
Ownership and Immutability Inference for UML-based Object Access Control

Yin Liu
Department of Computer Science
Rensselaer Polytechnic Institute

liuy@cs.rpi.edu

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

milanova@cs.rpi.edu

Abstract

We propose a mechanism for object access control which
is based on the UML. Specifically, we propose use ofowner-
shipandimmutabilityconstraints on UML associations and
verification of these constraints through reverse engineer-
ing. These constraints inherently support software design
principles, and impose requirements on the implementation
that may help prevent serious program flaws.

We propose implementation-level models for ownership
and immutability that capture well the meaning of these
concepts in design, and we develop novel static ownership
and immutability inference analyses. We perform an empir-
ical investigation on several small-to-large Java programs.
The results indicate that the inference analyses are precise
and practical. Therefore, the analyses can be integrated
in reverse engineering tools and can help support effective
reasoning about software quality and security.

1 Introduction

Unexpected object access can seriously compromise
software quality and software security. For example, in
Java 1.1 the security functionClass.getSigners mis-
takenly returned a reference to an internal array; untrusted
clients could modify this array and compromise the security
of the system. Current languages such as Java do not pro-
vide effective mechanisms for preventing unexpected object
access. Therefore, it is important to develop such mecha-
nisms and advance their usage in software practice.

This paper proposes use of access-control constraints on
Unified Modeling Language (UML) class diagrams, and
verification of these constraints through reverse engineer-
ing. UML class diagrams describe the architecture of the
program in terms of classes andassociationsthat model in-
terclass relationships; they are informative models, widely
used in software engineering practice.

Specifically, we propose the use ofownershipand im-
mutabilityconstraints on UML associations. An association
from classA to classB marked asowned at design level,

states a requirement for ownership and norepresentation
exposureat implementation level: anA object must control
theB objects it references through this association. An as-
sociation from classA to classB marked asread-only
states a requirement for immutability at the implementation
level: anA object cannot modify the heap structure rooted
at theB object it references through this association.

Ownership and immutability constraints on UML asso-
ciations inherently support software design principles such
as ”Low Coupling” and ”Information Expert” [13]. Most
importantly, the constraints force reasoning about object
access control at design level and impose requirements on
the implementation. These requirements can be continually
verified through reverse engineering which may prevent se-
rious program flaws such as theSigners security bug.

The goals of this work are (i) to define implementation-
level ownership and immutability models that capture the
meaning of these concepts in design, and (ii) to develop
practical and precise analyses that infer ownership and im-
mutability in accordance with these models. The definition
of implementation-level ownership is based onowners-as-
dominators[7, 21]—that is, all access paths to an owned
object should pass through its owner. The definition of im-
mutability requires that an enclosing object have read-only
access to an enclosed immutable object—that is, the meth-
ods invoked on the enclosing object cannot change (directly,
or through callees) the heap structure rooted at the enclosed
immutable object.

We propose two novel static analyses for Java, one for
ownership inference and one for immutability inference;
the analyses work directly on Java code and do not require
annotations by the programmer. Consider a reverse engi-
neered association from classA to classB. If the ownership
inference determines that allA objects own the correspond-
ing B objects referenced through this association, the anal-
ysis marks the association asowned. Analogously, if the
immutability inference determines that allA objects do not
modify the correspondingB objects, the analysis marks the
association asread-only . It is important to note that the
analyses can work on complete programs (i.e., whole pro-



Register Sale SaleLineItem

ProductCatalog ProductSpec

{owned}
{owned}

{owned}

{read-only}

{owned-item}

{read-only}

1 *

1 *

{owned-collection}

{read-only}

Figure 1. Ownership and immutability constraints on UML associations.

grams) as well as on incomplete programs (i.e., software
components). This paper focuses on complete programs in
order to (i) clearly present the underlying algorithms, and
(ii) emphasize analysis scalability on large programs.

Surprisingly, while applying our analysis on the code
from a popular textbook [13], we discovered a bug in this
code (this is explained in detail in Section 4.3).

Furthermore, we performed an empirical study on sev-
eral small to relatively large Java benchmarks. In our ex-
periments, on average 28% of the reverse-engineered asso-
ciations were determined to beowned, and 27% were de-
termined to beread-only . We present a precision eval-
uation which indicates that the analyses achieve adequate
precision—the ownership inference almost never misses an
owned association and the immutability inference rarely
misses aread-only association. The ownership and im-
mutability analyses are practical, running in less than 7 min-
utes on all but one benchmark. The experience indicates
that (i) the models capture well the meaning of ownership
and immutability in design, and the analyses produce useful
results and (ii) the analyses are precise and practical. There-
fore, the analyses can be incorporated in software tools and
can effectively support verification of ownership and im-
mutability; this will lead to high quality, secure, understand-
able and maintainable software systems.

This work has the following contributions:

• We propose a new mechanism for object access con-
trol. It is based on the UML and light-weight veri-
fication of properties related to software quality and
software security.

• We develop implementation-level models for owner-
ship and immutability that capture well the meaning of
these concepts in design.

• We develop novel static ownership and immutability
inference analyses.

• We present an empirical study on small to relatively
large Java programs. It demonstrates that the analyses
are adequately precise and practical.

2 Motivating Example

This section motivates the idea of UML-based object
access control. Consider the UML class diagram in Fig-
ure 1. It illustrates the design of a supermarket Point-of-
Sale system and is taken directly from a popular textbook

on software design and the UML [13]. The solid lines repre-
sent permanent associations (implemented through instance
fields), and the dashed lines represent temporary dependen-
cies (typically implemented through local variables). We
have added ownership and immutability constraints based
on the description in the textbook—these constraints for-
malize the design principles emphasized in the textbook.

