Static Ownership Inference for Reasoning Against Concurrency Errors

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

milanova@cs.rpi.edu

Abstract

Yin Liu

Department of Computer Science
Rensselaer Polytechnic Institute

liuy@cs.rpi.edu

dominates; in the graph of object accesses — that is, all

accesses to; must go througho. Ownership is useful in

We propose a new approach for reasoning about concur- reasoning about software security and software quality —
rency in object-oriented programs. Central to our approach it guarantees lack akpresentation exposusnd may help
is static ownership inference analysis — we conjecture thatprevent serious program errors. Ownership is useful in rea-
this analysis has important application in reasoning against soning about concurrency as well — lack of representation
concurrency errors. exposure may prevent concurrency errors and may facili-
tate reasoning about concurrent programs. More concretely,
ownership guarantees that appropriate synchronization on a
shared object protectso as well as all objects in thdom-
inance boundaryf o (i.e., the set of objects that are domi-

Software engineering, compilers and programming lan- nated by in the graph of object accesses, or in other words,

guages must evolve to meet the demands for ConcurrencyFhe set of obje<_:ts that are e_nca_psuIated>)':nconversely,
Shared memory concurrency in particular is especially dif- lack of appropriate synchronization armay expose con-
ficult because of the many ways different threads can inter-CUIMENCY €ITors such as dat"’_‘ races)m.well as on objects
fere over shared data; in the same time, with the advance oftested (sometimes deeply) in the dommance .bou.ndary of
multi-core processors, shared memory concurrency is be- Our proposed work has the following contributions:

coming increasingly relevant. Therefore, research in this o First, we propose to design and implement algorithms
direction is becomm_g mcreasmgly_lmportant. . for construction of theannotated object graph— a
Many new techniques (predominantly dynamic) for de- novel representation of program objects and object ac-

tection of concurrency errors such as data races have been cesses. The annotated object graph reveals structural
proposed recently. However, these techniques focus exten- information as well as control information.

sively on error detection and less on understanding the un-
derlying structure of sharing in concurrent programs. Un- ® Second, we propose a static analysis algorithm for
derstanding the structure of sharing is important because it ~ data race detectiomwhich uses the annotated object
may help not only detect but also correct and prevent con- graph and ownership information. For programs that
currency errors. exhibit good ownership structure (i.e., programs that
We proposenew static program analysis for reasoning gxhibit little or no rgpre;gntation exposure), this algo-
about concurrency in object-oriented programEhere are rithm may lead to intuitive, fast and accurate detec-
two high-level ideas behind our approach. tion of data races. The_ main conjecture of our \{vork
First, our approach emphasizes a structural view of the 1S that the annotated object graph and ownership infor-

program: it reveals the structure of shared objects, and the ~ Mation would prove useful in analyses for race detec-
ways different threads access these shared objects. Our ap- tion, atomicity violation detection, unnecessary syn-
proach highlights the important connection between data chronization removal, and lock inference.

and control in object-oriented codes: it reveals object struc- o Third, we identify several structural patterns of object
ture and ownership information (e.g., one object "owns” an- sharing. We propose a detailed study which will use
other object) as well as relevant transfer of control (e.g., one the annotated object graph and ownership information
object calls a method on another object). to examine the occurrence of these patterns in real-

Second, our approach emphasizes the notionbpéct world concurrent Java applications.
ownership Informally, an objecb ownsan objecto; if o

1 Introduction

public class Database {

private ConnectionManager cm; T1 T2

public int insert(...) { insert i

Connection c=cm.getConnection(); \/nser(
delete delete

}

public int delete(...) (.} Opatabase

} inset-getConnection
public class ConnectionManager { deletegeConnection

private Map conns=

Collections.synchronizedMap(new HashMap()); Oconnection * 0ConnManager
public void makeConnection(String s)]
ConnectionSource cs=new ConnectionSource(); getConnection-getCon ion

conns.put(s,cs);

0 — O
public Connection getConnection(String s) { Conngource Map

ConnectionSource cs=conns.get(s);
if (c!=null) return cs.getConnection();

}
} \ o
public class ConnectionSource { Data

private Connection conn;
private boolean used;

Figure 2. Annotated object graph for Figure 1

public Connection getConnection() {
if (lused) {
used = true;
return conn; . .
} by ConnectionSource .getCon -nection . There-
h fore, the read of fieldused, namelyif (lused) , can
} be performed temporally next to the write of fielded,
) namelyused = true . There are no ordering constraints
Figure 1. An example from JdbF. on the read and write to fieldsed; as a result, each of the

threads could obtain access to the same connection.

