Ownership and Immutability Inference for UML-based Object Access Control

Yin Liu Ana Milanova
Department of Computer Science Department of Computer Science
Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute
liuy@cs.rpi.edu milanova@cs.rpi.edu
Abstract states a requirement for ownership andrapresentation

exposuret implementation level: ad object must control

We propose a mechanism for object access control whichthe B objects it references through this association. An as-
is based on the UML. Specifically, we propose usevaier- sociation from classi to classB marked asead-only
shipandimmutability constraints on UML associations and states a requirement for immutability at the implementation
verification of these constraints through reverse engineer- level: anA object cannot modify the heap structure rooted
ing. These constraints inherently support software designat theB object it references through this association.
principles, and impose requirements on the implementation Ownership and immutability constraints on UML asso-
that may help prevent serious program flaws. ciations inherently support software design principles such

We propose implementation-level models for ownershipas "Low Coupling” and "Information Expert” [13]. Most
and immutability that capture well the meaning of these importantly, the constraints force reasoning about object
concepts in design, and we develop novel static ownershipaccess control at design level and impose requirements on
and immutability inference analyses. We perform an empir- the implementation. These requirements can be continually
ical investigation on several small-to-large Java programs. verified through reverse engineering which may prevent se-
The results indicate that the inference analyses are preciserious program flaws such as tBégners security bug.
and practical. Therefore, the analyses can be integrated The goals of this work are (i) to define implementation-
in reverse engineering tools and can help support effective|evel ownership and immutability models that capture the
reasoning about software quality and security. meaning of these concepts in design, and (ii) to develop
practical and precise analyses that infer ownership and im-
mutability in accordance with these models. The definition
of implementation-level ownership is based @mners-as-

Unexpected object access can seriously compromisedominators[7, 21]—that is, all access paths to an owned
software quality and software security. For example, in object should pass through its owner. The definition of im-
Java 1.1 the security functid@lass.getSigners mis- mutability requires that an enclosing object have read-only
takenly returned a reference to an internal array; untrustedaccess to an enclosed immutable object—that is, the meth-
clients could modify this array and compromise the security ods invoked on the enclosing object cannot change (directly,
of the system. Current languages such as Java do not proer through callees) the heap structure rooted at the enclosed
vide effective mechanisms for preventing unexpected objectimmutable object.
access. Therefore, it is important to develop such mecha- We propose two novel static analyses for Java, one for
nisms and advance their usage in software practice. ownership inference and one for immutability inference;

This paper proposes use of access-control constraints orthe analyses work directly on Java code and do not require
Unified Modeling Language (UML) class diagrams, and annotations by the programmer. Consider a reverse engi-
verification of these constraints through reverse engineer-neered association from claggo classB. If the ownership
ing. UML class diagrams describe the architecture of the inference determines that allobjects own the correspond-

1 Introduction

program in terms of classes aasdsociationgshat model in- ing B objects referenced through this association, the anal-

terclass relationships; they are informative models, widely ysis marks the association asned. Analogously, if the

used in software engineering practice. immutability inference determines that @lobjects do not
Specifically, we propose the use ofvnershipandim- modify the corresponding objects, the analysis marks the

mutabilityconstraints on UML associations. An association association agead-only . It is important to note that the
from classA to classB marked a®wned at design level, analyses can work on complete programs (i.e., whole pro-

| Register {owned} Sale {owned-item} =I SaleLineltem |
1 *

Efg;%e_g}my} {read—(i)nly} {read-pnly}

""""""" | I X

ProductSpec |

{owned}

*

Figure 1. Ownership and immutability constraints on UML associations.

grams) as well as on incomplete programs (i.e., softwareon software design and the UML [13]. The solid lines repre-
components). This paper focuses on complete programs irsent permanent associations (implemented through instance
order to (i) clearly present the underlying algorithms, and fields), and the dashed lines represent temporary dependen-
(i) emphasize analysis scalability on large programs. cies (typically implemented through local variables). We
Surprisingly, while applying our analysis on the code have added ownership and immutability constraints based
from a popular textbook [13], we discovered a bug in this on the description in the textbook—these constraints for-
code (this is explained in detail in Section 4.3). malize the design principles emphasized in the textbook.

Furthermore, we performed an empirical study on sev- A Register object, an abstraction for the cash regis-
eral small to relatively large Java benchmarks. In our ex- ter, controls the sale logic. It createPeductCatalog

periments, on average 28% of the reverse-engineered assQspject that stores the specifications of all products (i.e., the
ciations were determined to lmevned, and 27% were de- ProductSpec objects). TheRegister object creates
termined to beead-only . We present a precision eval- 5 ga1e object, initiates the sale, passes information about
uation which indicates that the analyses achieve adequatggie items to th&ale object and completes the sale. When
precision—the ownership inference almost never misses ar, new sale item is processed, tRegister fetches the
owned association and the immutability inference rarely correspondin@roductSpec object from the catalog, and

missesﬂaead-only associa}tion. Thef ovynership and im.' passes that object to tlsale object. TheSale object cre-
mutability analyses are practical, running in less than 7 min- g5 4 nevBaleLineltem object for each sale item and
utes on all but one benchmark. The experience indicatespasses theroductSpec object to it.

that (i) the models capture well the meaning of ownership L . :

and immutability in design, and the analyses produce useful The association froﬁeglster to Sale is marl'<ed as
results and (ii) the analyses are precise and practical. TherepwnEd' Thus, tr_\eReglst_er_ ovv_nseja_\chSaIe O.bJeCt It
fore, the analyses can be incorporated in software tools and efers through this assqmatlon—ln_tumvely, Register .
can effectively support verification of ownership and im- may create a5ale object, pass it to other parts of its

mutability; this will lead to high quality, secure, understand- "€Presentation, but cannot leak tBale ~object to out-
able and maintainable software systems. side parts (e.g., objects that are part of the U;er Inter-
This work has the following contributions: face (Ul) of _the system). Furthermore, the_ association be-

