Practical Static Analysis for Inference of Security-Related Program Properties

Yin Liu Ana Milanova
Department of Computer Science Department of Computer Science
Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute
liuy@cs.rpi.edu milanova@cs.rpi.edu
Abstract eters, methods, instance fields and variables of class type.

A parameterp in methodm is inferred asread-only

We present a static analysis framework for inference of if no invocation ofm modifies the heap structure rooted
security-related program properties. Within this framework at the object referred by. A methodm is inferred as
we design and implement ownership, immutability and in- read-only if no invocation of m modifies the visible
formation flow inference analyses for Java. state. A field/variable of typé in classA is inferred as

We perform empirical investigation on a set of Java com- read-only if no A object ever modifies the heap structure
ponents, and on a set of established security benchmarkstooted at the3 object referenced through this field/variable.
The results indicate that the analyses are practical and pre- The information flow propertyis inferred for sensi-
cise, and therefore can be integrated in program compre- tive fields and variables. A field/variable is inferred as
hension tools that support reasoning about software secu-confidential if there is no information flow from that
rity and software quality. field/variable to an untrusted part of the code (i.esjre&).
A field/variable is inferred asafe if there is no informa-
tion flow from an untrusted part of the code (i.esaurcg
to that field/variable.

Unintended object access and unintended information The proposed framework and inference analyses work
flow can seriously compromise software quality and soft- directly on Java programs and do not require annotations by
ware security. For example, in Java 1.1 the security functionthe programmer. They work on complete programs and on
Class.getSigners mistakenly returned a reference to incomplete programs (i.e., software components). This is
an internal array; untrusted clients could modify this array an important feature because the problem of analysis of in-
and compromise the security of the system. The problem iscomplete programs arises often (for example, given a set of
especially relevant in web applications, which often exhibit interacting classes such as a secure server-side component,
vulnerabilities due to unintended information flow [14]. We are interested if there could be compromising object ac-
Current languages such as Java do not provide mechanismgess or information flow triggered by a client).
for preventing unintended object access and unintended in- The proposed framework and inference analyses have
formation flow; therefore it is important to study reasoning several applications. They can be used to (i) verify speci-
techniques that can help alleviate this problem. fications, (ii) visualize ownership, immutability and infor-

Our paper proposes a static analysis framework for in- mation flow (e.g., as part of reverse-engineered UML dia-
ference of security-related properties in Java programs.grams), and (iii) infer ownership, immutability or informa-
Specifically, we proposewnership immutability and in- tion flow types for the purposes of type checking. The anal-
formation flowinference analyses; these analyses reveal in-yses can be used during software development and mainte-
formation about object access and information flow in the hance to reveal important information about object access
program, and may help uncover serious vulnerabiliies. and information flow; they may uncover vulnerabilities.

Theownership propertys inferred on instance fields and We have implemented the framework and inference anal-
variables of class type. A field/variable of tyggin class yses. Our empirical results demonstrate that the analyses
A is owned if every A object controls the3 object it ref- are practical and precise and uncover vulnerabilities in real-
erences through this field/variable (i.e., tHeobject may world web applications. Therefore, they can be incorpo-
create aB object, pass theé3 object to other parts of its rated in program comprehension tools that support reason-
representation, but cannot expose thebject outside). ing about software security and software quality.

Theimmutability propertyis inferred on method param- The contributions of this work are the following:

1 Introduction

Sale {owned-item} K
owned
Register Ig» makeLineltem(> SaleLineltem
* getSubTotal(){read-only}

| - i 1
{owned} [{owned} {read-only} Prod‘uctSpec s, intq)
i{read—only} {read%only} {read-only}
y E E ‘
ProductCatalog -_____________:-_:-_::::::::::::::::::::::::E ProductSpec
getSpec(Integer id) {read-only} 1 {owned-collection} « | {safe} Money price

Figure 1. UML class diagram with ownership, immutability and information flow annotations.

e We present a static analysis framework for inference and-mortar POS system, or they can be running on remote
of security-related properties. Within this framework, computers in a the case of a web-based POS system.

we present run-time models and analyses for several | et ys consider several of the specified annotations.
secu.rity—rela'Fed properties: ownership, immutability The owned annotations betweeRegister and Sale
and information flow. specifies that theSale object is part of the inter-
nal representation of th®egister object and should
ot be leaked outside (i.e., to potentially untrusted
lients). The read-only annotation on the asso-
ciation betweenSaleLineltem and ProductSpec
specifies thatSaleLineltem has read-only access to
ProductSpec (i.e., it forbids SaleLineltem from
o modifying ProductSpec). The annotation on parameter
2 Motivating Example s (of type ProductSpec) in methodmakeLineltem
in classSale , specifies thatmakelLineltem has read-
only access te (i.e., it forbids makeLineltem from
modifying theProductSpec object referred by). The
gast two annotations formalize the design decision that the
~roductCatalog is the "information expert” and the
only object that can initialize and update product informa-
tion. Theread-only annotations on methodgetSpec
in classProductCatalog andgetSubtotal in class
SaleLinltem specify that these methods do not modify
certain visible state.

e We present an empirical study on a set of Java compo-
nents and on a set of Java web applications establishe
as security benchmarks [14, 1]. The study shows that
the analyses are practical and precise, and therefore
can be integrated in program comprehensive tools.

