
Static Ownership Inference for Reasoning Against Concurrency Errors

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

milanova@cs.rpi.edu

Yin Liu
Department of Computer Science
Rensselaer Polytechnic Institute

liuy@cs.rpi.edu

Abstract

We propose a new approach for reasoning about concur-
rency in object-oriented programs. Central to our approach
is static ownership inference analysis — we conjecture that
this analysis has important application in reasoning against
concurrency errors.

1 Introduction

Software engineering, compilers and programming lan-
guages must evolve to meet the demands for concurrency.
Shared memory concurrency in particular is especially dif-
ficult because of the many ways different threads can inter-
fere over shared data; in the same time, with the advance of
multi-core processors, shared memory concurrency is be-
coming increasingly relevant. Therefore, research in this
direction is becoming increasingly important.

Many new techniques (predominantly dynamic) for de-
tection of concurrency errors such as data races have been
proposed recently. However, these techniques focus exten-
sively on error detection and less on understanding the un-
derlying structure of sharing in concurrent programs. Un-
derstanding the structure of sharing is important because it
may help not only detect but also correct and prevent con-
currency errors.

We proposenew static program analysis for reasoning
about concurrency in object-oriented programs. There are
two high-level ideas behind our approach.

First, our approach emphasizes a structural view of the
program: it reveals the structure of shared objects, and the
ways different threads access these shared objects. Our ap-
proach highlights the important connection between data
and control in object-oriented codes: it reveals object struc-
ture and ownership information (e.g., one object ”owns” an-
other object) as well as relevant transfer of control (e.g., one
object calls a method on another object).

Second, our approach emphasizes the notion ofobject
ownership. Informally, an objecto ownsan objectoi if o

dominatesoi in the graph of object accesses — that is, all
accesses tooi must go througho. Ownership is useful in
reasoning about software security and software quality —
it guarantees lack ofrepresentation exposureand may help
prevent serious program errors. Ownership is useful in rea-
soning about concurrency as well — lack of representation
exposure may prevent concurrency errors and may facili-
tate reasoning about concurrent programs. More concretely,
ownership guarantees that appropriate synchronization on a
shared objecto protectso as well as all objects in thedom-
inance boundaryof o (i.e., the set of objects that are domi-
nated byo in the graph of object accesses, or in other words,
the set of objects that are encapsulated ino); conversely,
lack of appropriate synchronization ono may expose con-
currency errors such as data races ono as well as on objects
nested (sometimes deeply) in the dominance boundary ofo.

Our proposed work has the following contributions:

• First, we propose to design and implement algorithms
for construction of theannotated object graph— a
novel representation of program objects and object ac-
cesses. The annotated object graph reveals structural
information as well as control information.

• Second, we propose a static analysis algorithm for
data race detectionwhich uses the annotated object
graph and ownership information. For programs that
exhibit good ownership structure (i.e., programs that
exhibit little or no representation exposure), this algo-
rithm may lead to intuitive, fast and accurate detec-
tion of data races. The main conjecture of our work
is that the annotated object graph and ownership infor-
mation would prove useful in analyses for race detec-
tion, atomicity violation detection, unnecessary syn-
chronization removal, and lock inference.

• Third, we identify several structural patterns of object
sharing. We propose a detailed study which will use
the annotated object graph and ownership information
to examine the occurrence of these patterns in real-
world concurrent Java applications.

public class Database {
private ConnectionManager cm;
public int insert(...) {

Connection c=cm.getConnection();
...
}
public int delete(...) {... }
}
public class ConnectionManager {
private Map conns=

Collections.synchronizedMap(new HashMap());
public void makeConnection(String s) {

ConnectionSource cs=new ConnectionSource();
conns.put(s,cs);
}
public Connection getConnection(String s) {

ConnectionSource cs=conns.get(s);
if (c!=null) return cs.getConnection();
}
}
public class ConnectionSource {

private Connection conn;
private boolean used;
public Connection getConnection() {

if (!used) {
used = true;
return conn;
}
}
}

Figure 1. An example from JdbF.