, i tweenSaleLineltem andProductSpec is marked as

e We propose a new mechanism for object access CONvead-only . Thus, theSaleLineltem object cannot

trol. ‘It is based on the UML and light-weight veri- i the ProductSpec object it refers to. Note that
fication of propemes related to software quality and for one-to-many associations (e.BroductCatalog to
software security. _ ProductSpec) one can specify constraints on the col-
e We develop implementation-level models for owner- |ection and on the items. For example, a ProductCatalog
ship and immutability that capture well the meaning of \\n< the collection that stord&roductSpec s, but does

these concepts in design. _ _ ~ not own theProductSpec items stored in this collection.
e We develop novel static ownership and immutability

inference analyses. The ownership and immutability constraints inher-

. . ently support reasoning about software design princi-
e We present an empirical study on small to relatively y supp 9 gn p

les such as "Low Coupling”, "Information Expert”,
large Java programs. It demonstrates that the analyse : .
. : etc. [13]. The constraint thaRegister = owns the
are adequately precise and practical.

Sale objects forbids coupling from Ul classes to
Sale which helps achieve low coupling and separa-
tion of the Ul layer from the domain layer. The con-
This section motivates the idea of UML-based object straint that SaleLineltem has read-only access to
access control. Consider the UML class diagram in Fig- ProductSpec forbids SaleLineltem s from modify-
ure 1. It illustrates the design of a supermarket Point-of- ing ProductSpec s; in fact, theProductCatalog is
Sale system and is taken directly from a popular textbook the "information expert” and the only object that can ini-

2 Motivating Example

public class Vector {
tialize and update product information. Most importantly, protected Object[] data;

. : 0 o .-~ public Vector(int 3|ze)
the ownership and immutability constraints impose require 1 data = new Ob{)ect size];

ments on the implementation. These requirements can be pubhc void add(O Ject e, |nt at) {

continually verified in a light-weight manner through re- 2 data[atl)

verse engineering of the UML class diagram. 3 urtgiﬁrr? dgg aq(lementAtgmt ar) {
Surprisingly, when we applied our analysis on the public Iterator |terator() {

Java code from [13, Chapter 20] that corresponds to this4 ~ return new Vlterator(this); }

diagram, the association betwe&aleLineltem a_nd Class Viterator implements Iterator {

ProductSpec was reported as noread-only . A brief Vector vector:

examination of the code revealed a problem that could be int count,

serious—theSaleLineltem object mistakenly modified VIEﬁ[g?éngrCtgr VV) {
the price field of the ProductSpec object. As a re- this.count = 0; }

Object next()

sult, subsequent sales fetcHaiductSpec s with wrong {
bject[] data = vector.data;

prices and computed incorrect sale totals. int i = this.count:

In summary, verifying and enforcing ownership and im- this. count++
mutability constraints will lead to higher quality, more se- 10 return datal[il; }
cure, understandable and maintainable software systems.

oo~ ou

mamQ/
11 ector v = new Vector(100);

3 Problem Statement 12 x = new X();
. . 13 vadd(x 0);
Conventionally, software tools reverse engineer UML as- 14 |terator i = v.iterator();

sociations by examining instance fields of reference type in15 x = (X) i.next();
the code (e.g., a field of type B in classA is reverse en- } X. m()
gineered into an association framto B labeled withf).

The ownership inference problem is to find the fiefdsuch Figure 2. Simplified vector and its iterator.

that for each run-time edgne—> o', oownso’. Similarly, the root

immutability inference problem is to find the fielgssuch A
that for each run-time edggi o', o does not mutate’. It

remains to give suitable definitions of implementation-level x) Vector Viterator

ownership and immutability. W
3.1 Ownership Model Object[]

The ownership model is based on the notiorowhers-
as-dominatorg7, 6, 21]. In this model each program exe-
cution is represented by abject graphthat shows access
relationships between run-time objects. There is an edgedraph in Figure 3 which represents the executiomafn
o—0' if at some point of the program execution one of the in Figure 2. Noderoot represents the start of program
following is true. execution. The other nodes correspond to the objects cre-

e Reference instance fielflin o refers too'. ated at the appropriate allocation sites in Figurg@ctor
does not owrDbject[] because during the execution of
next there is a temporary access froviterator to
Object]] . Vector would ownObject[] if next was
never executed (i.e., line 15 is removed framin).

Figure 3. Object graph for Figure 2.

e Objecto is an array object with element.

e An instance method invoked on receiwehas local
variabler that refers too’, or a static method called
from an instance method invoked orhas a local vari-
abler that refers ta’.2 3.2 Immutability Model

We say thab ownso' if and only if o is the immediate Let e be an execution of a method on receiver object

dominator ofo’ in the object grapR. Consider the object - € modifies an objeat’ if [t triggers a change in the object
structure rooted at —that is,e leads to a statemeptf = ¢

IThe rest of the paper focuses on permanent associations (implementegvhich modifies an objeat” reachable from’ (i.e., o” is

with instance fields). Although our models and analyses are general and " itself or o' is reachable on a path of field edges) For
can handle temporary dependencies, we omit their discussion for clarity.

2We require that there be an explicit reference variable for each object €X@Mmple, the execution atld with receiverVector (line
thatis accessed (i.e., a statement().n() is re-written into an equivalent 13 in Figure 2) modifie©Object]] . We say thab has
sequence=r.m(); r1.n()).