As a motivating example, consider the UML class dia-
gram in Figure 1. It illustrates the design of a component
of a Point-of-Sale (POS) system [8]. The solid lines repre-
sent permanent associations (implemented through instanc
fields), and the dashed lines represent temporary depende
cies (typically implemented through local variables). The
Java classes for this example, taken from [8] with minor
modifications, are given in Appendix A.

We have added ownership, immutability and information
flow annotations to the UML class diagram. These annota-
tions formalize the design and security requirements for the ~ The safe annotation on fieldprice (of type Money)
POS system. They represent the desired properties of thén ProductSpec specifies an integrity requirement: it

implementation of this design. should not be possible for a client to affect the price of
A Register object, an abstraction for the cash regis- & preduct (e.g., a malicious client could modify the prod-
ter, controls the sale logic. It create®ebductCatalog uct price or the computation of the sale total). Note that

object that stores the specifications of all products (i.e., theProductSpec objects are owned by thiRegister ob-
ProductSpec objects). TheRegister object creates ject; however, ownership does not prevent deeper informa-
aSale object, initiates the sale, passes information about tion flow violations such as leaks or modifications to sensi-
sale items to th&ale object and completes the sale. When tive data that is part of the ownéttoductSpec objects.
a new sale item is processed, tRegister fetches the Our static analysis infers these properties. Recall the
corresponding’roductSpec object from the catalog, and code in Appendix A. Our analysis infers that fieddle in
passes that object to tisale object. TheSale object cre- classRegister is owned; this property is visualized as
ates a newbaleLineltem object for each sale item and owned annotation on the association betwdegister
passes th@roductSpec object to it. and Sale in the reverse-engineered UML class diagram.
The clients of this component access public methods in Visualizing ownership, immutability and information flow
Register to perform various tasks such as starting a new as part of reverse-engineered UML class diagrams, could
sale, entering a new sale line item, etc. These clients carhelp verify security-related design requirements and lead to
be running on store terminals in the case of a classic brick-higher quality, more secure and understandable software.

3 Run-time Models

We consider ownership, immutability and information

flow properties as outlined in the previous sections. There
are two issues. First, we need to define run-time models
for these properties (e.g., what does it mean precisely that

run-timeRegister object owns the run-timBale object

that it references? Similarly, what does it mean that field
price is safe ?). Second, we need to design static analy-

ses that answer the following questions: given a property
does there exist an execution of the program that violates
(e.g., does there exist a client such that sd®egister
object does not own itSale object? Similarly, does there
exist a client that modifies the price of some product?).

Finally, we say thab has read-only access t0 if no
execution of a method on receivemodifieso’. A field f
or variablev of type B in classA is read-only , if and
only if for every program execution, each instanceddfias
read-only access to the corresponding instancés. of

a

3.3 Information Flow Model

Intuitively, there is information flow from variable to
variabley, denoted by — y if changes in the input values
of x are observable from the output valuegoSuch flows
aredirect andindirect [6, 7]. Direct flows can bexplicit
(i.e., data-flow based) arghplicit (i.e., control-flow based).
Indirect flows arise from compositions of direct flows. We
consideronly explicit flomwhich we conjecture, is suitable

Below, we briefly describe the models for the ownership, for the purposes of program comprehension.

immutability and information flow properties. We envision

We consider the following information flows due to Java

that the framework can be augmented with additional useful statements. An assignment statemiest (...operator) r

properties and corresponding static analyses.
3.1 Ownership Model

The ownership model is based on the notiorowhers-
as-dominatorg5, 4, 19]. Essentially, this model requires

leads to flowr — [. An instance field write statement
l.f = r leads to flowr — o.f (o is the run-time object
referred byl at the point of execution of the statement). An
instance field read statemdnt r. f leads to flowo.f — [
(again,o is the run-time object referred byat the point of

that an owner object controls the owned object—the owner gxecytion of the statement). Finally, a method call statment
can create an owned object, pass it to other parts of its repy — . (r4, ...) dispatched to methoet’ (this, pr ..., ret)

resentation, but cannot expose it to outside objects. Thisigads to flows s this, 71 — pi, ..
model intuitively captures the notion of ownership and com-

position in modeling [5].

. andret +— [(this
denotes the implicit parametéltis of m/, p; denote the
formal parameters o/, andret denotes a special variable

In this model, program execution is represented by an that holds the return value af’).

object graphwhich shows access relationships between

run-time objects. There is an edge>o’ from run-time ob-
ject o to run-time object’ if and only if at some point of
program execution one of the following is true: (1) figid
of o refers too’, or (2) a methodn invoked with receivep
has a local variable which refers ta’. We say thab owns
o' if and only if o is the immediate dominator af in the
object graph. Consequently, a fiefdor variablev in class
A of class typeB is owned, if and only if for every pro-
gram execution, each instanceAbwns the corresponding
instances o3 that it references throughor v.