2 Running Example

As an illustrating example, consider the code in Fig-
ure 1. This example is taken from [5] and illustrates a
data race in a real-world Java application, JdbF. We have
modified the code slightly to better illustrate our proposed
approach. JdbF is a library and classDatabase pro-
vides the interface to clients; clients in multiple threads
can access aDatabase object through its public meth-
ods insert and delete . Methods insert and
delete acquire a connection, perform operations on it,
and then release this connection; any thread performing
operations on a connection must have exclusive access
to the connection. EachDatabase object has a pri-
vate ConnectionManager object which handles the
database connections. Furthermore, each connection is en-
capsulated within aConnectionSource object; this is
done with the intent to ensure exclusive thread access to a
connection. TheConnectionManager maintains a pri-
vate map ofConnectionSource objects.

The data race occurs on instance fieldused in
class ConnectionSource . The following method
call sequence can be executed by two threads si-
multaneously: Database.insert , followed by
ConnectionManager.getConnection , followed

T1 T2

oDatabase

oConnSource

insert
delete

insert
delete

oConnection

oMap

oData

oConnManager

insert-getConnection
delete-getConnection

getConnection-getConnection

Figure 2. Annotated object graph for Figure 1

by ConnectionSource .getCon -nection . There-
fore, the read of fieldused , namely if (!used) , can
be performed temporally next to the write of fieldused ,
namelyused = true . There are no ordering constraints
on the read and write to fieldused ; as a result, each of the
threads could obtain access to the same connection.

3 Annotated Object Graph and Ownership

This section describes the annotated object graph and
the ownership information inferred from the object graph.
Section 3.1 outlines the construction of the annotated ob-
ject graph: initially, it describes the object graph — a static
structure that represents the accesses between run-time ob-
jects; subsequently, it describes the extension to the object
graph with annotations that model transfer of control be-
tween run-time objects. Section 3.2 describes the owner-
ship information inferred from the object graph. Sections 4
and 5 propose applications of the annotated object graph
and ownership information.

3.1 Annotated Object Graph

The object graph is a static structure that approximates
run-time accesses between objects. Informally, objecto ac-
cesseso′ if one of the following is true: (i) a fieldf of o
refers too′, or (ii) a methodm invoked on receivero has
a local variable that refers too′. The algorithm for ob-
ject graph construction is a client of a points-to analysis—
it takes as input a points-to graph and produces the object
graph as an output. The object graph is a safe approxima-
tion of run-time object accesses—that is, if there is a run-

time access edge between two run-time objects, then there
is an edge in the object graph between the representatives
of these run-time objects.

Figure 2 shows the annotated object graph for the code
in Figure 1. The nodes in the object graph are object names
(e.g., oDatabase)—there is an object name for each allo-
cation site in the program. NodesT1 andT2 correspond
to two threads that access the sharedDatabase object
oDatabase . The annotations on object graph edges will
be explained shortly. EdgeoDatabase → oConnManager

represents the access between theDatabase object
and its correspondingConnectionManager object;
the edge is created by processing an object creation
statement in the code (it is not shown in Figure 1).
Edge oConnManager → oMap is due to the creation
statement in classConnectionManager which cre-
ates a newHashMap object. EdgeoMap → oData,
the edge between the container object and its internal
data array, is due to a creation statement in the code for
HashMap (this code, part of the standard Java library is
not shown here; it is processed by the analysis accord-
ingly). Edge oConnManager → oConnSource is due to
the creation statement in classConnectionManager ;
this statement creates aConnectionSource ob-
ject. Furthermore, edgesoMap → oConnSource and
oData → oConnSource are due to the statements that pass
the ConnectionSource object to theMap object and
then to the data array of theMap object. Finally, edges
oConnSource → oConnection, oConnManager → oConnection

and oDatabase → oConnection are due to program state-
ments that pass theConnection object to different
objects. For example, edgeoConnManager → oConnection

is due to statement cs.getConnection() in
ConnectionManager which passes oConnection

from oConnSource to oConnManager; similarly,
edge oDatabase → oConnection is due to statement
cm.getConnection() which passesoConnection from
oConnManager to oDatabase.