3Nodem dominatesioden if every path from the root of the graphthat ~ Nodem immediately dominatasoder if m dominates: and there is no
reaches node has to pass through node. The root dominates all nodes. nodep such thatn dominateg andp dominatesz.

read-only access to’ if no execution of a methoa on
receivero modifieso’. Thus, in the above exampléector
does not have read-only acces©toject]]

The model does not treat constructor invocations and the

corresponding initialization statemetiiés.f=q as mod-
ifications of the newly constructed object. This is done to
capture the intuitive meaning of immutability in the context
of class diagrams.

4 Ownership and Immutability Analyses

The ownership and immutability analyses can be applied

input Stmt set of statementsPt: RUO — P(0)
output Ag : O — P(O)
[1] foreach statement in methodm
sitl=mnew C(...)

add{c — h;|ceC,}t0 Ag
/[creation flow into the receiver ofn
[3] foreachstatement in methodm
s:l=rmn(..)str#this
s:l=r.fstr#this

add{c — h;|ceCn A (l,h;)€ Pt} to Ag
/loutflow from a callee into the receiver of

(2]

[4]

on complete programs, as well as on incomplete programd®] foreachstatement in methodm

(i.e., components); intuitively, the whole-program analysis

can be adapted to work on incomplete programs by utilizing

a technique callefragment analysi$25, 16]. We present
the analyses in the whole-program setting in order to (i)

emphasize the underlying algorithms, and (ii) demonstrate

scalability on real, large-size Java benchmarks.
4.1 Points-to Analysis

The ownership and immutability analyses are built as in-
dependent clients of points-to analysisPoints-to analysis

s: 1 =mnew C(r),
s:l.n(r)s.t.l #this
s:l.f =rs.t.l +#this
[6] add{hl th |(l,hi)€Pt/\(7', }L]‘)G.Pt} tOAg
/linflow into the receiver of the callee from
[7] label with f eachh; — h; € Ag s.t.(h;.f,h;) € Pt

Figure 4. Construction of Ag. P(X) denotes
the power set of X. Ag is initially empty.

determines the set of objects that a given reference variable

or a reference object field may refer to. There is a large
) y gf all possible run-time object graphs. Subsequently,is

body of work on points-to analysis. For the purposes o
ownership and immutability inference we consider the well-
known Andersen-style flow- and context-insensitive points-
to analysis for Java [24, 14].

The points-to analysis is defined in terms of three sets.

Set R is the set of locals, formals and static fields of ref-
erence type. Sdb is the set of object names; the objects
created at an allocation sitg are represented by object
nameh; € O. SetF contains all instance fields in program
classes. The analysis solution ip@ints-to graptwhere the

edges represent the following "may-refer-to” relationships.

e Letr € Randh € O. An edge(r, h) in the points-
to graph means that at run timemay refer to some
object that is represented by

e Let f € F be areference instance field in objects rep-
resented by somk € O. An edge(h.f, h2) means
that at run time fieldf of some object represented by
h may refer to some object representedily

e Leth represent array objects. An ed@s], h2) shows
that at run time some array representechbyay con-
tain an element represented by.

For the rest of the paper we use notatidio refer to run-
time objects (e.gg, o', 0;, etc.); we use notatioh to refer
to analysis names that abstract the run-time objects (g.g.,
h', h;, etc.).

4.2 Ownership Client

The output of the points-to analysis is needed to con-

struct theapproximate object grapH g which approximates

used for ownership inference.

Approximate Object Graph. The nodes iMg are taken
from the set of object namé&3 and the edges represent the
access relationships. Figure 4 outlines the construction of
Ag given a points-to graptPt. Intuitively, the algorithm
tracks flow of objects from one object to another. Notation
C,, stands for the set of receiver objects of methodit is
computed as follows. lfn is an instance method,,, equals
to the points-to set of the implicit parametais of m. If
m is a static method?,, includes the points-to sets of all
implicit parametershis of instance methods reachable
backwards fromm on a chain of static calls; ifmain is
reachable backwards from on a chain of static callg],,,
includes the special nodeot .

Lines 1-2 account for object creation. At object creation
sites (i.e., constructor calls) new edges are addeld toom
each receiver of the enclosing methag to the newly cre-
ated object. Intuitively, the newly created object becomes
accessible to the receiver of. Lines 3-4 account for flow
out from other objects to the receiver of. For example,
at an instance call not throughis new edges are added
from each receiver aof: to each returned object. Intuitively,
the returned object becomes accessible to the receiver of
Lines 5-6 account for flow fromm into other objects. For
example, at an instance cédlh(r), edges are added from
each object in the points-to set bto each object in the
points-to set of reference argumentntuitively, the object
in the points-to set of the actual argument becomes acces-
sible to the receiver of the call. Finally, line 7 labels with

root Hr input Ag: O — P(O) h; = h;:0x0O
M output Closure: O — P(O), isClosed: boolean
Hpsi Hm <— Hs —— Hv «— Hit [0] if isOutside(h; — h;) return false
[1] Closure={h;,h;}, W={h;}
[2] while W not empty
Hsli =— Hobj[] [3] takehy from W

[4] foreachh,, € Tgts(hi) N Closure

Figure 5. Partial Ag for Section 2. [5] foreachh, € Tgts(hy) N Sres(hm), hn & Closure
[6] if isOutside(h; — h,,) return false
[7] if valid(hg,hp, hiy) @ddh, to Closure and toW

field identifier f each edgé,; — h; € Ag for which there [8] foreachh,, € Sres(hy) N Closure