A Register object, an abstraction for the cash regis-
ter, controls the sale logic. It creates aProductCatalog
object that stores the specifications of all products (i.e., the
ProductSpec objects). TheRegister object creates
a Sale object, initiates the sale, passes information about
sale items to theSale object and completes the sale. When
a new sale item is processed, theRegister fetches the
correspondingProductSpec object from the catalog, and
passes that object to theSale object. TheSale object cre-
ates a newSaleLineItem object for each sale item and
passes theProductSpec object to it.

The association fromRegister to Sale is marked as
owned. Thus, theRegister ownseachSale object it
refers through this association—intuitively, theRegister
may create aSale object, pass it to other parts of its
representation, but cannot leak theSale object to out-
side parts (e.g., objects that are part of the User Inter-
face (UI) of the system). Furthermore, the association be-
tweenSaleLineItem andProductSpec is marked as
read-only . Thus, theSaleLineItem object cannot
modify the ProductSpec object it refers to. Note that
for one-to-many associations (e.g.,ProductCatalog to
ProductSpec ) one can specify constraints on the col-
lection and on the items. For example, a ProductCatalog
owns the collection that storesProductSpec s, but does
not own theProductSpec items stored in this collection.

The ownership and immutability constraints inher-
ently support reasoning about software design princi-
ples such as ”Low Coupling”, ”Information Expert”,
etc. [13]. The constraint thatRegister owns the
Sale objects forbids coupling from UI classes to
Sale which helps achieve low coupling and separa-
tion of the UI layer from the domain layer. The con-
straint that SaleLineItem has read-only access to
ProductSpec forbids SaleLineItem s from modify-
ing ProductSpec s; in fact, theProductCatalog is
the ”information expert” and the only object that can ini-

2



tialize and update product information. Most importantly,
the ownership and immutability constraints impose require-
ments on the implementation. These requirements can be
continually verified in a light-weight manner through re-
verse engineering of the UML class diagram.

Surprisingly, when we applied our analysis on the
Java code from [13, Chapter 20] that corresponds to this
diagram, the association betweenSaleLineItem and
ProductSpec was reported as non-read-only . A brief
examination of the code revealed a problem that could be
serious—theSaleLineItem object mistakenly modified
the price field of the ProductSpec object. As a re-
sult, subsequent sales fetchedProductSpec s with wrong
prices and computed incorrect sale totals.

In summary, verifying and enforcing ownership and im-
mutability constraints will lead to higher quality, more se-
cure, understandable and maintainable software systems.

3 Problem Statement

Conventionally, software tools reverse engineer UML as-
sociations by examining instance fields of reference type in
the code (e.g., a fieldf of typeB in classA is reverse en-
gineered into an association fromA to B labeled withf ).1

The ownership inference problem is to find the fieldsf such

that for each run-time edgeo
f→ o′, o ownso′. Similarly, the

immutability inference problem is to find the fieldsf such

that for each run-time edgeo
f→ o′, o does not mutateo′. It

remains to give suitable definitions of implementation-level
ownership and immutability.

3.1 Ownership Model
The ownership model is based on the notion ofowners-

as-dominators[7, 6, 21]. In this model each program exe-
cution is represented by anobject graphthat shows access
relationships between run-time objects. There is an edge
o→o′ if at some point of the program execution one of the
following is true.
• Reference instance fieldf in o refers too′.
• Objecto is an array object with elemento′.
• An instance method invoked on receivero has local

variabler that refers too′, or a static method called
from an instance method invoked ono, has a local vari-
abler that refers too′.2

We say thato ownso′ if and only if o is the immediate
dominator ofo′ in the object graph.3 Consider the object

1The rest of the paper focuses on permanent associations (implemented
with instance fields). Although our models and analyses are general and
can handle temporary dependencies, we omit their discussion for clarity.

2We require that there be an explicit reference variable for each object
that is accessed (i.e., a statementr.m().n() is re-written into an equivalent
sequencer1=r.m(); r1.n()).

3Nodem dominatesnoden if every path from the root of the graph that
reaches noden has to pass through nodem. The root dominates all nodes.

public class Vector {
protected Object[] data;
public Vector(int size) {

1 data = new Object[size]; }
public void add(Object e,int at) {

2 data[at] = e; }
public Object elementAt(int at) {

3 return data[at]; }
public Iterator iterator() {

4 return new VIterator(this); }
}
class VIterator implements Iterator {

Vector vector;
int count;
VIterator(Vector v) {

5 this.vector = v;
6 this.count = 0; }

Object next() {
7 Object[] data = vector.data;
8 int i = this.count;
9 this.count++;
10 return data[i]; }
}
main() {
11 Vector v = new Vector(100);
12 X x = new X();
13 v.add(x,0);
14 Iterator i = v.iterator();
15 x = (X) i.next();
16 x.m();
}

Figure 2. Simplified vector and its iterator.

root

X Vector VIterator

Object[]

vector

data[]

Figure 3. Object graph for Figure 2.

graph in Figure 3 which represents the execution ofmain
in Figure 2. Noderoot represents the start of program
execution. The other nodes correspond to the objects cre-
ated at the appropriate allocation sites in Figure 2.Vector
does not ownObject[] because during the execution of
next there is a temporary access fromVIterator to
Object[] . Vector would ownObject[] if next was
never executed (i.e., line 15 is removed frommain ).

3.2 Immutability Model

Let e be an execution of a methodm on receiver object
o. e modifies an objecto′ if it triggers a change in the object
structure rooted ato′—that is,e leads to a statementp.f = q
which modifies an objecto′′ reachable fromo′ (i.e., o′′ is
o′ itself or o′′ is reachable on a path of field edges). For
example, the execution ofadd with receiverVector (line
13 in Figure 2) modifiesObject[] . We say thato has

Nodem immediately dominatesnoden if m dominatesn and there is no
nodep such thatm dominatesp andp dominatesn.