3.2 Immutability Model

Let e be an execution of a methad on receiver object
o; e modifies an object’ if it triggers a change in the object
structure rooted at —that is,e leads to a statemeptf = ¢
which writes some” reachable from’ (i.e., p refers too”
and there is a path of field edges franto o”).

A parametemp; of methodm(...p;...) isread-only if
no execution of methogh modifies the object referred by
p;- A methodm is read-only if the following two con-
ditions are true: 1) all parameters of areread-only
and 2) no execution aof modifies an object referred by a
static field!

There are two types of indirect flow: shallow flow and
deep flow. There ishallow flowfrom variablel to variable
r if there is a sequence of statememtsecuted in orderthat
leads to indirect flow fromito . For example, the execution
of statement,.f = [leads to flowl — o.f, and then the
execution ofl3 = I5.f (I andi; both point to objecb)
leads to flowo. f — I3. Finally the execution of = i3 — y
leads to flowls — r.

Note that when is a reference variable, there may be
flow from the object structure rooted at There isdeep
flow from the structure of to r if and only if there is shal-
low flow from somel’ to r, wherel’ is an alias of some
l.f1.fa...fr. Similarly, whenr is a reference variable, there
may be flow into the object structure rootedratThere is
deep flow from into the structure of- if and only if there
is shallow flow froml into somer’, wherer’ is an alias of
somer. fi.fa... fi.

Certain program variables are designated as untrusted
sinks and other variables are designated as untrusted
sources the selection of sinks and sources depends on the
security problem. We say that a fiefdbr variablev in class
A is confidential , if and only if there is no program

can create an object and return this object to the caller, but our definition
would still considenn immutable. The choice is arbitrary—the definition

INote that this definition of immutable method misses returned objects and corresponding analyses can be trivially changed to accommodate other

(i.e., it does not include the entire visible state). That is, a method

choices.

execution for which there is deep flow from the structure of analysis [23, 9]. This analysis is flow-insensitive, context-
rooted atf or v to a sink. Similarly, a fieldf in classA is insensitive and inclusion-based; it uses an analysis variable
safe if there is no information flow from a source to the for each reference variable, and an object name for each
structure rooted af or v. Section 4.3.3 and Section 5 give allocation site (i.e., objects are distinguished by their allo-
concrete examples of potentially harmful information flow. cation sites). Andersen’s analysis is cubic, and it scales to
. . large programs.

4 Static Analysis Framework Most points-to analyses, including Andersen’s points-

Our static analysis framework handles (i) analysis of to analysis, are formulated as whole-program analyses.
complete programs (whole programs), and (ii) analysis of The placeholdemain method constructed by the fragment
incomplete programs (software components). In the latteranalysis "completes” a component and thus enables the use
case, the component is defined as a set of interacting classe@f whole-program points-to analysis on the completed com-
Cls with designatediccessiblenethods and fields; a client ponent. Thenain method approximates all possible clients
accesse€ls through these accessible methods and fields. that could be built on top oCls and thus the result of

Our framework is based on whole-program analysis. We the whole-program points-to analysis includes all points-to
address the analysis of incomplete programs by employinggraphs that could result from individual clients [24].
ageneral tec_hnique callédgment analysif24]. Th_e frag- 4.3 Client Analyses
ment analysis reduces the problem from analysis of an in-
complete program to an analysis of a complete program. So far we have developed ownership, immutability and
The fragment analysis is described in Section 4.1. Further-information flow inference analyses for Java within this
more, the analysis problems require points-to information general framework. They work directly on Java code and
and we employ a general-purpose points-to analysis. Thedo not require annotations by the programmer; also, they
points-to analysis is described in Section 4.2. work on both complete programs and on software compo-

The fragment analysis and the points-to analysis are anents. The analyses infer properties in accordance with the
general foundation that allows building of different client models presented in Section 3.
analyses. These analyses form an inexpensive foundation Next we briefly describe our analyses with illustrat-
— they are dominated by Andersen’s analysis which hasing examples. For the rest of the paper we use notation
complexity O(n3). So far we have built analyses that in- &, h;, h;, etc. to denote analysis objects (i.e., the object
fer ownership, immutability and information flow in ac- names corresponding to allocation sites used by our analysis
cordance with the models outlined in the previous section. to represent run-time objects). In contrast, we use notation
These analyses are relatively inexpensive, both in terms ofo, 0;, 0, etc. to denote run-time objects.
worst-case complexity and in terms of running times. The
analyses are described in Section 4.3. We envision that the L
framework will be augmented with other properties of in- 4.3.1 Ownership Client

terest and corresponding client analyses. Using the points-to graph, the ownership analysis first con-

4.1 Fragment Analysis structs theapproximate object graphlg, which approxi-
mates all possible run-time object graphs. The nodejin

p.are object names, and the edges represent "may-access” re-
lationships. Subsequently, the ownership analysis Uges