'S an edgqhi'f’ h;) € ‘P_t' _ . [9] foreachh,, € Tgts(hy,) N Srcs(hg), hy, ¢ Closure
Consider the code in Figure 2. In this case, the algo- [10] if isOutside(h; — hy,) return false

rithm in Figure 4 constructs precisely the run-time object [11] if valid(ho, hn, hy,) @ddhy, to Closure and to W
graph in Figure 3. Edgesoot —Vector , root —X, [12] return true o

Vector —Object]] and Vector —Vlterator are
due to code lines 11, 12, 1 and 4 respectively (lines 1-
2 in the algorithm). EdgeV¥ector —X, Objectﬂ —X input Ay, hy, by, whereh; — hj, hi — hi, hy, — h;
and Viterator ~—Vector are due to code lines 13, 2 output isValid: boolean

and 4 respectively (lines 5-6 in the algorithm). Finally, [1]if isIn(hx — h;) andh; € In(hy, — h;) return true

edgesroot —Vlterator Vlterator' —Object] [2]if isOut(h; — h;) andhy € Out(h; — h;) return true
andVlterator —X are due to code line 14, 7 and 10 re- [3] return false

spectively (lines 3-4 in the algorithm).
The Object gl’aph COI’lStI’UCtion and OWnerShip inference Figure 6. Ownership inference: Computing
n__eed to consider two speC|aI_ cases: (i) static fields and the closure of edge h; — h;. Tgts(h) stands
(ii) self-references (i.e., an object references itself through for {1’ | b — W € Ag} and Sres(h) stands for
this as inr.m(this)). For brevity, we do not discuss {h'| W — h € Ag}.
these cases; our implementation handles them correctly.
Ownership Inference. The ownership inference uses
Ag to reason about object ownership. Consider the partialedge tripleHr—Hps1, Hr—Hs, Hs—Hpslrepresents the
object graph in Figure 5, extracted from the code for Sec- fact that aProductSpec object flows into &Sale object
tion 2 from [13]. Noderoot represents the special con- from theRegister object. Note that if an edge; — h;
text of main and nodeHr represents th®egister ob- in Ag does not have ah;, such that either (1} has han-
ject (created irmain). Hpslrepresent$roductSpec dles to bothh; and h;, or (2) h; has handles to bothy
objects (created ifProductCatalog), Hm represents ~ andh;, we have that each; exclusively owns each; it
Money objects (created imain to account for payment refers to (i.e.,0; is the only object that has a reference to
for a sale), andHs representsSale objects (created in 0;). In Figure 5SHr—Hsis such an edge; it represents that
Register ~ when initiating a new sale) Hsli represents the Register exclusively owns theSale objects it cre-
SaleLineltem objects (created i®ale when process- — ates.
ing a new line item) an#lv represents the collection needed Consider the algorithm in Figure 6, lines 0 to 12, assum-
to store theSaleLineltem s. Finally, Hit represents it- ing thatvalid always returns true; the role ehlid will be
erators over the collection ddaleLineltem s (used in explained shortly. The algorithm makes use of a predicate
Sale when calculating the sale total). isOutside(h; — h;) (lines 0, 6 and 10)—an eddg — h;
The inference analysis (Figure 6) examines an edgeis anoutside edgéd there exists ark;, such that, has han-
h; — h; in the object graph and attempts to prove that for dles to bothh; andh;. Intuitively, isOutside conservatively
eachrun-time instance; — o; of that edgen; dominates captures the situation when somgflows from (or into) an
o;; intuitively, it reasons about the flow of run-time objects “outside” objecto;, and therefore there may be an access
based on the object graph abstraction of this flow. The in- path too; that does not pass through In Figure 5, edge
ference is based on the following intuition: an objectan Hs—Hm s an outside edge. Thdoney object is passed
flow from o; into someo, only if one of the following is from theRegister to aSale and theSale object does
true: (1)o, has a handle to both; ando; (and hencedy not own it. If the edge that is examined, namgly— h;, is
contains edge triplé, — h;, hy — h; andh; — hj), or not an outside edge, the algorithm proceeds to compute the
(2) 0; has a handle to bothy, ando; (and hencedg con- Closure of h; — h;. The algorithm finds all paths fror;
tains edge tripléy; — hg, h; — hj, hyy, — h;). In Figure 5 to h;. It examines each edga — hs in Closure and adds

procedurevalid

nodeshs such that there is a triple;, — ho, hy — hsand input Pt: R — P(O)

hs — hs. If at some point the algorithm detects a path that output Mod: m — P(R)

originates in an outside edge, it returns false (lines 6 and[0] foreach instance field write: p.f = ¢

10). If the algorithm returns true, it is guaranteed that for ~ wherep#this OR EnclMethod(s) not a constructor
each edge; — o, represented bj; — hj, all paths from [1] addp to Mod(EnclMethod(s))

0; t0 o; are internal (i.e.p; dominates, and thus owns). [2] while changes occur id/od

The correctness argument for this statement is given in [15].[3] ~ foreach calls: C.m() or r.m()

Consider edgddr—Hps1lin Figure 5. The algorithm [4] foreach targetr’ of the call
processes;, equal toHr, Hs, Hsli, Hv, Hit, and Hobj[], [5] add Mod(m') to Mod(EnclMethod(s))
in this order. It returns true and computes the closure which
consists of the above nodes pips1 The closure captures NPUt hi — h; € O x O Mod : m — P(R)
all nodes where thEroductSpec objects may flow; they ~ Output readOnly: boolean ,
are all within the boundary of tHeegister . [6] for.each calls: r.m(...) s.t.r # this andh; € Pt(r)
[7] if TrClosure(h;) N Pt(Mod(target(h;,m))) # 0
[8] return false
[9] return true

If the algorithm in Figure 6 returns true for every edge
labeled with f, the ownership analysis concludes that the
association througffi is owned.