3



read-only access too′ if no execution of a methodm on
receivero modifieso′. Thus, in the above exampleVector
does not have read-only access toObject[] .

The model does not treat constructor invocations and the
corresponding initialization statementsthis.f=q as mod-
ifications of the newly constructed object. This is done to
capture the intuitive meaning of immutability in the context
of class diagrams.

4 Ownership and Immutability Analyses

The ownership and immutability analyses can be applied
on complete programs, as well as on incomplete programs
(i.e., components); intuitively, the whole-program analysis
can be adapted to work on incomplete programs by utilizing
a technique calledfragment analysis[25, 16]. We present
the analyses in the whole-program setting in order to (i)
emphasize the underlying algorithms, and (ii) demonstrate
scalability on real, large-size Java benchmarks.

4.1 Points-to Analysis
The ownership and immutability analyses are built as in-

dependent clients of apoints-to analysis. Points-to analysis
determines the set of objects that a given reference variable
or a reference object field may refer to. There is a large
body of work on points-to analysis. For the purposes of
ownership and immutability inference we consider the well-
known Andersen-style flow- and context-insensitive points-
to analysis for Java [24, 14].

The points-to analysis is defined in terms of three sets.
SetR is the set of locals, formals and static fields of ref-
erence type. SetO is the set of object names; the objects
created at an allocation sitesi are represented by object
namehi ∈ O. SetF contains all instance fields in program
classes. The analysis solution is apoints-to graphwhere the
edges represent the following ”may-refer-to” relationships.

• Let r ∈ R andh ∈ O. An edge(r, h) in the points-
to graph means that at run timer may refer to some
object that is represented byh.

• Let f ∈ F be a reference instance field in objects rep-
resented by someh ∈ O. An edge(h.f, h2) means
that at run time fieldf of some object represented by
h may refer to some object represented byh2.

• Let h represent array objects. An edge(h[], h2) shows
that at run time some array represented byh may con-
tain an element represented byh2.

For the rest of the paper we use notationo to refer to run-
time objects (e.g.,o, o′, oi, etc.); we use notationh to refer
to analysis names that abstract the run-time objects (e.g.,h,
h′, hi, etc.).

4.2 Ownership Client
The output of the points-to analysis is needed to con-

struct theapproximate object graphAg which approximates

input Stmt: set of statementsPt: R ∪O → P(O)
output Ag : O → P(O)
[1] foreachstatements in methodm

si : l = new C(...)
[2] add{c → hi | c∈Cm} to Ag

//creation flow into the receiver ofm
[3] foreachstatements in methodm

s : l = r.n(...) s.t. r 6= this ,
s : l = r.f s.t. r 6= this

[4] add{c → hj | c∈Cm ∧ (l, hj)∈Pt} to Ag
//outflow from a callee into the receiver ofm

[5] foreachstatements in methodm
s : l = new C(r),
s : l.n(r) s.t. l 6= this ,
s : l.f = r s.t. l 6= this

[6] add{hi → hj | (l, hi)∈Pt ∧ (r, hj)∈Pt} to Ag
//inflow into the receiver of the callee fromm

[7] label withf eachhi → hj ∈ Ag s.t. (hi.f, hj) ∈ Pt

Figure 4. Construction of Ag . P(X) denotes
the power set of X. Ag is initially empty.

all possible run-time object graphs. Subsequently,Ag is
used for ownership inference.

Approximate Object Graph. The nodes inAg are taken
from the set of object namesO and the edges represent the
access relationships. Figure 4 outlines the construction of
Ag given a points-to graphPt . Intuitively, the algorithm
tracks flow of objects from one object to another. Notation
Cm stands for the set of receiver objects of methodm. It is
computed as follows. Ifm is an instance method,Cm equals
to the points-to set of the implicit parameterthis of m. If
m is a static method,Cm includes the points-to sets of all
implicit parametersthis of instance methodsn reachable
backwards fromm on a chain of static calls; ifmain is
reachable backwards fromm on a chain of static calls,Cm

includes the special noderoot .
Lines 1-2 account for object creation. At object creation

sites (i.e., constructor calls) new edges are added toAg from
each receiver of the enclosing methodm, to the newly cre-
ated object. Intuitively, the newly created object becomes
accessible to the receiver ofm. Lines 3-4 account for flow
out from other objects to the receiver ofm. For example,
at an instance call not throughthis new edges are added
from each receiver ofm to each returned object. Intuitively,
the returned object becomes accessible to the receiver ofm.
Lines 5-6 account for flow fromm into other objects. For
example, at an instance calll.n(r), edges are added from
each object in the points-to set ofl to each object in the
points-to set of reference argumentr. Intuitively, the object
in the points-to set of the actual argument becomes acces-
sible to the receiver of the call. Finally, line 7 labels with

4



Hv HitHs

Hsli Hobj[]

Hr

HmHps1

root

Figure 5. Partial Ag for Section 2.

field identifierf each edgehi → hj ∈ Ag for which there
is an edge(hi.f, hj) ∈ Pt .

Consider the code in Figure 2. In this case, the algo-
rithm in Figure 4 constructs precisely the run-time object
graph in Figure 3. Edgesroot →Vector , root →X,
Vector →Object[] and Vector →VIterator are
due to code lines 11, 12, 1 and 4 respectively (lines 1-
2 in the algorithm). EdgesVector →X, Object[] →X
and VIterator →Vector are due to code lines 13, 2
and 4 respectively (lines 5-6 in the algorithm). Finally,
edges root →VIterator , VIterator →Object[]
andVIterator →X are due to code line 14, 7 and 10 re-
spectively (lines 3-4 in the algorithm).