The fragment analysis produces an artificiakin
method that serves as a placeholder for client code wri
ten on top ofCls. Intuitively, the artificialmain simulates) :
the possible flow betweenls and the client code. Sub- [© réason about ownership. It examines an ebge- h;
sequently, the fragment analysis attachsn to Cls and N <9, and finds all the paths from; to h;. If all these
uses whole-program analysis to compute information that Paths are confined within the ownership boundary,othe
approximates flow over all possible clients@#s [24]. The ~ 2nalysis concludes that feachrun-time edge; — o, rep-

main method for our running example is given at the end resented by; — h‘j’_ 0¢ dominqtes and therefore_ownﬁ
of Appendix A. Recall the code in Appendix A. In thég for this code,

. . there is an edge from register (the object name that cor-
4.2 Points-to Analysis responds to line 33 and represents the instances of class
Points-to analysis is a well-known program analysis. It Register) to hg.. (the object name that corresponds to

finds the objects that a given reference variable or a ref-line 4 and represents the instances of claake); in this
erence object field may point to. Points-to information is caseh pegister iS the only object that could accelss,;., and
needed by all of our client analyses; most likely it will the analysis concludes thak.gister OWNShgq.. The anal-
be needed by future client analyses as well. There is aysis infers that fieldsale in classRegister is owned
wide variety of points-to analyses, with different degrees and the UML association betwedtegister andSale

of precision and cost. Our work uses Andersen’s points-to is reverse engineered awned. Thus, the implementation

meets the requirement stated in Figure 1. As another exam-enclosing class of. Our analysis considers each method

ple, consider the edge froMizegister tO i productspec; there
are many access pathsi®,.quctspec SINCEA productSpec 1S

passed té.s,;. and further down. However, all these access the analysis determines thétis read-only

paths are internal to the boundary’of.gis:.- and the anal-
ysis infers that: gegister OWNSA productspec- Thus, the UML
association betweeRegister and ProductSpec is

owned and the implementation meets the requirement object, which is aviolation of the read-only

stated in Figure 1.

4.3.2 Immutability Client

The immutability analysis is based on standard side-effect

analysis [25, 17]. This analysis computes a &&td(m)

called on receiveh. If for each pairh andm we have that
the intersection offod(m) and TrClosure(h. f) is empty,

. Consider
the call togetSubtotal at line 21. It modifies th@rice
field of ProductSpec and the analysis determines that
a SaleLineltem object can modify &ProductSpec
require-
ment on the UML association betwe&aleLineltem
andProductSpec in Figure 1.

4.3.3 Information Flow Client

The information flow analysis consists of three parts: gener-

for each methodn—this set contains the objects that may ation of annotated flow graph, summarization of the effects

by written during an invocation ofn. In addition, we

of callees on callers, and demand-driven reachability prop-

computeTrClosure(v)—this set contains the objects tran- agation on the summarized graph. This analysis is based on

sitively reachable from» on a path of field edges.

Recall that by definition a parameter in method
m is read-only if no execution ofm writes an ob-
ject transitively reachable from,. Thus, if the intersec-
tion of Mod(m) and TrClosure(p;) is empty, the anal-
ysis infers thatp; is read-only Consider parameter
s in method makeLineltem The analysis computes
MOd(makeLineltem) = {hVect0T7hdata7hSaleLineltem}
(i.e., makeLineltem may write (1) the vectoh vecior,
(2) the internal array of the vectdiy..,, and (3) the
newly created line item objectsaicrinertem)- Accord-
ing to the points-to analysis, we hav@rClosure(s)
= {hproductSpec, MMoney1 } (i-€., the specification object
h Productspec itself, and the money objeétysoney ;s referred

by its field price). The two sets have empty intersection,

and the analysis infers thatis aread-only parameter;
the implementation meets the requirement in Figure 1.
Recall that methodn is read-only if the follow-
ing two conditions are true: 1) all parametess of m
are read-only , and 2) no invocation ofn modifies
a static field. We haveMod(getSpec) = () and the
analysis infers that methodetSpec is read-only ;

CFL-reachability [21], and builds on ideas from [20].
There is shallow flow from variable to variabler, if r
could be reached from through a valid flow path in the
summary flow graph. Tracking of deep flows from variable
s amounts to tracking shallow flows from multiple sources;
these sources are part of the object structure rooted at
Consider the code in Appendix A. For the purposes
of this security application, variables imain (i.e., the
client) are designated as untrusted sources and sinks. Cons-
dier field price in classProductSpec One can eas-
ily see that there is no shallow flow fromain into this
field. The only shallow flow, from local variablgrice
t0 A productspec-price is due to the code at lines 10 and
11 in the constructor oProductCatalog However,
there could be deep flow froomain into field price.
First, the analysis infers shallow flow from variabte
iN main to hsuerLineltem-quantity, denoted byq ~-»
hSaleLineltem -quantity. This flow is due to intermediate
flows q ~ enterltem.q ~» makeLineltem.q ~
SaleLineltem.q ~ hgaieLineltem-quantity. Sec-
ond, the analysis infers flotsqierinertem - quantity ~»
hatoney:-amt after analysis of line 25 and the code in

again, the implementation meets the requirement in Fig- methodtimes (here amt stands for the field of simple

ure 1. However, assuming a mutableney class, we have

that Mod(getSubtotal) = {hasoney: } Which intersects
with TrClosure(getSubtotal .this) and the analysis in-
fers thatgetSubtotal is notread-only ;2 thus the im-

plementatiorviolatesthe read-only requirement stated
in Figure 1 (theread-only annotation is omitted from
the reverse engineered class diagram).