Improved Ownership Inference. Note that the analy- Figure 7. Immutability inference: computing
sis, as described above may incur substantial imprecision the read-only status of = h; — h;.
and cost. This is due to the fact that not all edge triples
hi — hj, hi — hy, hy — h; represent valid flow. For 4.3 Immutability Client

example, suppose that edges — h; andh, — h; are Immutability Inference. The immutability inference is
due to object creation (lines 1-2 in the algorithm in Fig- presented in Figure 7. Lines 0-5 perform standard side-
ure 4) andh; — hy is due to inflow (lines 5-6). Clearly, effect analysis [26, 17] which computesi#vd set for each
edgesh; — h; andhy, — h; refer to two distinct run- methodm. Lines 0-1 process each statemeng. f = ¢ and
time objects that are represented with the same name, storep in the Mod set for the enclosing method sf Sub-
However, the analysis concludes that there might be;an sequently, lines 2-5 propagate thévd sets backwards on
that flows from some; into someo,, and erroneously in- the call graph. Set/od(im) contains all reference variables
fers that edgé:; — h; is not owned. Invalid triples affect ; on the left-hand side of an instance field write, reachable
not only precision but cost as well. In the above example, on a call chain fromn. The union of the points-to sets of
when reasoning about edge — h; the analysis needs to these variables approximates the set of objects that may by
reason about edgés — hj, andh, — h;, which is clearly modified during the invocation ofu.
redundant as these edges are irrelevant te> h;. Finally, lines 6-9 take an edde — h; € Ag as input
The edges in the object graph may be characterized asind attempt to show that for all run-time edggs— o;
creation(due to lines 1-2 in Figure 4putflow(due to lines represented by this edge has read-only access 4. The
3-4) andinflow (due to lines 5-6). First, lei; — h; be an analysis examines each method ealh(...) on receiverh;
outflow edge. A triple with, (i.e.,h; — hj, h; — hy, and (i.e., h; € Pt(r)). TrClosure(h;) denotes the transitive
hyx — h;) will be a valid triple only if for some statement closure ofh; on the points-to graph—that is, the set of all
| = r.n() that produces outflow edge, — h; we have nodes reachable frorh; on a path of field edgesPi(S)
thatr point tohy,. Second, lek;, — h; be an inflow edge. extends thePt notation over sets as followsPt(S) =

A triple with h; (i.e., hi, — hj, h; — hy andh; — h;) U,es Pt(p). If for some call the transitive closure &f;

will be a valid triple only if for some statemehi(r) that intersects with the set of modified objects of the run-time
produces this edge we have that thes pointer of the target of the call (i.e.target(h;,m)), the analysis deter-
enclosing method dfn(r), point toh;. mines that edgé; — h; is mutable. If this intersection

The algorithm in Figure 4 is augmented to track valid 1S always empty, the analysis determines that— h; is
sources for outflow and inflow edges. Lines 4’ and 6 below immutable. - _
are added respectively after lines 4 and 6; there is &set In the Point-of-Sale code meth@etTotal in Sale

for each outflow edge and a skt for each inflow edge. iterates over the collection @aleLineltem s and calls
[47 add Pi(r) to Out(c — h;) getSubtotal on eachSalelLineltem object. The

. body of methodyetSubtotal is as follows:
[67 add Pt(this) to In(h; — h;)

Subsequently, the ownership inference in Figure 6 uses
procedurevalid to filter out invalid triples. For example, if We have that fieldspec of Hsli points to Hpsl and
hi, — h; is aninflow edgeh,; must appear idn(h,, — h;). field price of Hpsl points to Hm1 (Hm1 represents

return spec.getPrice().times(quantity);

class A {
B .

b1;
A(B bl «f&bl = b1; .. |1E
m() { B b2 = new B(); b2.setField(10); }
main() {)
B bl = new B(); bl.setField(5);
f\ a = new A(bl); a.m();

Figure 8. Imprecision of immutability infer-
ence.

the Money object that holds the price of the prod-
uct). Thus, getSubtotal calls methodtimes on
Hml The analysis determines thafod (times) equals
{times.this }—that is, times changesthe value of
the receiver object. Thuslod(getSubtotal) equals
{times.this } and we have thatimlis included in set
Pt(Mod(getSubtotal).

There is a call to methodetSubtotal on receiver
Hsli in getTotal in Sale . Consider its effect on edge

.spec

Hsli"™= Hpsl The intersection of the set of objects modi-

fied bygetSubtotal and the transitive closure blps1lis

non-empty; it includesiml The analysis determines that

a SaleLineltem object can modify &ProductSpec
object which is a violation of the immutability constraint

the call, namely variabl®2. As a resultMod(m) equals
{b2}. Sinceb2 points toH, only, the intersection of the
transitive closure ofi,; and{H,.} is empty and the anal-
ysis concludes thdtl is immutable inA.

4.4 Complexity

Let N be the size of the program being analyzed—thatiis,
the number of statements, the number of object names and
the number of variables is of ordéf. The complexity of
the underlying Andersen-style points-to analysi®©{gv?).

One can see from Figures 4, 6 and 7 that the client anal-
yses are dominated by the ownership inference in Figure 6
which has complexity)(N?®) [15].

5 Empirical Results

The goal of the empirical study is to address three ques-
tions. First, do the analyses scale to large Java applications?
Second, how often do our analyses discover owned and im-
mutable fields? Third, hownprecisethe analyses are—that
is, how often they miss owned or immutable fields?