We add annotations to edges to model transfer of control
between objects. Annotationm1-m2 on object graph edge
o1 → o2 means that methodm1 invoked on receivero1 calls
methodm2 on receivero2. Notationo1.m1-o2.m2 abbrevi-
ates this information. For example, annotationinsert -
getConnection on edgeoDatabase → oConnManager

denotes that methodinsert called on receiveroDatabase

calls methodgetConnection on receiveroConnManager .
These annotations abstract away calls throughthis —
they shows only method calls that transfer control from one
object to another.

3.2 Ownership

Informally, we say that an objecto ownsobjectoi if o
immediately dominatesoi on the object graph—that is, all

accesses ofoi must go through its ownero. Again infor-
mally, thedominance boundaryof o is the portion of the
object graph that is dominated byo; it includes the objects
owned byo as well as the boundaries of the objects owned
by o. Figure 2 shows the ownership structure of our running
example. The dominance boundary of the top-level object
oDatabase includes all other objects, namelyoConnManager ,
oMap , oData , oConnSource and oConnection ; it is easy to
see thatoDatabase dominates these objects (i.e., all accesses
to these objects must go throughoDatabase). The domi-
nance boundary ofoConnManager , which is nested within
the boundary ofoDatabase includes objectsoConnSource ,
oMap andoData . Finally, the dominance boundary ofoMap

which is nested within the boundary ofoConnManager in-
cludes objectoData .

4 Reasoning Against Data Races

The main intuition behind our analysis is that in order to
have a data race on an objecton we must first have an object
race on the owner ofon, ok; conversely, there is no data race
on on if the accesses took are appropriately synchronized,
because the accesses toon are protected by synchronization
on its ownerok. Further, in order to have an object race on
ok we must have an object race on the owner ofok, and so
on, until we reach an object race on the ”central” objecto.

We illustrate our proposed algorithm for race detection
by two examples. Consider the following pair of accesses:
(oConnSource .getConnection (a read to fieldused of
oConnSource), oConnSource .getConnection (a write
to field used oConnSource)). Method getConnection
is unsynchronized and the pair of accesses constitutes
a potential data race, unless the accesses are appropri-
ately protected by synchronization onoConnSource ’s
owner. There is a pair of paths,p1, p2 from the
owner of oConnSource , oConnManager , to oConnSource ;
we have p1 = p2: oConnManager .getConnection –
oConnSource .getConnection . getConnection in
ConnectionManager is unsynchronized and there-
fore there is a potential object race onoConnManager .
Next, there is a pair of pathsp1, p2 from the owner of
oConnManager , oDatabase , tooConnManager ; we havep1=p2:
oDatabase .insert —oConnManager .getConnection
where again,insert is unsynchronized. SinceoDatabase

is the central object which is directly accessed by different
threads, the algorithm reports the race:

T1−
oDatabase .insert − oConnManager .getConnection −
oConnSource .getConnection // read ofused

T2−
oDatabase .insert − oConnManager .getConnection −
oConnSource .getConnection // write of used

As another example consider potential race (oData [] (array
element read),oData [] (array element write)). The algo-
rithm looks for related object race on the owneroMap . It
considersp1: oMap .get − oData [] (i.e., an array read), and
p2: oMap .put − oData [] (i.e., an array write). However,
get andput are synchronized onoMap and the potential
race is proven safe: the accesses tooData are protected by
synchronization on its owneroMap .

The advantage of this approach is that it structures the
search: search starts from the innermost boundary and pro-
ceeds outwards. If the program is well-structured into
deeply nested dominance boundaries, this approach may
help reduce the search space and lead to fast and accurate
race detection.