Finally, recall that a fieldf isread-only if every run-

typedouble which holds the numeric value of the money
object). Consequently, the analysis infers that there is
deep flow from variableg in main (i.e., in client code)

to the object structure reachable framice (specifically,
price.amt) field price is notsafe . Thus, the implementa-
tion violatedthesafe requirementin Figure 1. The conse-
guences of this violation, and the previous violations, could
be significant—subsequent sales could fetch wrong product

time instance off’s enclosing class has read-only access to prices and compute incorrect sale totals.

its f field. Leth be the analysis name of an instance of the

2Note thatMoney could be mutable or immutable. We assume a mu-

table implementation becaugetTotal in the textbook code wouldn’t

have worked with the immutable one.

5 Empirical Results

The static analysis framework is implemented in Java us-
ing Soot 2.2.3 [29] and Spark [9]. It uses the Andersen-

(1)Component (2)Functionality | (3)#ClassirCls/ | (4)#Fieldsin | (5)#Rechable Methods
#Functionality | Functionality
gzip GZIP IO streams 199/6 23 3481
Zip ZIP 10 streams 194/6 43 3506
checked IO streams&checksums 189/4 3 3428
collator text collation 203/15 169 3535
breaks text break 193/13 252 3487
number number formatting 198/10 76 3541

Table 1. Information on Java components.

style points-to analysis provided by Spark. We performed enced); the total number of classes and the number of func-
the analysis with the Sun JDK 1.4.1 libraries. All exper- tionality classes is shown in column (3). The number of
iments were done on a 900MHz Sun Fire 380R machinefields in functionality classes is shown in column (4). The
with 4GB of RAM. The implementation, which includes last column shows the number of methods in all classes (i.e.,
Soot and Spark was run with a max heap size of 600MB. functionality classes and library classes), determined to be
We evaluated the framework and the analyses on sev-reachable by Spark. The analysis attaches a placeholder
eral Java components from the packages.text and main to Clsand performs ownership, immutability and in-
java.util.zip (these components were used in related formation flow analysis. Recall from Section 4.1 thadin
analyses [22] and [18]. The results on the components are approximates all possible clients that can be written on top
presented in Section 5.1. We also evaluated the frameworkof Cls— therefore, the analysis results approximate over all
and the analyses on a set of web applications established agossible clients (e.g., if a field is inferred a®wned, then
security benchmarks [1, 14]. The results on the web appli- it is guaranteed that one cannot write a client which exposes
cations are presented in Section 5.2. the object stored irf outside of its enclosing object).
The empirical study addresses two important issues. We applied theownership analysisdescribed in Sec-
First, it addresses the issue arfialysis precision-that tion 4.3.1 on instance fields in functionality classes. The
is, how often the analyses report safe fields, methods andesults are reported in Table 4. We applied ithenutabil-
parameters as unsafe (e.g., how often the information flowity analysesdescribed in Section 4.3.2 on instance fields in
analysis reports safe data as tempered?). Precision is crufunctionality classes, on methods in functionality classes,
cial: imprecise analysis is not merely useless, but also con-and on parameters of methods in functionality classes. The
fusing, and may discourage developers from using analysistesults are reported in Table 2. We applied ihf®@rma-
based tools. For example, tracking information flow in web tion flow analysesdescribed in Section 4.3.3 on sensitive
applications requires that a large amount of code in Apachefields (i.e., non-public fields) in functionality classes. In
is examined. Developers could spend valuable time exam-our security model, the functionality classes are trusted, and
ining potentially large amount of code until they determine the client code is untrusted. Thus, the set of sinks and
that the warning is due to analysis imprecision and not to the set of sources consist of all variables in placeholder
insecure information flow. It is important to note that the main. If a field f in functionality classC is inferred as
analyses are safe—that is, if a field is reportedased, confidential (i.e., there is no deep flow frorfito to a
read-only , confidential or safe , thenitis in fact variablev in main), then there is no client that causes deep
owned, read-only , confidential or safe . flow from f to the client. The results from confidentiality
Second, the study addresses the issugnafysis scala- and integrity inference are shown in Table 3.
bility—do the analyses have acceptable cost? Analysis scal-

ability is important as well—if the analysis runs in hours or Program #Instance Fields #Owned Fields
days, developers would be less likely to use the tool. (reference type)

gzip 7 4(57%)

5.1 Software Components > T 5(50%)

The components are described in the first three columns checked 2 0(0%)

of Table 1. Each component contains the set of classes in collator 17 9(53%)

Cls (i.e., the classes that provide component functionality breaks 7 0(0%)

plus all other classes that are directly or transitively refer- number 2 1 (33%)

3The current paper does not include one of the 7 components used in
previous work, namelgate . We were unable to run this component with
our current Soot infrastructure.