The ownership and immutability clients are implemented
in Java using the Soot 2.2.3 [30] and Spark [14] frame-
works; they are implemented as clients of the Andersen-
style points-to analysis provided by Spark. We performed

in Figure 1. Fur_ther exgmination revealed that this was awhole-program analysis with the Sun JDK 1.4.1 libraries.
bug in the code in [13]; it caused subsequent sales to fetchA” experiments were done on a 900MHz Sun Fire 380R

wrong product prices and compute incorrect totals.

machine with 4GB of RAM. The implementation which in-

If the procedure for checking an edge returns true for ¢|,des Soot and Spark was run with a max heap size of 1GB.

every edge labeled witli, the immutability analysis con-
cludes that the association througjlis read-only
Improved Immutability Inference. The algorithm in

Native methods are handled by utilizing the models pro-
vided by Soot. Reflection is handled by specifying the
dynamically loaded classes which Spark uses to appropri-

Figure 7 may incur substantial imprecision. Consider the ztely resolve reflection calls. This approach is used in other

code in Figure 8. Field1 is immutable inA. The B ob-
ject created ifmain and referred by field1 is denoted
by nameH;,, and theB object created irmis denoted
by Hys. Mod(setField) equals{setField.this h
it is propagated toMod(m and we have thatMod(m)
equals {setField.this } as well. The points-to set
of setField.this contains bothH,; and H,» and the
analysis concludes imprecisely thdtis mutable inA.

To improve the analysis we introduce a limited form of

context sensitivity. When propagating tiiéod set of the

whole-program analyses based on Soot and Spark [28].

Our benchmark suite includes several relatively small
applications,soot-c and sablecc-j from the Ashes
suite [1], relatively large benchmarks from the DaCapo
benchmark suite version beta051009 [2] and the Polyglot
Java front-end. The suite is described in Table 1. The num-
ber of user classes and user methods fetched by Soot are
shown in the first two columns of multicolumn (3); these
numbers exclude the standard libraries but include other Ii-
braries shipped with the application. The last column shows

callee (line 5), the analysis "maps” modified formal pa- the number of methods (user and library), determined to be
rameters to their corresponding actuals. More precisely,reachable by Spark.

it examines every variable € Mod(m’). If v is an
unassigned formal parameter of, v is mapped to the

Results.We applied the ownership and immutability in-
ference algorithms on instance fields of reference type in

corresponding actual at the call and the actual is added,ser classes.Table 2 shows the running time of the analy-

to Mod(EnclMethod(s)); otherwisev itself is added to
Mod(EnclMethod(s)).* Consider again the code in Fig-
ure 8. When propagatintfod (setField) to Mod(m) the
analysis mapsetField.this to the actual argument at

4Implicit parametethis cannot be assigned, and other formal param-

eters are rarely assigned.

sis. The first column shows the running time for Soot and
Spark, and the two subsequent columns show the running
times for the ownership and immutability clients. Clearly,
our analyses scale well, even on applications with close to

50ur experiments exclude fields of tySgring because they do not
correspond to associations in the UML class diagram.

(1)Program (2)Description (3)Size
#User Classes #User Methods| #Reachable Methods

jdepend-2.9.1 A quality metrics suite for Java 17 225 3962
javad Classfile decompiler 41 156 3838
JATLite-0.4 Template for writing software agents 45 442 6279
undo Undo functionality for sysadming 237 1709 5644
hsqgldb-1.8.0 Relational database engine and tools 196 3743 7177
soot-c Analysis framework for Java 579 2935 6046
sablecc-j Java parser generator 300 2024 7970
polyglot-1.3.2 Framework for Java language extensians 267 3418 7449
antlr Parser and lexical analyzer generator 126 1738 5102
bloat Java bytecode optimizer 289 3232 6402
jython Python interpreter 163 2892 5606
pmd Java source code analyzer 718 7057 8653
ps Postscript interprete 200 908 5396

Table 1. Information about the Java benchmarks.

Program Points-to | Ownership | Immutability tion exposure, imprecision will mean that potentially large
Analysis | Analysis Analysis amount of code will have to be examined manually. There-
jdepend 1m35s 32s 10s fore, imprecision must be carefully evaluated by analysis
javad 1m33s 27s 3s designers_
JATLite 2m37s 1m29s 35s .
undo 3m3s 1mB2s 37s We performed a study of absolute precision [25, 16] on a
hsqidb 2m57s 2mibs >m31s subset of the fields. Specifically, we considered all fields
soot 2m23s 1mi3s 1m38s in the two smallest benchmarkglepend and javad |,
sablecc 3mbs 1m49s 1m30s and all fields in the class with the largest number of fields
polyglot 9m39s 2mdas 3m38s for the four largest benchmarkksqldb, polyglot,
antlr 2m25s 1m4s 35s sablecc andpmd (the size metric that we used was the
bloat 2m36s 1m57s 3m8s number of reachable methods, shown in Column (3) of Fig-
jython 1m58s 1m21s 3m9s ure 1). This accounted for a set of 153 instance fields, of
pmd 4m17s 2m22s 8ml6s which 88 fields were reported non-owned, and 97 fields
ps 2m19s 1m51s 29s were reported non-read-only. For this set, we examined

manuallyeachnon-owned field and attempted to prove ex-
posure (i.e., that there is an execution such that an object
stored in this field would be exposed outside of its enclos-
9000 reachable methods. The combined time for owner-ing object). Inall caseswe were able to show exposure—
ship and immutability analysis does not exceed 7 minutesthat is, for this set of fields the ownership analysis achieved
on twelve out of thirteen benchmarks; on the most expen- perfect precision. Similarly, we examined each non-read-
sive benchmarkpmd, it still runs in under 11 minutes. only field and attempted to prove mutability (i.e., that there