The object graph construction and ownership inference
need to consider two special cases: (i) static fields and
(ii) self-references (i.e., an object references itself through
this as inr.m(this) ). For brevity, we do not discuss
these cases; our implementation handles them correctly.

Ownership Inference. The ownership inference uses
Ag to reason about object ownership. Consider the partial
object graph in Figure 5, extracted from the code for Sec-
tion 2 from [13]. Noderoot represents the special con-
text of main and nodeHr represents theRegister ob-
ject (created inmain ). Hps1 representsProductSpec
objects (created inProductCatalog ), Hm represents
Money objects (created inmain to account for payment
for a sale), andHs representsSale objects (created in
Register when initiating a new sale).Hsli represents
SaleLineItem objects (created inSale when process-
ing a new line item) andHv represents the collection needed
to store theSaleLineItem s. Finally, Hit represents it-
erators over the collection ofSaleLineItem s (used in
Sale when calculating the sale total).

The inference analysis (Figure 6) examines an edge
hi → hj in the object graph and attempts to prove that for
eachrun-time instanceoi → oj of that edgeoi dominates
oj ; intuitively, it reasons about the flow of run-time objects
based on the object graph abstraction of this flow. The in-
ference is based on the following intuition: an objectoj can
flow from oi into someok only if one of the following is
true: (1)ok has a handle to bothoi andoj (and henceAg
contains edge triplehk → hi, hk → hj andhi → hj), or
(2) oi has a handle to bothok andoj (and henceAg con-
tains edge triplehi → hk, hi → hj , hk → hj). In Figure 5

input Ag : O → P(O) hi → hj : O ×O
output Closure: O → P(O), isClosed: boolean
[0] if isOutside(hi → hj) return false
[1] Closure={hi, hj}, W ={hi}
[2] while W not empty
[3] takehk from W
[4] foreachhm ∈ Tgts(hk) ∩ Closure
[5] foreachhn ∈ Tgts(hk) ∩ Srcs(hm), hn /∈ Closure
[6] if isOutside(hi → hn) return false
[7] if valid(hk, hn, hm) addhn to Closure and toW
[8] foreachhm ∈ Srcs(hk) ∩ Closure
[9] foreachhn ∈ Tgts(hm) ∩ Srcs(hk), hn /∈ Closure
[10] if isOutside(hi → hn) return false
[11] if valid(hm, hn, hk) addhn to Closure and toW
[12] return true

procedurevalid
input hi, hk, hj , wherehi → hj , hi → hk, hk → hj

output isValid: boolean
[1] if isIn(hk → hj) andhi ∈ In(hk → hj) return true
[2] if isOut(hi → hj) andhk ∈ Out(hi → hj) return true
[3] return false

Figure 6. Ownership inference: computing
the closure of edge hi → hj . Tgts(h) stands
for {h′ | h → h′ ∈ Ag} and Srcs(h) stands for
{h′ | h′ → h ∈ Ag}.

edge tripleHr→Hps1, Hr→Hs, Hs→Hps1 represents the
fact that aProductSpec object flows into aSale object
from theRegister object. Note that if an edgehi → hj

in Ag does not have anhk such that either (1)hk has han-
dles to bothhi and hj , or (2) hi has handles to bothhk

andhj , we have that eachoi exclusively owns eachoj it
refers to (i.e.,oi is the only object that has a reference to
oj). In Figure 5Hr→Hs is such an edge; it represents that
the Register exclusively owns theSale objects it cre-
ates.

Consider the algorithm in Figure 6, lines 0 to 12, assum-
ing thatvalid always returns true; the role ofvalid will be
explained shortly. The algorithm makes use of a predicate
isOutside(hi → hj) (lines 0, 6 and 10)—an edgehi → hj

is anoutside edgeif there exists anhk such thathk has han-
dles to bothhi andhj . Intuitively, isOutside conservatively
captures the situation when someoj flows from (or into) an
”outside” objectok and therefore there may be an access
path tooj that does not pass throughoi. In Figure 5, edge
Hs→Hm is an outside edge. TheMoney object is passed
from theRegister to aSale and theSale object does
not own it. If the edge that is examined, namelyhi → hj , is
not an outside edge, the algorithm proceeds to compute the
Closure of hi → hj . The algorithm finds all paths fromhi

to hj . It examines each edgeh1 → h2 in Closure and adds

5



nodesh3 such that there is a tripleh1 → h2, h1 → h3 and
h3 → h2. If at some point the algorithm detects a path that
originates in an outside edge, it returns false (lines 6 and
10). If the algorithm returns true, it is guaranteed that for
each edgeoi → oj represented byhi → hj , all paths from
oi to oj are internal (i.e.,oi dominates, and thus ownsoj).
The correctness argument for this statement is given in [15].

Consider edgeHr→Hps1 in Figure 5. The algorithm
processeshk equal toHr, Hs, Hsli, Hv, Hit, andHobj[] ,
in this order. It returns true and computes the closure which
consists of the above nodes plusHps1. The closure captures
all nodes where theProductSpec objects may flow; they
are all within the boundary of theRegister .

If the algorithm in Figure 6 returns true for every edge
labeled withf , the ownership analysis concludes that the
association throughf is owned.