2 Running Example . .
g P 3 Annotated Object Graph and Ownership

As an illustrating example, consider the code in Fig-
ure 1. This example is taken from [5] and illustrates a
data race in a real-world Java application, JdbF. We have
modified the code slightly to better illustrate our proposed
approach. JdbF is a library and claBstabase pro-
vides the interface to clients; clients in multiple threads
can access ®atabase object through its public meth-
ods insert and delete . Methods insert and
delete acquire a connection, perform operations on it,
and then release this connection; any thread performing
operations on a connection must have exclusive acces
to the connection. Eacbatabase object has a pri-
vate ConnectionManager object which handles the 31 Annotated Object Graph
database connections. Furthermore, each connection is en-

This section describes the annotated object graph and
the ownership information inferred from the object graph.
Section 3.1 outlines the construction of the annotated ob-
ject graph: initially, it describes the object graph — a static
structure that represents the accesses between run-time ob-
jects; subsequently, it describes the extension to the object
graph with annotations that model transfer of control be-
tween run-time objects. Section 3.2 describes the owner-
ship information inferred from the object graph. Sections 4

nd 5 propose applications of the annotated object graph
and ownership information.

capsulated within &£onnectionSource object; this is The object graph is a static structure that approximates
done with the intent to ensure exclusive thread access to aun-time accesses between objects. Informally, ohjeat-
connection. TheConnectionManager maintains a pri- cesses’ if one of the following is true: (i) a fieldf of o
vate map ofConnectionSource objects. refers too’, or (ii) a methodm invoked on receiveo has

The data race occurs on instance fielded in a local variable that refers ta’. The algorithm for ob-
class ConnectionSource . The following method ject graph construction is a client of a points-to analysis—
call sequence can be executed by two threads si-it takes as input a points-to graph and produces the object
multaneously: Database.insert , followed by graph as an output. The object graph is a safe approxima-

ConnectionManager.getConnection , followed tion of run-time object accesses—that is, if there is a run-

time access edge between two run-time objects, then theraccesses of; must go through its ownes. Again infor-

is an edge in the object graph between the representativemally, thedominance boundargf o is the portion of the

of these run-time objects. object graph that is dominated by it includes the objects
Figure 2 shows the annotated object graph for the codeowned byo as well as the boundaries of the objects owned

in Figure 1. The nodes in the object graph are object namesby o. Figure 2 shows the ownership structure of our running

(e.9., opatavase)—there is an object name for each allo- example. The dominance boundary of the top-level object

cation site in the program. Nod84 and T2 correspond opatasase iNCludes all other objects, namely:onniranagers

to two threads that access the shafzatabase object OMaps ODatar OConnSource @NU 0Connection; it IS €asy to

ODatabase- The annotations on object graph edges will see thabpg.pese dominates these objects (i.e., all accesses

be explained shortly. Edgepatabase — OConnManager to these objects must go through,iapase). The domi-
represents the access between fatabase object nance boundary 06 connianager, Which is nested within
and its correspondingConnectionManager object; the boundary ofopaiepese iNCludes objects connsource

the edge is created by processing an object creationo., andop.,. Finally, the dominance boundary of;,,
statement in the code (it is not shown in Figure 1). which is nested within the boundary ofonnimanager IN-
Edge oconnManager — Omap IS due to the creation cludes objecbpgi,.

