consider the cell for Parameter manipulation and SQL in-
jection. It has entrywebgoat : 6. This means that there are
6 pairs(p, s), wherep is a source classified in the category
”Parameter manipulation”, ands is a sensitive variable that
causes an ”SQL injection” vulnerability (e.g., through a call
executeQuery(s) ), and there is deep information flow
from p to s; in other words,s is notsafe .

We manually examined the security violations reported

7



(1)Benchmark (2)Version (3)#Sources (4)#Sensitive variables (5)#Rechable Methods
jboard 0.30 1 16 4220
blueblog 1.0 11 39 4836
webgoat 0.9 10 81 5698
personalblog 1.2.6 31 32 9570
pebble 1.6-beta1 124 78 7622
roller 0.9.9 40 94 13623

Table 5. Information on Web application security benchmarks.

SQL injection HTTP splitting Cross-site scripting Path traversal Command injection Total

HTTP header 0 0 blueblog : 1, webgoat : 1, 0 0 4
manipulation pebble : 1, roller : 1
Parameter webgoat : 6 0 0 0 webgoat : 1 7
manipulation
Cookie poisoning webgoat : 1 0 0 0 0 1
Non-Web inputs 0 0 0 0 0 0

Total 7 0 4 0 1 12

Table 6. Classification of security violations discovered by information flow analysis.

by our analysis. In all cases, we were able to confirm the
information flow from the source to the sensitive variable
as reported by the analysis.Our results are the same as the
results reported in [14], except for 2 cases. First, our anal-
ysis discovers 3 new violations inwebgoat ; the manual
examination confirmed these violations. Second, our analy-
sis does not discover the 2 violations onpersonalblog .
Overall, the precision experiments confirm that our inex-
pensive analysis achieves very good precision.

The cost of our information flow analysis is practical.
It runs within 45 seconds on all benchmarks, except for
roller (with about 14K reachable methods), on which it
runs in 505 seconds. Our analysis appears to run faster than
the analysis in [14] for most of the benchmarks.

6 Related Work
There are many proposals for language-based reasoning

about ownership, immutability and information flow—there
are proposals for ownership type systems (e.g., [18, 5, 2]),
immutability type systems (e.g., [28]) and type systems for
secure information flow (e.g., [26]). Similarly to our work,
this work emphasizes the importance of the concepts of
ownership, immutability and information flow in software
development. Unlike our work, it focuses on type-theoretic
approaches which in general require extensions to the lan-
guage, compiler and run-time environment, as well as type
annotations provided by the programmer. Therefore it may
be difficult to adopt these approaches in practice.

Automatic inference of ownership, immutability and in-
formation flow has received significantly less attention. Re-
cent work on static inference of ownership-like properties
includes [15], work on inference of immutable parameters
and methods includes [27, 22, 3], and work on inference

of information flow includes [14, 7]. The main advan-
tage of our framework compared to previous static anal-
yses [14, 15], is its scalability. Livshits and Lam present
an information flow analysis which relies on an exponential
context-sensitive points-to analysis [14]. In contrast, our in-
formation flow analysis relies on the cubic Andersen’s anal-
ysis and has cubic worst-case complexity [11]; in the same
time, our analysis achieves comparable precision to [14].

The novelty of our work is that it presents an extensible,
scalable, static analysis framework which allows automatic
inference of different kinds of properties. It generalizes our
previous work on ownership, immutability and information
flow analysis [10, 12]. Additionally, this paper focuses on
experimental evaluation; it presents experiments with real-
world web applications which confirm the scalability and
precision of the proposed framework and analyses.

7 Conclusions

This paper proposed a practical static analysis frame-
work for inference of security-related program properties.
Within the framework, we defined ownership, immutabil-
ity, and information flow inference analyses. We presented
experiments on a set of Java components and on a set of
Java web applications. The experiments demonstrated that
the analyses are precise and practical and therefore could be
incorporated in real-world program comprehension tools.

References
[1] Introduction to Stanford SecuriBench,

http://suif.stanford.edu/ livshits/securibench/.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annota-
tions for program understanding. InOOPSLA, pages 311–
330, 2002.

8



[3] S. Artzi, A. Kieżun, D. Glasser, and M. Ernst. Combined
static and dynamic mutability analysis. InASE, pages 104–
113, 2007.

[4] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. InOOPSLA, pages
292–310, 2002.

[5] D. Clarke, J. Potter, and J. Noble. Ownership types for flex-
ible alias protection. InOOPSLA, pages 48–64, 1998.

[6] D. Denning and P. Denning. Certification of programs
for secure information flow.Communications of the ACM,
20(7):504–513, 1977.

[7] S. Genaim and F. Spoto. Information flow analysis for Java
bytecode. InVMCAI, pages 346–362, 2005.

[8] C. Larman.Applying UML and Patterns. Prentice Hall, 2nd
edition, 2002.

[9] O. Lhotak and L. Hendren. Scaling Java points-to analysis
using Spark. InCC, pages 153–169, 2003.

[10] Y. Liu and A. Milanova. Ownership and immutability infer-
ence for UML-based object access control. InICSE, pages
323–332, 2007.