Improved Ownership Inference. Note that the analy-
sis, as described above may incur substantial imprecision
and cost. This is due to the fact that not all edge triples
hi → hj , hi → hk, hk → hj represent valid flow. For
example, suppose that edgeshi → hj andhk → hj are
due to object creation (lines 1-2 in the algorithm in Fig-
ure 4) andhi → hk is due to inflow (lines 5-6). Clearly,
edgeshi → hj and hk → hj refer to two distinct run-
time objects that are represented with the same name,hj .
However, the analysis concludes that there might be anoj

that flows from someoi into someok and erroneously in-
fers that edgehi → hj is not owned. Invalid triples affect
not only precision but cost as well. In the above example,
when reasoning about edgehi → hj the analysis needs to
reason about edgeshi → hk andhk → hj , which is clearly
redundant as these edges are irrelevant tohi → hj .

The edges in the object graph may be characterized as
creation(due to lines 1-2 in Figure 4),outflow(due to lines
3-4) andinflow (due to lines 5-6). First, lethi → hj be an
outflow edge. A triple withhk (i.e.,hi → hj , hi → hk and
hk → hj) will be a valid triple only if for some statement
l = r.n() that produces outflow edgehi → hj we have
thatr point tohk. Second, lethk → hj be an inflow edge.
A triple with hi (i.e., hk → hj , hi → hk andhi → hj)
will be a valid triple only if for some statementl.n(r) that
produces this edge we have that thethis pointer of the
enclosing method ofl.n(r), point tohi.

The algorithm in Figure 4 is augmented to track valid
sources for outflow and inflow edges. Lines 4’ and 6’ below
are added respectively after lines 4 and 6; there is a setOut
for each outflow edge and a setIn for each inflow edge.

[4’] add Pt(r) to Out(c → hj)
[6’] add Pt(this m) to In(hi → hj)
Subsequently, the ownership inference in Figure 6 uses

procedurevalid to filter out invalid triples. For example, if
hk → hj is an inflow edge,hi must appear inIn(hk → hj).

input Pt : R → P(O)
output Mod : m → P(R)
[0] foreach instance field writes: p.f = q

wherep 6=this OREnclMethod(s) not a constructor
[1] addp to Mod(EnclMethod(s))
[2] while changes occur inMod
[3] foreach calls: C.m() or r.m()
[4] foreach targetm′ of the call
[5] addMod(m′) to Mod(EnclMethod(s))

input hi → hj ∈ O ×O Mod : m → P(R)
output readOnly: boolean
[6] foreach calls: r.m(...) s.t. r 6= this andhi ∈ Pt(r)
[7] if TrClosure(hj) ∩ Pt(Mod(target(hi,m))) 6= ∅
[8] return false
[9] return true

Figure 7. Immutability inference: computing
the read-only status of hi → hj .

4.3 Immutability Client
Immutability Inference. The immutability inference is

presented in Figure 7. Lines 0-5 perform standard side-
effect analysis [26, 17] which computes aMod set for each
methodm. Lines 0-1 process each statements: p.f = q and
storep in theMod set for the enclosing method ofs. Sub-
sequently, lines 2-5 propagate theMod sets backwards on
the call graph. SetMod(m) contains all reference variables
p on the left-hand side of an instance field write, reachable
on a call chain fromm. The union of the points-to sets of
these variables approximates the set of objects that may by
modified during the invocation ofm.

Finally, lines 6-9 take an edgehi → hj ∈ Ag as input
and attempt to show that for all run-time edgesoi → oj

represented by this edgeoi has read-only access tooj . The
analysis examines each method callr.m(...) on receiverhi

(i.e., hi ∈ Pt(r)). TrClosure(hj) denotes the transitive
closure ofhj on the points-to graph—that is, the set of all
nodes reachable fromhj on a path of field edges.Pt(S)
extends thePt notation over sets as follows:Pt(S) =⋃

p∈S Pt(p). If for some call the transitive closure ofhj

intersects with the set of modified objects of the run-time
target of the call (i.e.,target(hi, m)), the analysis deter-
mines that edgehi → hj is mutable. If this intersection
is always empty, the analysis determines thathi → hj is
immutable.

In the Point-of-Sale code methodgetTotal in Sale
iterates over the collection ofSaleLineItem s and calls
getSubtotal on eachSaleLineItem object. The
body of methodgetSubtotal is as follows:

return spec.getPrice().times(quantity);

We have that fieldspec of Hsli points to Hps1 and
field price of Hps1 points to Hm1 (Hm1 represents

6



class A {
B b1;
A(B b1) { b1 = b1; ... }
m() { B b2 = new B(); b2.setField(10); }
}

main() {
B b1 = new B(); b1.setField(5);
A a = new A(b1); a.m();
}

Figure 8. Imprecision of immutability infer-
ence.

the Money object that holds the price of the prod-
uct). Thus, getSubtotal calls methodtimes on
Hm1. The analysis determines thatMod(times ) equals
{times.this }—that is, times changesthe value of
the receiver object. Thus,Mod(getSubtotal ) equals
{times.this } and we have thatHm1 is included in set
Pt(Mod(getSubtotal )).

There is a call to methodgetSubtotal on receiver
Hsli in getTotal in Sale . Consider its effect on edge
Hsli

spec→ Hps1. The intersection of the set of objects modi-
fied bygetSubtotal and the transitive closure ofHps1is
non-empty; it includesHm1. The analysis determines that
a SaleLineItem object can modify aProductSpec
object which is a violation of the immutability constraint
in Figure 1. Further examination revealed that this was a
bug in the code in [13]; it caused subsequent sales to fetch
wrong product prices and compute incorrect totals.

If the procedure for checking an edge returns true for
every edge labeled withf , the immutability analysis con-
cludes that the association throughf is read-only .

Improved Immutability Inference. The algorithm in
Figure 7 may incur substantial imprecision. Consider the
code in Figure 8. Fieldb1 is immutable inA. TheB ob-
ject created inmain and referred by fieldb1 is denoted
by nameHb1, and theB object created inm is denoted
by Hb2. Mod(setField ) equals{setField.this };
it is propagated toMod(m) and we have thatMod(m)
equals{setField.this } as well. The points-to set
of setField.this contains bothHb1 andHb2 and the
analysis concludes imprecisely thatb1 is mutable inA.