statement in clas€onnectionManager which cre-

ates a newHashMap object. Edgeona, — 0patas 4 Reasoning Against Data Races

the edge between the container object and its internal

data array, is due to a creation statement in the code for The main intuition behind our analysis is that in order to
HashMap (this code, part of the standard Java library is have a data race on an objegtwe must first have an object
not shown here; it is processed by the analysis accord-race on the owner af,, o,; conversely, there is no data race
ingly). Edge oconnManager — OConnSource 1S due to on o, if the accesses to, are appropriately synchronized,
the creation statement in clag€onnectionManager because the accessestoare protected by synchronization
this statement creates &onnectionSource ob- on its ownero,. Further, in order to have an object race on
ject. Furthermore, edgeSiray — OConnSource @nd or, We must have an object race on the ownes,gfand so
OData — OConnSource @€ due to the statements that pass on, until we reach an object race on the "central” object

the ConnectionSource object to theMap object and We illustrate our proposed algorithm for race detection
then to the data array of thidap object. Finally, edges by two examples. Consider the following pair of accesses:
OConnSource — OConnections OConnManager — OConnection (Oconnsoume-QEtconneCtion (a read to fieldused of

and opgtabase — OConnection @€ due to program state- oconnsource)s 0ConnSource-g€tConnection (a write
ments that pass th€onnection object to different to field used oconnsource)). Method getConnection
objects. For example, ed@&@nnitanager — OConnection is unsynchronized and the pair of accesses constitutes
is due to statementcs.getConnection() in a potential data race, unless the accesses are appropri-
ConnectionManager which passes oconnection ately protected by synchronization 0BconnSource’s
from oconnsource 10 OConnManager: similarly, owner. There is a pair of pathgy;, p, from the
edge ODatabase — OConnection is due to statement owner of OConnSources OConnManagers to 0 ConnSource
cm'getconneCtion() which PasSedconnection from we have p1 = Dpa: OC'onnManageT~getconneCtion -
OConnManager t0 0patabase- OConnSource~getconneCtion . QEtconnECtion in

We add annotations to edges to model transfer of controlConnectionManager is unsynchronized and there-
between objects. Annotation;-m. on object graph edge fore there is a potential object race @onnrmanager-
01 — oo means that methadak, invoked on receives; calls Next, there is a pair of paths;, p» from the owner of

methodm, on receivel,. Notationo; .mq-0s.mo abbrevi- 0 ConnManagers ODatabaser 100 ConnManager; WE haVep; =ps:
ates this information. For example, annotatiogert - ODatabase-INSEIMN —0ConnManager-g€tCONNECtion
getConnection on edge€opatabase — OConnManager where againinsert is unsynchronized. SinG&yuiapase
denotes that methadsert called on receivev paiabase is the central object which is directly accessed by different
calls methodjetConnection onreceiveb connManager- threads, the algorithm reports the race:

These annotations abstract away calls throtlyh —

they shows only method calls that transfer control from one T1-) _

object to another. ODatabase-INSEIt — oc(,,mMamgeT.getConnectlon —
0 ConnSource -ge€tCoONNEction /l read ofused

3.2 Ownership
T2—

. Infor_mally, we say that an objetf:t ownsobjecto; |f 0 ODatabase-INSEM = 0ConnManager-getConnection —

immediately dominates; on the object graph—that is, all o4,,.,.50urce.getConnection // write of used

As another example consider potential ragg,(,[| (array 6 Related Work

element read)pp.:.[| (array element write)). The algo-

rithm looks for related object race on the owngg,,. It There is a large amount of work on detection of con-

considerg:: onrap-get — opate| | (i-€., an array read), and currency errors. The trend is notably towards dynamic and

P2i Omap-Put — Opata]] (i-€., @n array write). However, hybrid approaches [8, 6], which may be due to better scala-

get andput are synchronized ony,, and the potential bility compared to existing static approaches.