Table 4. Owned fields.
For each of the three analyses we examined manually the

Program #Fields | #lmmutable Fields|| #Methods| #Immutable Methods| #Parameters #Immutable Parameters
(reference type)
gzip 7 1(14.29%) 25 1(4%) 33 3(9%)
zip 10 0 (0.00%) 48 11(23%) 60 16(27%)
checked 2 2 (100%) 11 5(45%) 14 7(50%)
collator 17 5 (29.41%) 80 51(64%) 100 63(63%)
breaks 7 6 (85.71%) 56 36(64%) 55 37(67%)
number 3 0 (0.0%) 81 42(52%) 100 47(47%)
Table 2. Immutable fields, methods and parameters.
Program #Fields #lLeaked #Leaked|| #Tempered #Tempered
(non-public) (shallow) | (shallow or deep)|| (shallow) | (shallow or deep)

gzip 15 2(13.33%) 2(13.33%) 5(33%) 5(33%)

zip 29 9(31.03%) 13(44.83%) 16(55%) 18(62%)

checked 3 3(100%) 3(100%) 2(67%) 2(67%)

collator 134 || 22(16.42%) 33(24.63%) 11(8%) 16(12%)

breaks 241 6 (2.49%) 7 (2.90%) 5(2%) 5(2%)

number 66 || 22(33.3%) 25 (37.88%) 6(9%) 6(9%)

Table 3. Confidentiality (fields leaked to client code) and integrity (fields tempered by client code).

reported results. We examined each non-owned field, muta+eturned variables and parameters as described in [14, 13].
ble field/parameter/method, and leaked/tempered field, andThe number of sources is shown in column (3) of Table 5.
attempted to construct a client that would expose appropri- The set of sensitive variables (i.e., trusted pro-
ate non-ownership, mutability or information flow. In all gram data that should bsafe and never tempered
cases, we were able to construct such a client. Thus thepy flow from untrusted sources) includes arguments
analysis is precise—fields reported as non-owned are in-passed to security-sensitive methods such as SQL queries
deed non-owned; fields, parameters and methods reportege g.,executeQuery(String)), HTTP response (e.g.,
as mutable are indeed mutable; and fields reported as leakedendRedirect(String)), server-side output streams
or tempered are indeed leaked or tempered. (e.g., JspWriter .print(String)), file paths (e.g.
In terms of cost, all analyses scale well. The ownership File(String)), and commands executed by the system
analysis typically runs within 20 seconds (times range from (e.g., Runtime.exec(String)). The sensitive vari-
19s to 29s). The immutability analysis, which includes the ables represent different categories of security vulnerabil-
analysis of fields, methods and parameters, runs within secities: (i) SQL injection, (i) HTTP response splitting, (iii)
onds as well (times range from 18s to 40s). The information cross-site scripting, (iv) path traversal, and (v) command in-
flow analysis, which includes both confidentiality and in- jection(stealth commanding). Again, we specified the sen-
tegrity inference, runs within 11 seconds on all components. sitive variables as in [14, 13]. The number of sensitive vari-
5.2 Web Applications ables is shown in column (4) of Table 5; we report a larger
We use SecuriBench [1, 14], a set of Java Web appli- number of sources and sensitive variables than [14] because

. . incl n rin rameters, an ranal-
cations established as benchmarks for research on progra e include norBiring parameters, and because our ana

security? Information about these benchmarks is presentedysIS includes a -Iarger number of reachable methods.
in Table 5. Column (5) in Table 5 shows the number of methods,

We use the security model in [14]. In this model, including library methods, reachable by Spark.
the untrusted sources are return variables from particu- We applied thenformation flow analysis described in
lar methods (e.g., methodetParameter() in class Section 4.3.3, to track information flow from sources to sen-
javax.servlet.ServletRequest) and parameters ~ Sitive data. The results of our analysis are shown in Table 6.
of particular methods (e.g., the parametemudin). The Consider the cell for Parameter manipulation and SQL in-
sources are classified in the following categories of security jection. It has entryvebgoat : 6. This means that there are
attacks: (i) HTTP header manipulation, (i) parameter ma- 6 pairs(p, s), wherep is a source classified in the category
nipulation, (iii) cookie poisoning and (iv) non-web sources "Parameter manipulation”, andis a sensitive variable that

(i.e., the parameters ofiain). We specified as sources the causes an "SQL injection” vulnerability (e.g., through a call
executeQuery(s)), and there is deep information flow
from p to s; in other wordss is notsafe .