To improve the analysis we introduce a limited form of
context sensitivity. When propagating theMod set of the
callee (line 5), the analysis ”maps” modified formal pa-
rameters to their corresponding actuals. More precisely,
it examines every variablev ∈ Mod(m′). If v is an
unassigned formal parameter ofm′, v is mapped to the
corresponding actual at the call and the actual is added
to Mod(EnclMethod(s)); otherwisev itself is added to
Mod(EnclMethod(s)).4 Consider again the code in Fig-
ure 8. When propagatingMod(setField ) to Mod(m) the
analysis mapssetField.this to the actual argument at

4Implicit parameterthis cannot be assigned, and other formal param-
eters are rarely assigned.

the call, namely variableb2 . As a resultMod(m) equals
{b2}. Sinceb2 points toHb2 only, the intersection of the
transitive closure ofHb1 and{Hb2} is empty and the anal-
ysis concludes thatb1 is immutable inA.

4.4 Complexity

LetN be the size of the program being analyzed—that is,
the number of statements, the number of object names and
the number of variables is of orderN . The complexity of
the underlying Andersen-style points-to analysis isO(N3).

One can see from Figures 4, 6 and 7 that the client anal-
yses are dominated by the ownership inference in Figure 6
which has complexityO(N5) [15].

5 Empirical Results

The goal of the empirical study is to address three ques-
tions. First, do the analyses scale to large Java applications?
Second, how often do our analyses discover owned and im-
mutable fields? Third, howimprecisethe analyses are—that
is, how often they miss owned or immutable fields?

The ownership and immutability clients are implemented
in Java using the Soot 2.2.3 [30] and Spark [14] frame-
works; they are implemented as clients of the Andersen-
style points-to analysis provided by Spark. We performed
whole-program analysis with the Sun JDK 1.4.1 libraries.
All experiments were done on a 900MHz Sun Fire 380R
machine with 4GB of RAM. The implementation which in-
cludes Soot and Spark was run with a max heap size of 1GB.

Native methods are handled by utilizing the models pro-
vided by Soot. Reflection is handled by specifying the
dynamically loaded classes which Spark uses to appropri-
ately resolve reflection calls. This approach is used in other
whole-program analyses based on Soot and Spark [28].

Our benchmark suite includes several relatively small
applications,soot-c and sablecc-j from the Ashes
suite [1], relatively large benchmarks from the DaCapo
benchmark suite version beta051009 [2] and the Polyglot
Java front-end. The suite is described in Table 1. The num-
ber of user classes and user methods fetched by Soot are
shown in the first two columns of multicolumn (3); these
numbers exclude the standard libraries but include other li-
braries shipped with the application. The last column shows
the number of methods (user and library), determined to be
reachable by Spark.

Results.We applied the ownership and immutability in-
ference algorithms on instance fields of reference type in
user classes.5 Table 2 shows the running time of the analy-
sis. The first column shows the running time for Soot and
Spark, and the two subsequent columns show the running
times for the ownership and immutability clients. Clearly,
our analyses scale well, even on applications with close to

5Our experiments exclude fields of typeString because they do not
correspond to associations in the UML class diagram.

7



(1)Program (2)Description (3)Size
#User Classes #User Methods #Reachable Methods

jdepend-2.9.1 A quality metrics suite for Java 17 225 3962
javad Classfile decompiler 41 156 3838
JATLite-0.4 Template for writing software agents 45 442 6279
undo Undo functionality for sysadmins 237 1709 5644
hsqldb-1.8.0 Relational database engine and tools 196 3743 7177

soot-c Analysis framework for Java 579 2935 6046
sablecc-j Java parser generator 300 2024 7970
polyglot-1.3.2 Framework for Java language extensions 267 3418 7449

antlr Parser and lexical analyzer generator 126 1738 5102
bloat Java bytecode optimizer 289 3232 6402
jython Python interpreter 163 2892 5606
pmd Java source code analyzer 718 7057 8653
ps Postscript interpreter 200 908 5396

Table 1. Information about the Java benchmarks.

Program Points-to Ownership Immutability
Analysis Analysis Analysis

jdepend 1m35s 32s 10s
javad 1m33s 27s 3s
JATLite 2m37s 1m29s 35s
undo 3m3s 1m52s 37s
hsqldb 2m57s 2m15s 2m31s
soot 2m23s 1m13s 1m38s
sablecc 3m5s 1m49s 1m30s
polyglot 9m39s 2m44s 3m38s
antlr 2m25s 1m4s 35s
bloat 2m36s 1m57s 3m8s
jython 1m58s 1m21s 3m9s
pmd 4m17s 2m22s 8m16s
ps 2m19s 1m51s 29s

Table 2. Analysis times.

9000 reachable methods. The combined time for owner-
ship and immutability analysis does not exceed 7 minutes
on twelve out of thirteen benchmarks; on the most expen-
sive benchmark,pmd, it still runs in under 11 minutes.

The first column of Table 3 shows the number of refer-
ence instance fields in user classes. On average, the owner-
ship analysis identified 28% of the fields as owned (column
#Owned).Also, on average, the immutability analysis iden-
tified 27% of the fields as read-only (column #Immutable).