race is proven safe: the accesses fg:, are protected by Our work focuses on scalable static analysis, which is

synchronization on its owneny,,. underrepresented in research on concurrency. Static anal-
The advantage of this approach is that it structures theYsis has important advantages over dynamic analysis: (i)

search: search starts from the innermost boundary and proit avoids the run-time overhead of instrumentation, (ii) it is

ceeds outwards. If the program is well-structured into safe, and (iii) it can help understand the underlying structure

deeply nested dominance boundaries, this approach mayf sharing in a concurrent program and not only detect, but

help reduce the search space and lead to fast and accuragfrect and prevent concurrency errors. Our ownership in-
race detection. ference analyses are precise and scalable [3] and we conjec-

ture that they could be used in analysis of large concurrent

. . programs. To the best of our knowledge the state-of-the-art

5 The Structure of Object Sharing in scalable static race detection is Chord [5]. Chord’s ap-
proach is different from ours; it uses object-sensitive points-

The annotated object graph and ownership information t0 analysis [4] to reason about object accesses while we pro-
can be used to reason about the structure of accesses 30Se to use ownership analysis for this purpose. Ownership
shared objects. We identify three structural patterns. analysis may be less expensive than object-sensitive points-

First, we considethread ownecbbjects—these objects t© analysis. Most importantly, ownership may present a
are owned by their creating thread. Thread ownership is aMOr€ intuitive way of reasoning about shared objects.
stronger property than thread locality in escape analysis [2, It is known that ownership is a useful concept in reason-

7]. We conjecture that a large number of objects identified mglabout concurrency. _an Praun and Gross [9]. use the
as non-thread-local would be identified as thread-owned. netion of thread ownership in the context of dynamic object

Second, e consideentasharctject_these o (20° XA 210 S0yaba o [e 2 e folon
jects are accessedirectly by two or more threads (i.e., P ype sy i

therun methods of two different threads call methods on bution of our work lies if‘ the use of object ownership in the
. . . context of scalable static analysis.

0). Central shared objects typically have deep dominance

boundaries—i.e., although thread access occurs centrally,

througho, a race condition could occur on an object deep References

\;v:]tfglg-éfgfigomlnanc%t;zzg?;r]);g dé)rg)'g)étasm[ajllﬁz?;zifﬂjc- [1] C. Boyapati, R._ Lee, and M Rinard. Ownership types for
! Database- : ' safe programming: preventing data races and deadlocks. In

tures that are acpessed th_rough thgm, are easy to reason OOPSLA pages 211-230, 2002.

about, as shown in the previous section. We conjecture that[2] J. choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff.

this case is especially relevant for the analysis of open pro- Escape analysis for Java. BOPSLA pages 1-19, 1999.

grams such as JdbF. [3] Y. Liu and A. Milanova. Ownership and immutability infer-

Third, we considedistributed shareabjectso. The ac- ence for UML-based object access control. ITSE pages
cess tw is distributed in the following sense. Letbe cre- 823-332, 2007.

[4] A.Milanova, A. Rountev, and B. G. Ryder. Parameterized ob-
ated by a thread'l, and leto be passed to the boundary ject sensitivity for points-to analysis for JavaCM TOSEM

of another object, say’ whereo' is created and accessed 14(1):1-42, 2005.

by threadT2. Objecto is accessed by1, and indirectly, [5] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
througho’, by T2. As an example, one may have a col- tion for java. InPLDI, pages 308-319, 2006.

lection objecto created and directly accessed by thr&ad [6] C.-S.Parkand K. Sen. Randomized active atomicity violation
(i.e., by callingadd, etc. ono), and another collection detection in concurrent programs. HSE 2008.

objecto’ which is owned by threa@2. In order to copy [71 A Rountev, A. Milanova, and B. G. Ryder. Points-to analysis
the elements of collection objeotinto o’ (i.e., by calling for Java using annotated constraints A®PSLA pages 43~

/ 55, 2001.
addAll) one ”_e?ds to passtq o'. ThreadTl ?Cce_sses [8] K.Sen. Race directed random testing of concurrent programs.
o by callingadd; in the same tim&2 accesses’ calling In PLDI, pages 1121, 2008.
a.ddA” and W|th|naddA” O/ aCCGSSGS, Wh|Ch may |ea.d [9] C. von Praun and T. Gross. object race detectionOOP-
to problematic accesses. Distributed shared objects are dif- sLA pages 70-82, 2001.

ficult to reason about.