The first column of Table 3 shows the number of refer- IS an execution for which an object stored in this field will
ence instance fields in user classes. On average, the owneR€ mutated by its enclosing object). i but 7 caseg15]
ship analysis identified 28% of the fields as owned (column W& were able to show mutability—that is, the immutability
#Owned).Also, on average, the immutability analysis iden- @nalysis achieved very good precision as well.

tified 27% of the fields as read-only (column #lmmutable). Conclusions.The empirical study leads to the following
Analysis Precision. The issue of analysis precision is observations. First, the analyses scale to large programs,
of crucial importance for software tools. If the ownership analyzing close to ten thousand reachable methods in only
analysis is imprecise, it may report that an association isseveral minutes. Second, the ownership and immutability
non-owned while in reality it is owned (i.e., the analysis re- models capture well the meaning of these notions in mod-
ports that certain representation may be exposed while ineling. Clarke et al. [7] argue that the owners-as-dominators
fact it is not). Similarly, the immutability analysis may re- model captures well the notions of ownership and compo-
port that an association is non-read-only, while in reality it sition in modeling; our study reaffirmed this observation.
is. Such information is not useful and may confuse the user.The immutability model captures relationships intuitively
For example, if a user attempts to verify lack of representa- as well; it led us to a bug in the code for our motivating ex-

Table 2. Analysis times.

| Program | #Fields[#Owned [#immutable | Ownership inference. Grothoff et al. [9] present an

jdepend 33 | 19 (58%) 6 (18%) analysis for Java that infers whether a class is confined
javad 40 | 19 (48%)| 40 (100%) within its package. Clarke et al. [8] present a confine-
JATLite 142 | 35 (27%) 13 (9%) ment checking tool, related to [9], that warns against cer-
undo 325 | 73(22%)| 162 (50%) tain kinds of violating program statements. These analyses
hsqldb 383 | 89 (23%) 70 (18%) work on the class level while our analyses work on the ob-
soot 340 | 77(23%) 57 (17%) ject level. They are more restrictive than ours (e.g., they do
sablecc 304 | 30(10%)| 40 (13%) not handle pseudo-generic containers well), and do not ad-
polyglot 435| 51(12%)| 92(21%) dress the kind of ownership needed for UML-based object
antlr 161 | 45 (28%) 25 (16%) access control.
bloat 529 | 81(15%)| 73 (14%) _ .
ython 215 | 69 (32%) 21 (10%) Heme and Lam [10] present an ownership mfgrence a_l—
pmd 914 | 318 (35%) | 162 (18%) gor}thm for the purposes of memory Igak detection. Their
ps 19 7 (37%) 8 (42%) r}0t|0n of ownership |s'substant|ally different than the no-
[Average | ‘ 28% | 27% | tion of owners-as-dominators used in our work.

Aldrich et al. [4] present a type inference analysis in ac-
Table 3. Ownership and immutability results. cordance with a type system that they develop. Again, our
analysis solves a different problem—ownership inference
ample. Overall, the analyses produce useful results, easy tdn accordance with the owners-as-dominators model which
interpret in the context of UML class diagrams. Third, the is different than the type system in [4] (e.g., thened
analyses are relatively precise, rarely missimgned and ~ type in [4] captures exclusive ownership only, although ac-
read-only associations. In summary, the empirical study €SS can be allowed through user-specified alias parame-
indicates that the analyses can effectively support model-ters). The inference analysis in [4] is conceptually differ-
driven development and reasoning about software quality©nt than ours; it infers type annotations at a fine level of

and security. granularity (i.e., for each variable and expression) and that
appears to hinder scalability. Our analysis, which is based
6 Related Work on Soot, and the efficient inclusion-based Andersen-style

points-to analysis in Spark, appears to scale better, both in
terms of time and memory.
Agarwal and Stoller [3] infer ownership types for race-

The ownership and immutability inference analyses im-
prove substantially upon our previous work on composition
inference [16] and side-effect analysis [17] respectively. : L ; !
The main new analysis idea is to employ an inexpensive 7€ Java using dynamic analysis; thus, the inferred types
context-insensitive points-to analysis and improve precision MY b€ unsound. Our analysis is a safe static analysis.
by limited context sensitivity in the clients. This was crucial ~ Recent work by Rayside et al. [22] emphasizes the rel-
for precision and scalability; in fact, the old analysis was not €vance of ownership inference and visualization. The pa-
only potentially imprecise, but it did not scale beyond the Per however, appears to be preliminary because it does not
smallest benchmarks in our suite. Further, the analyses ar@resent empirical results. Our work uses a related owner-
employed towards a new practical purpose—improving the ship model, but a conceptually different inference analysis.
capabilities of UML tools, which will enhance object ac- It presents a detailed empirical investigation that indicates
cess control and thus software security and software qualitythat the analyses are practical and adequately precise.
in practice. Immutability inference. Porat et al. [20] describe an

Ownership and immutability type systems.Our work analysis that detects immutable fields. Their analysis is
is related to work on ownership type systems [18, 7, 4, 6, context-insensitive, libraries are not analyzed and the pa-
5, 12] and work on immutability type systems [11, 19, 29]. Per discusses only static fields. Our immutability analy-
Similarly to our work, these articles emphasize the impor- Sis incorporates limited context sensitivity, analyses large
tance of the concepts of ownership and immutability in soft- libraries and focuses on instance fields.
ware development. Unlike our work they focus on type- Ryder et al. [26] present a framework for side-effect
theoretic approaches and require type annotations providedinalysis for C that is parameterized by points-to analysis.
by the programmer; generally, these approaches require exOur inference analysis uses the same general idea for prop-
tensions of the language, compiler and run-time environ- agation of side-effects. However, we consider underlying
ment and therefore will be difficult to adopt in practice. Our context-insensitive points-to analysis combined with lim-
approach uses automatic inference and works directly onited context sensitivity during propagation; this combina-
Java code; it is based on the universally-known UML and tion helps achieve scalable analysis.
therefore may help advance object access control through Rountev [23], and Salcianu and Rinard [27] present anal-
ownership and immutability in practice. yses that identify side-effect-free methods in Java programs.