Analysis Precision. The issue of analysis precision is
of crucial importance for software tools. If the ownership
analysis is imprecise, it may report that an association is
non-owned while in reality it is owned (i.e., the analysis re-
ports that certain representation may be exposed while in
fact it is not). Similarly, the immutability analysis may re-
port that an association is non-read-only, while in reality it
is. Such information is not useful and may confuse the user.
For example, if a user attempts to verify lack of representa-

tion exposure, imprecision will mean that potentially large
amount of code will have to be examined manually. There-
fore, imprecision must be carefully evaluated by analysis
designers.

We performed a study of absolute precision [25, 16] on a
subset of the fields. Specifically, we considered all fields
in the two smallest benchmarks,jdepend and javad ,
and all fields in the class with the largest number of fields
for the four largest benchmarks,hsqldb, polyglot,
sablecc andpmd (the size metric that we used was the
number of reachable methods, shown in Column (3) of Fig-
ure 1). This accounted for a set of 153 instance fields, of
which 88 fields were reported non-owned, and 97 fields
were reported non-read-only. For this set, we examined
manuallyeachnon-owned field and attempted to prove ex-
posure (i.e., that there is an execution such that an object
stored in this field would be exposed outside of its enclos-
ing object). Inall caseswe were able to show exposure—
that is, for this set of fields the ownership analysis achieved
perfect precision. Similarly, we examined each non-read-
only field and attempted to prove mutability (i.e., that there
is an execution for which an object stored in this field will
be mutated by its enclosing object). Inall but 7 cases[15]
we were able to show mutability—that is, the immutability
analysis achieved very good precision as well.

Conclusions.The empirical study leads to the following
observations. First, the analyses scale to large programs,
analyzing close to ten thousand reachable methods in only
several minutes. Second, the ownership and immutability
models capture well the meaning of these notions in mod-
eling. Clarke et al. [7] argue that the owners-as-dominators
model captures well the notions of ownership and compo-
sition in modeling; our study reaffirmed this observation.
The immutability model captures relationships intuitively
as well; it led us to a bug in the code for our motivating ex-

8



Program #Fields #Owned #Immutable

jdepend 33 19 (58%) 6 (18%)
javad 40 19 (48%) 40 (100%)
JATLite 142 35 (27%) 13 (9%)
undo 325 73 (22%) 162 (50%)
hsqldb 383 89 (23%) 70 (18%)
soot 340 77 (23%) 57 (17%)
sablecc 304 30 (10%) 40 (13%)
polyglot 435 51 (12%) 92 (21%)
antlr 161 45 (28%) 25 (16%)
bloat 529 81 (15%) 73 (14%)
jython 215 69 (32%) 21 (10%)
pmd 914 318 (35%) 162 (18%)
ps 19 7 (37%) 8 (42%)

Average 28% 27%

Table 3. Ownership and immutability results.

ample. Overall, the analyses produce useful results, easy to
interpret in the context of UML class diagrams. Third, the
analyses are relatively precise, rarely missingowned and
read-only associations. In summary, the empirical study
indicates that the analyses can effectively support model-
driven development and reasoning about software quality
and security.

6 Related Work

The ownership and immutability inference analyses im-
prove substantially upon our previous work on composition
inference [16] and side-effect analysis [17] respectively.
The main new analysis idea is to employ an inexpensive
context-insensitive points-to analysis and improve precision
by limited context sensitivity in the clients. This was crucial
for precision and scalability; in fact, the old analysis was not
only potentially imprecise, but it did not scale beyond the
smallest benchmarks in our suite. Further, the analyses are
employed towards a new practical purpose—improving the
capabilities of UML tools, which will enhance object ac-
cess control and thus software security and software quality
in practice.

Ownership and immutability type systems.Our work
is related to work on ownership type systems [18, 7, 4, 6,
5, 12] and work on immutability type systems [11, 19, 29].
Similarly to our work, these articles emphasize the impor-
tance of the concepts of ownership and immutability in soft-
ware development. Unlike our work they focus on type-
theoretic approaches and require type annotations provided
by the programmer; generally, these approaches require ex-
tensions of the language, compiler and run-time environ-
ment and therefore will be difficult to adopt in practice. Our
approach uses automatic inference and works directly on
Java code; it is based on the universally-known UML and
therefore may help advance object access control through
ownership and immutability in practice.

Ownership inference. Grothoff et al. [9] present an
analysis for Java that infers whether a class is confined
within its package. Clarke et al. [8] present a confine-
ment checking tool, related to [9], that warns against cer-
tain kinds of violating program statements. These analyses
work on the class level while our analyses work on the ob-
ject level. They are more restrictive than ours (e.g., they do
not handle pseudo-generic containers well), and do not ad-
dress the kind of ownership needed for UML-based object
access control.

Heine and Lam [10] present an ownership inference al-
gorithm for the purposes of memory leak detection. Their
notion of ownership is substantially different than the no-
tion of owners-as-dominators used in our work.

Aldrich et al. [4] present a type inference analysis in ac-
cordance with a type system that they develop. Again, our
analysis solves a different problem—ownership inference
in accordance with the owners-as-dominators model which
is different than the type system in [4] (e.g., theowned
type in [4] captures exclusive ownership only, although ac-
cess can be allowed through user-specified alias parame-
ters). The inference analysis in [4] is conceptually differ-
ent than ours; it infers type annotations at a fine level of
granularity (i.e., for each variable and expression) and that
appears to hinder scalability. Our analysis, which is based
on Soot, and the efficient inclusion-based Andersen-style
points-to analysis in Spark, appears to scale better, both in
terms of time and memory.

Agarwal and Stoller [3] infer ownership types for race-
free Java using dynamic analysis; thus, the inferred types
may be unsound. Our analysis is a safe static analysis.

Recent work by Rayside et al. [22] emphasizes the rel-
evance of ownership inference and visualization. The pa-
per however, appears to be preliminary because it does not
present empirical results. Our work uses a related owner-
ship model, but a conceptually different inference analysis.
It presents a detailed empirical investigation that indicates
that the analyses are practical and adequately precise.