5 The Structure of Object Sharing

The annotated object graph and ownership information
can be used to reason about the structure of accesses to
shared objects. We identify three structural patterns.

First, we considerthread ownedobjects—these objects
are owned by their creating thread. Thread ownership is a
stronger property than thread locality in escape analysis [2,
7]. We conjecture that a large number of objects identified
as non-thread-local would be identified as thread-owned.

Second, we considercentral sharedobjectso—these ob-
jects are accesseddirectly by two or more threads (i.e.,
the run methods of two different threads call methods on
o). Central shared objects typically have deep dominance
boundaries—i.e., although thread access occurs centrally
througho, a race condition could occur on an object deep
within the dominance boundary ofo. An example of such
an object isoDatabase . Central shared objects, and the struc-
tures that are accessed through them, are easy to reason
about, as shown in the previous section. We conjecture that
this case is especially relevant for the analysis of open pro-
grams such as JdbF.

Third, we considerdistributed sharedobjectso. The ac-
cess too is distributed in the following sense. Leto be cre-
ated by a threadT1, and leto be passed to the boundary
of another object, sayo′ whereo′ is created and accessed
by threadT2. Objecto is accessed byT1, and indirectly,
througho′, by T2. As an example, one may have a col-
lection objecto created and directly accessed by threadT1
(i.e., by callingadd , etc. ono), and another collection
objecto′ which is owned by threadT2. In order to copy
the elements of collection objecto into o′ (i.e., by calling
addAll) one needs to passo to o′. ThreadT1 accesses
o by calling add ; in the same timeT2 accesseso′ calling
addAll and withinaddAll o′ accesseso, which may lead
to problematic accesses. Distributed shared objects are dif-
ficult to reason about.

6 Related Work

There is a large amount of work on detection of con-
currency errors. The trend is notably towards dynamic and
hybrid approaches [8, 6], which may be due to better scala-
bility compared to existing static approaches.

Our work focuses on scalable static analysis, which is
underrepresented in research on concurrency. Static anal-
ysis has important advantages over dynamic analysis: (i)
it avoids the run-time overhead of instrumentation, (ii) it is
safe, and (iii) it can help understand the underlying structure
of sharing in a concurrent program and not only detect, but
correct and prevent concurrency errors. Our ownership in-
ference analyses are precise and scalable [3] and we conjec-
ture that they could be used in analysis of large concurrent
programs. To the best of our knowledge the state-of-the-art
in scalable static race detection is Chord [5]. Chord’s ap-
proach is different from ours; it uses object-sensitive points-
to analysis [4] to reason about object accesses while we pro-
pose to use ownership analysis for this purpose. Ownership
analysis may be less expensive than object-sensitive points-
to analysis. Most importantly, ownership may present a
more intuitive way of reasoning about shared objects.

It is known that ownership is a useful concept in reason-
ing about concurrency. Von Praun and Gross [9] use the
notion of thread ownership in the context of dynamic object
race detection and Boyapati et al. [1] use a similar notion in
the context of an ownership type system. The main contri-
bution of our work lies in the use of object ownership in the
context of scalable static analysis.

References

[1] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA, pages 211–230, 2002.

[2] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff.
Escape analysis for Java. InOOPSLA, pages 1–19, 1999.

[3] Y. Liu and A. Milanova. Ownership and immutability infer-
ence for UML-based object access control. InICSE, pages
323–332, 2007.

[4] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized ob-
ject sensitivity for points-to analysis for Java.ACM TOSEM,
14(1):1–42, 2005.

[5] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for java. InPLDI, pages 308–319, 2006.

[6] C.-S. Park and K. Sen. Randomized active atomicity violation
detection in concurrent programs. InFSE, 2008.

[7] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis
for Java using annotated constraints. InOOPSLA, pages 43–
55, 2001.

[8] K. Sen. Race directed random testing of concurrent programs.
In PLDI, pages 11–21, 2008.

[9] C. von Praun and T. Gross. Object race detection. InOOP-
SLA, pages 70–82, 2001.