In both cases the analyses are applied on relatively small[11] G. Kniesel and D. Theisen.

programs (hundreds of reachable methods). Our analysis
identifies immutable fields and is applied on substantially
larger programs (close to ten thousand reachable methods)12] P. Lam and M. Rinard. A type system and analysis for the

7

We presented a new mechanism for object access contro
which is based on the UML and light-weight verification of
ownership and immutability. We presented models for own-
ership and immutability and corresponding inference anal-

Conclusions and Future Work

yses. We performed an empirical study that indicated that
the analyses were practical and adequately precise.

One limitation of our study is that it is unclear whether [16] A= Milanova. Precise identification of composition relation-
the precision results will extend to other data. Another is
that it is unclear whether our analysis revealed unintended[17] A. Milanova, A. Rountev, and B. Ryder. Parameterized ob-
representation exposure or mutability; we could not per-
form a study of that because we were not familiar with the

benchmarks and their intended design requirements.

In the future, we will perform larger studies of precision
as well as studies that relate design requirements with im-[19] |. Pechtchanski and V. Sarkar. Immutability specification and
plementation. Furthermore, we plan to integrate the analy-
ses into an open-source UML tool.

JAC-access right based en-
capsulation for Java.Software: Practice and Experience
31(6):555-576, 2001.

automatic extraction and enforcement of design information.
In ECOOPR, pages 275-302, 2003.

[13] C. Larman.Applying UML and PatternsPrentice Hall, 2nd

edition, 2002.

[14] O. Lhotak and L. Hendren. Scaling Java points-to analysis

using Spark. IrCC, pages 153-169, 2003.

[15] V. Liu and A. Milanova. UML-based alias control. Techni-

cal Report RPI/DCS-06-10, Rensselaer Polytechnic Institute,
Sept. 2006.

ships for UML class diagrams. IASE pages 76-85, 2005.

ject sensitivity for points-to and side-effect analyses for Java.
In ISSTA pages 1-12, 2002.

[18] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In

ECOOR pages 158-185, 1998.

its applications. InJoint ACM-ISCOPE Java Grande Con-
ference pages 202-211, 2002.

[20] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Au-

8 Acknowledgements

This work was supported by an IBM Eclipse Innovation
Award for 2006. We would like to thank Manu Sridharan for

answering our questions about his paper, and the ICSE'07
reviewers whose suggestions greatly improved this paper. [22] D. Rayside, L. Mendel, R. Seater, and D. Jackson. An anal-

References

(1]
(2]

(3]
(4]

(5]
(6]

(7]
(8]

(9]

(10]

Ashes suite collection. http://www.sable.mcgill.ca/software.

Dacapo benchmark suite. http://www-ali.cs.umass.edu/ da-
capo/gcbm.html.

R. Agarwal and S. Stoller. Type inference for parameterized
race-free Java. INMCAI, pages 149-160, 2004.

J. Aldrich, V. Kostadinov, and C. Chambers. Alias annota-
tions for program understanding. MOPSLA pages 311-
330, 2002.

C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. IROPL, pages 213-223, 2003.

D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. ®OPSLA pages
292-310, 2002.

D. Clarke, J. Potter, and J. Noble. Ownership types for flex-
ible alias protection. I©OOPSLA pages 48-64, 1998.

D. Clarke, M. Richmond, and J. Noble. Saving the world
from bad beans: Deployment time confinement checking. In
OOPSLA pages 374-387, 2003.

C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects
with confined types. IDOPSLA pages 241-253, 2001.

D. Heine and M. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detectoPLLDI,
pages 168-181, 2003.

10

[25]

[26

[27]

(28]

[29]

[30]

tomatic detection of immutable fields in Java. GASCON
2000.

[21] J. Potter, J. Noble, and D. Clarke. The ins and outs of objects.

In Australian Software Engineering Conferengages 80—
89, 1998.

ysis and visualization for revealing object sharing Work-
shop on Eclipse technology eXchangages 11-15, 2005.

[23] A. Rountev. Precise identification of side-effect free meth-

ods. InICSM, pages 82-91, 2004.

[24] A.Rountev, A. Milanova, and B. G. Ryder. Points-to analysis

for Java using annotated constraintsO®PSLA pages 43—
55, 2001.

A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java softwdEEE
TSE 30(6):372—-386, June 2004.

B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing. ACM TOPLAS 23(2):105-186,
Mar. 2001.

A. Salcianu and M. Rinard. A combined pointer and pu-
rity analysis for Java programs. WCAI, pages 199-215,
2005.

M. Sridharan and R. Bodik. Refinement-based context-
sensitive points-to analysis for Java. PbDI, pages 387—
400, 2006.

M. Tschantz and M. D. Ernst. Javari: Adding reference im-
mutability to Java. IOOPSLA pages 211-230, 2005.

R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville,
and V. Sundaresan. Optimizing Java bytecode using the Soot
framework: Is it feasible? II€C, LNCS 1781, pages 18-34,
2000.