Immutability inference. Porat et al. [20] describe an
analysis that detects immutable fields. Their analysis is
context-insensitive, libraries are not analyzed and the pa-
per discusses only static fields. Our immutability analy-
sis incorporates limited context sensitivity, analyses large
libraries and focuses on instance fields.

Ryder et al. [26] present a framework for side-effect
analysis for C that is parameterized by points-to analysis.
Our inference analysis uses the same general idea for prop-
agation of side-effects. However, we consider underlying
context-insensitive points-to analysis combined with lim-
ited context sensitivity during propagation; this combina-
tion helps achieve scalable analysis.

Rountev [23], and Salcianu and Rinard [27] present anal-
yses that identify side-effect-free methods in Java programs.

9



In both cases the analyses are applied on relatively small
programs (hundreds of reachable methods). Our analysis
identifies immutable fields and is applied on substantially
larger programs (close to ten thousand reachable methods).

7 Conclusions and Future Work

We presented a new mechanism for object access control
which is based on the UML and light-weight verification of
ownership and immutability. We presented models for own-
ership and immutability and corresponding inference anal-
yses. We performed an empirical study that indicated that
the analyses were practical and adequately precise.

One limitation of our study is that it is unclear whether
the precision results will extend to other data. Another is
that it is unclear whether our analysis revealed unintended
representation exposure or mutability; we could not per-
form a study of that because we were not familiar with the
benchmarks and their intended design requirements.

In the future, we will perform larger studies of precision
as well as studies that relate design requirements with im-
plementation. Furthermore, we plan to integrate the analy-
ses into an open-source UML tool.

8 Acknowledgements

This work was supported by an IBM Eclipse Innovation
Award for 2006. We would like to thank Manu Sridharan for
answering our questions about his paper, and the ICSE’07
reviewers whose suggestions greatly improved this paper.

References
[1] Ashes suite collection. http://www.sable.mcgill.ca/software.

[2] Dacapo benchmark suite. http://www-ali.cs.umass.edu/ da-
capo/gcbm.html.

[3] R. Agarwal and S. Stoller. Type inference for parameterized
race-free Java. InVMCAI, pages 149–160, 2004.

[4] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annota-
tions for program understanding. InOOPSLA, pages 311–
330, 2002.

[5] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. InPOPL, pages 213–223, 2003.

[6] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. InOOPSLA, pages
292–310, 2002.

[7] D. Clarke, J. Potter, and J. Noble. Ownership types for flex-
ible alias protection. InOOPSLA, pages 48–64, 1998.

[8] D. Clarke, M. Richmond, and J. Noble. Saving the world
from bad beans: Deployment time confinement checking. In
OOPSLA, pages 374–387, 2003.

[9] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects
with confined types. InOOPSLA, pages 241–253, 2001.

[10] D. Heine and M. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector. InPLDI,
pages 168–181, 2003.

[11] G. Kniesel and D. Theisen. JAC-access right based en-
capsulation for Java.Software: Practice and Experience,
31(6):555–576, 2001.

[12] P. Lam and M. Rinard. A type system and analysis for the
automatic extraction and enforcement of design information.
In ECOOP, pages 275–302, 2003.

[13] C. Larman.Applying UML and Patterns. Prentice Hall, 2nd
edition, 2002.

[14] O. Lhotak and L. Hendren. Scaling Java points-to analysis
using Spark. InCC, pages 153–169, 2003.

[15] Y. Liu and A. Milanova. UML-based alias control. Techni-
cal Report RPI/DCS-06-10, Rensselaer Polytechnic Institute,
Sept. 2006.

[16] A. Milanova. Precise identification of composition relation-
ships for UML class diagrams. InASE, pages 76–85, 2005.

[17] A. Milanova, A. Rountev, and B. Ryder. Parameterized ob-
ject sensitivity for points-to and side-effect analyses for Java.
In ISSTA, pages 1–12, 2002.

[18] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
ECOOP, pages 158–185, 1998.

[19] I. Pechtchanski and V. Sarkar. Immutability specification and
its applications. InJoint ACM-ISCOPE Java Grande Con-
ference, pages 202–211, 2002.

[20] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Au-
tomatic detection of immutable fields in Java. InCASCON,
2000.

[21] J. Potter, J. Noble, and D. Clarke. The ins and outs of objects.
In Australian Software Engineering Conference, pages 80–
89, 1998.

[22] D. Rayside, L. Mendel, R. Seater, and D. Jackson. An anal-
ysis and visualization for revealing object sharing. InWork-
shop on Eclipse technology eXchange, pages 11–15, 2005.

[23] A. Rountev. Precise identification of side-effect free meth-
ods. InICSM, pages 82–91, 2004.

[24] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis
for Java using annotated constraints. InOOPSLA, pages 43–
55, 2001.

[25] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java software.IEEE
TSE, 30(6):372–386, June 2004.

[26] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing.ACM TOPLAS, 23(2):105–186,
Mar. 2001.

[27] A. Salcianu and M. Rinard. A combined pointer and pu-
rity analysis for Java programs. InVMCAI, pages 199–215,
2005.

[28] M. Sridharan and R. Bodik. Refinement-based context-
sensitive points-to analysis for Java. InPLDI, pages 387–
400, 2006.

[29] M. Tschantz and M. D. Ernst. Javari: Adding reference im-
mutability to Java. InOOPSLA, pages 211–230, 2005.

[30] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville,
and V. Sundaresan. Optimizing Java bytecode using the Soot
framework: Is it feasible? InCC, LNCS 1781, pages 18–34,
2000.

10