We manually examined the security violations reported

“We include 6 of the 9 benchmarks. Applicationbjsom and
road2hibernate were not available for download, aedipsnap did
not run through Soot.

(1)Benchmark (2)Version | (3)#Sources| (4)#Sensitive variables (5)#Rechable Methods
jboard 0.30 1 16 4220
blueblog 1.0 11 39 4836
webgoat 0.9 10 81 5698
personalblog 1.2.6 31 32 9570
pebble 1.6-betal 124 78 7622
roller 0.9.9 40 94 13623

Table 5. Information on Web application security benchmarks.

| | SQL injection [HTTP splitting | Cross-site scripting | Path traversa] Command injection]| Total |
HTTP header 0 0 blueblog :1,webgoat : 1, 0 0 4
manipulation pebble : 1,roller :1
Parameter webgoat : 6 0 0 0 webgoat : 1 7
manipulation
Cookie poisoning| webgoat : 1 0 0 0 0 1
Non-Web inputs 0 0 0 0 0 0

| Total [7 [0 [4 [0 [1 [12]

Table 6. Classification of security violations discovered by information flow analysis.

by our analysis. In all cases, we were able to confirm the of information flow includes [14, 7]. The main advan-

information flow from the source to the sensitive variable tage of our framework compared to previous static anal-
as reported by the analysi®ur results are the same as the yses [14, 15], is its scalability. Livshits and Lam present
results reported in [14] except for 2 cases. First, our anal- an information flow analysis which relies on an exponential
ysis discovers 3 new violations iwebgoat ; the manual context-sensitive points-to analysis [14]. In contrast, our in-
examination confirmed these violations. Second, our analy-formation flow analysis relies on the cubic Andersen’s anal-

sis does not discover the 2 violations personalblog . ysis and has cubic worst-case complexity [11]; in the same
Overall, the precision experiments confirm that our inex- time, our analysis achieves comparable precision to [14].
pensive analysis achieves very good precision. The novelty of our work is that it presents an extensible,

The cost of our information flow analysis is practical. scalable, static analysis framework which allows automatic
It runs within 45 seconds on all benchmarks, except for inference of different kinds of properties. It generalizes our
roller (with about 14K reachable methods), on which it previous work on ownership, immutability and information
runs in 505 seconds. Our analysis appears to run faster thafiow analysis [10, 12]. Additionally, this paper focuses on
the analysis in [14] for most of the benchmarks. experimental evaluation; it presents experiments with real-
6 Related Work world web applications which confirm the scalability and

precision of the proposed framework and analyses.

There are many proposals for language-based reasoning] Conclusions
about ownership, immutability and information flow—there
are proposals for ownership type systems (e.g., [18, 5, 2]), This paper proposed a practical static analysis frame-
immutability type systems (e.qg., [28]) and type systems for work for inference of security-related program properties.
secure information flow (e.g., [26]). Similarly to our work, Within the framework, we defined ownership, immutabil-
this work emphasizes the importance of the concepts ofity, and information flow inference analyses. We presented
ownership, immutability and information flow in software experiments on a set of Java components and on a set of
development. Unlike our work, it focuses on type-theoretic Java web applications. The experiments demonstrated that
approaches which in general require extensions to the lanthe analyses are precise and practical and therefore could be
guage, compiler and run-time environment, as well as typeincorporated in real-world program comprehension tools.
annotations provided by the programmer. Therefore it may
be difficult to adopt these approaches in practice. References

Automatic inference of ownership, immutability and in- [1] Introduction to Stanford SecuriBench,

formation flow has received significantly less attention. Re- http://suif.stanford.edu/ livshits/securibench/.
cent work on static inference of ownership-like properties [2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annota-
includes [15], work on inference of immutable parameters tions for program understanding. ®MOPSLA pages 311—

and methods includes [27, 22, 3], and work on inference 330, 2002.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

S. Artzi, A. Kiezun, D. Glasser, and M. Ernst. Combined
static and dynamic mutability analysis. ASE pages 104—
113, 2007.

D. Clarke and S. Drossopoulou. Ownership, encapsulation [18]

and the disjointness of type and effect. ®OPSLA pages
292-310, 2002.

D. Clarke, J. Potter, and J. Noble. Ownership types for flex-
ible alias protection. I©OOPSLA pages 48-64, 1998.

D. Denning and P. Denning.
for secure information flow.Communications of the ACM
20(7):504-513, 1977.

S. Genaim and F. Spoto. Information flow analysis for Java [21]

bytecode. I'VMCAI, pages 346-362, 2005.

C. Larman.Applying UML and PatternsPrentice Hall, 2nd
edition, 2002.

O. Lhotak and L. Hendren. Scaling Java points-to analysis
using Spark. IrCC, pages 153-169, 2003.

Y. Liu and A. Milanova. Ownership and immutability infer-
ence for UML-based object access control.I@SE pages
323-332, 2007.

Y. Liu and A. Milanova. Static information flow analysis
for Java. Technical Report 08-03, Rensselaer Polytechnic
Institute, Feb. 2008.