[11] Y. Liu and A. Milanova. Static information flow analysis
for Java. Technical Report 08-03, Rensselaer Polytechnic
Institute, Feb. 2008.

[12] Y. Liu and A. Milanova. Static inference of explicit informa-
tion flow. In PASTE, 2008.

[13] B. Livshits and M. Lam. Finding security vulnerabilities in
Java applications with static analsysi. Technical report, Stan-
ford University, September 2005.

[14] B. Livshits and M. Lam. Finding security vulnerabilities in
Java applications with static analysis. InUSENIX Security
Simposium, pages 271–286, 2005.

[15] K. Ma and J. Foster. Inferring aliasing and encapsulation
properties for Java. InOOPSLA, pages 423–440, 2007.

[16] A. Milanova. Precise identification of composition relation-
ships for UML class diagrams. InASE, pages 76–85, 2005.

[17] A. Milanova, A. Rountev, and B. G. Ryder. Parameter-
ized object sensitivity for points-to analysis for Java.ACM
TOSEM, 14(1):1–42, 2005.

[18] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
ECOOP, pages 158–185, 1998.

[19] J. Potter, J. Noble, and D. Clarke. The ins and outs of objects.
In Australian Software Engineering Conference, pages 80–
89, 1998.

[20] J. Rehof and M. Fahndrich. Type-base flow analysis: from
polymorphic subtyping to CFL-reachability. InPOPL, pages
54–66, 2001.

[21] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. InPOPL, pages 49–
61, 1995.

[22] A. Rountev. Precise identification of side-effect free meth-
ods. InICSM, pages 82–91, 2004.

[23] A. Rountev, A. Milanova, and B. Ryder. Points-to analysis
for Java using annotated constraints. InOOPSLA, pages 43–
55, 2001.

[24] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java software.IEEE
TSE, 30(6):372–386, 2004.

[25] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing.ACM TOPLAS, 23(2):105–186,
Mar. 2001.

[26] A. Sabelfeld and A. Myers. Language-based information-
flow security.IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, 2003.

[27] A. Salcianu and M. Rinard. A combined pointer and pu-
rity analysis for Java programs. InVMCAI, pages 199–215,
2005.

[28] M. Tschantz and M. D. Ernst. Javari: Adding reference im-
mutability to Java. InOOPSLA, pages 211–230, 2005.

[29] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville,
and V. Sundaresan. Optimizing Java bytecode using the Soot
framework: Is it feasible? InCC, pages 18–34, 2000.

9



Appendix A

public class Register {
private ProductCatalog catalog;
private Sale sale;
public Register() {

1 catalog = new ProductCatalog(); // hProductCatalog

}
public void enterItem(ItemId id, int q) {

2 ProductSpec spec = catalog.getSpec(id);
3 sale.makeLineItem(spec, q);

}
public void makeNewSale() {

4 sale = new Sale(); // hSale

}
public void makePayment(Money cash) {

5 sale.makePayment(cash);
6 Money balance = sale.getBalance();

}
public void endSale() {

7 sale.becomeComplete();
}

}

class ProductCatalog {
8 private Hashtable specs = new Hashtable(); // hHashtable

ProductCatalog() {
9 ItemID id = new ItemID(100); // hItemID1

10 Money price = new Money(3); // hMoney1

ProductSpec ps;
11 ps = new ProductSpec(id,price,"TheItem"); // hProductSpec

12 specs.put(id,ps);
}
ProductSpec getSpec(ItemID id) {

13 return (ProductSpec) specs.get(id);
}

}

class Sale {
14 private Vector lineItems = new Vector(); // hV ector

private Payment payment;
public Money getBalance() {

15 return payment.getAmount().minus(getTotal());
}
public void makeLineItem(ProductSpec s, int q) {

16 lineItems.add(new SalesLineItem(s,q)); // hSaleLineItem

}
public Money getTotal() {

17 Money total = new Money(); // hMoney2

18 Iterator i = lineItems.iterator();
19 while (i.hasNext()) {
20 SaleLineItem sli = (SaleLineItem) i.next();
21 total.add(sli.getSubtotal());

10



}
22 return total;

}
public void makePayment(Money cash) {

23 payment = new Payment(cash); // hPayment

}
public void becomeComplete() { //log... }

}

class SaleLineItem {
private int quantity;
private ProductSpec spec;
public SaleLineItem(ProductSpec s, int q) {

24 this.spec = s; this.quantity = q;
}
public Money getSubtotal() {

25 return spec.getPrice().times(quantity);
}

}

class ProductSpec {
private ItemID id;
private Money price;
private String description;
public ProductSpec(ItemID id, Money price, String description) {

26 this.id = id; this.price = price; this.description = description;
}

27 public ItemID getID() { return id; }
28 public Mondy getPrice() { return price; }
29 public String getDescription() { return description; }

}

public class phMain() {
public static void main() {

30 int q = 0, amount = 0;
31 ItemID id = new ItemID(q); // hItemID2

32 Money cash = new Money(amount); // hMoney3

33 Register register = new Register(); // hRegister

34 register.makeNewSale();
35 register.enterItem(id,q);
36 register.makePayment(cash);
37 register.endSale();

}
}

11