Y. Liu and A. Milanova. Static inference of explicit informa-
tion flow. In PASTE 2008.

B. Livshits and M. Lam. Finding security vulnerabilities in

Java applications with static analsysi. Technical report, Stan- [26]

ford University, September 2005.

B. Livshits and M. Lam. Finding security vulnerabilities in
Java applications with static analysis. WSENIX Security
Simposiumpages 271-286, 2005.

K. Ma and J. Foster. Inferring aliasing and encapsulation
properties for Java. IOOPSLA pages 423-440, 2007.

A. Milanova. Precise identification of composition relation-
ships for UML class diagrams. WSE pages 76-85, 2005.

[17] A. Milanova, A. Rountev, and B. G. Ryder.

Certification of programs [20]

Parameter-
ized object sensitivity for points-to analysis for Jav@CM
TOSEM 14(1):1-42, 2005.

J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
ECOOR pages 158-185, 1998.

J. Potter, J. Noble, and D. Clarke. The ins and outs of objects.
In Australian Software Engineering Conferengages 80—
89, 1998.

J. Rehof and M. Fahndrich. Type-base flow analysis: from
polymorphic subtyping to CFL-reachability. FOPL, pages
54-66, 2001.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability.ROPL, pages 49—
61, 1995.

A. Rountev. Precise identification of side-effect free meth-
ods. InICSM, pages 82-91, 2004.

A. Rountev, A. Milanova, and B. Ryder. Points-to analysis
for Java using annotated constraintsO®PSLA pages 43—
55, 2001.

A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java softwdEEE
TSE 30(6):372—-386, 2004.

B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing. ACM TOPLAS 23(2):105-186,
Mar. 2001.

A. Sabelfeld and A. Myers. Language-based information-
flow security.IEEE Journal on Selected Areas in Communi-
cations 21(1):5-19, 2003.

7] A. Salcianu and M. Rinard. A combined pointer and pu-

rity analysis for Java programs. WMCAI, pages 199-215,
2005.

M. Tschantz and M. D. Ernst. Javari: Adding reference im-
mutability to Java. IOOPSLA pages 211-230, 2005.

R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville,
and V. Sundaresan. Optimizing Java bytecode using the Soot
framework: Is it feasible? I€C, pages 18-34, 2000.

Appendix A

public class Register {
private ProductCatalog catalog;
private Sale sale;

public Register() {
1 catalog = new ProductCatalog(); I B productCataiog
public void enterltem(ltemid id, int q) {
2 ProductSpec spec = catalog.getSpec(id);
3 sale.makeLineltem(spec, Q);
}
public void makeNewSale() {
4 sale = new Sale(); Il hsae
public void makePayment(Money cash) {
5 sale.makePayment(cash);
6 Money balance = sale.getBalance();
public void endSale() {
7 sale.becomeComplete();
}
}
class ProductCatalog {
8 private Hashtable specs = new Hashtable(); Il Rgashiable
ProductCatalog() {
9 ItemID id = new ItemID(100); Il hrtemrp1
10 Money price = new Money(3); I hrfoneyt
ProductSpec ps;
11 ps = new ProductSpec(id,price,"Theltem"); I b productSpec
12 specs.put(id,ps);
}
ProductSpec getSpec(ltemID id) {
13 return (ProductSpec) specs.get(id);
}
}
class Sale {
14 private Vector lineltems = new Vector(); Il by ector
private Payment payment;
public Money getBalance() {
15 return payment.getAmount().minus(getTotal());
}
public void makeLineltem(ProductSpec s, int q) {
16 lineltems.add(new SalesLineltem(s,q)); Il hsaieLineltem,
}
public Money getTotal() {
17 Money total = new Money(); I hrtoney2
18 Iterator i = lineltems.iterator();
19 while (i.hasNext()) {
20 SaleLineltem sli = (SaleLineltem) i.next();
21 total.add(sli.getSubtotal());

10

22

23

24

25

26

27
28
29

30
31
32
33
34
35
36
37

}

return total;

}

public void makePayment(Money cash) {
payment = new Payment(cash); I hpayment

public void becomeComplete() { Nog... }

class SaleLineltem {

private int quantity;

private ProductSpec spec;

public SaleLineltem(ProductSpec s, int q) {
this.spec = s; this.quantity = q;

public Money getSubtotal() {
return spec.getPrice().times(quantity);
}

class ProductSpec {

private ItemID id;

private Money price;

private String description;

public ProductSpec(ltemID id, Money price, String description)
this.id = id; this.price = price; this.description = description;

}

public ItemID getID() { return id; }

public Mondy getPrice() { return price; }

public String getDescription() { return description; }

public class phMain() {
public static void main() {
int g = 0, amount = 0;
ltemID id = new ltemID(q); Il hrtemrp2
Money cash = new Money(amount); I hrroneys
Register register = new Register(); Il hgegister

register.makeNewSale();
register.enterltem(id,q);
register.makePayment(cash);
register.endSale();

11

