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Abstract

Program flow analysis has many applications in soft-
ware tools for program understanding, restructuring, ver-
ification, testing and reverse engineering. There are two
important requirements for a flow analysis to be applied
successfully in software tools: precision and practicality.

We propose annotated inclusion constraints—a new gen-
eral framework for formulating and implementing precise
inclusion-based flow analyses. The framework can be in-
stantiated in two dimensions: one can select a flow analysis
that can be modeled using inclusion constraints (e.g., class
analysis, points-to analysis) and add a dimension of preci-
sion by choosing appropriate annotations (e.g., field sensi-
tivity, context sensitivity). The framework encompasses a
large spectrum of relatively precise flow analyses.

We formulate and implement several points-to analyses
for Java as instances of the framework. The experiments
show that precision dimensions such as field sensitivity and
context sensitivity have significant impact on the points-to
analysis and its clients. In the same time, using annotations
to model these precision dimensions results in efficient and
practical analysis. Therefore, flow analyses based on anno-
tated constraints can be successfully incorporated in soft-
ware tools.

1 Introduction

Program flow analysis is a technique that analyzes the
source code of the program and determines properties of
its run-time behavior. It is essential for building software
tools for program understanding, restructuring, verification,
testing and reverse engineering. There are two important re-
quirements for a flow analysis to be successfully applied in
software tools: analysis precision and analysis practicality.

Analysis precision is of crucial importance for the appli-
cability of flow analyses in software tools because impre-
cise analysis results in wasted human time and decreased
productivity of the developers, testers and maintainers. For

example, in a static debugging tool, imprecise analysis leads
to a large number of false positive warnings which leads to
wasted developer time and renders the tool unusable. An-
other important requirement for the usability of flow analy-
sis is analysis practicality. If the tool takes too long for the
analysis to complete, it is likely that developers and testers
will be unwilling to use it. Thus, slow analysis with large
memory requirements undermines the usability of a tool and
leads to decreased developer productivity. However, there
is a trade-off between precision and practicality.

Because of the importance of analysis precision as well
as its practicality it is necessary to investigate techniques
for precise and reasonably practical flow analysis. Inclu-
sion constraint systems [2, 1, 23, 6] are well studied and
powerful formalism for formulating and implementing flow
analyses. Analyses based on inclusion constraints examine
the source code of the program and construct a system of
constraints of the form X ⊆ Y , where X and Y are ex-
pressions representing sets; the solution of the constraint
system provides information about the flow of values in the
program. Analyses formulated using inclusion constraints
include points-to analysis, shape analysis, closure analyses,
and class analysis among others. For certain points-to anal-
yses for C inclusion constraints have been shown to scale
to large programs [6, 23, 18, 10]. However, these efficient
analyses do not model dimensions of flow analysis preci-
sion such as field sensitivity (i.e., the ability of the analysis
to track flow through different object fields), context sensi-
tivity (i.e., the ability of the analysis to distinguish flow for
different context of invocation of a method) and the han-
dling of virtual dispatch. These dimensions of precision are
crucial for the analysis of object-oriented programs; con-
text and field insensitivity inherently compromise precision
due to fundamental object-oriented features and program-
ming idioms such as encapsulation, inheritance and poly-
morphism (Section 3.2 gives a detailed example).

Towards the goal of precise and practical flow analy-
sis, we propose annotated inclusion constraints, a general
framework that extends existing inclusion constraint sys-
tems. The framework is based on constraints of the form
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X ⊆a Y where the annotation a characterizes the in-
clusion relation. The role of the annotation is to restrict
the flow in the system, i.e., there is flow from X to Z due
to transitivity only if annotations a and b ”match” in con-
straints X ⊆a Y ⊆b Z . The annotations model dimensions
of precision in the flow analysis. The framework can be in-
stantiated in two dimensions: one can select a flow analysis
that can be modeled using inclusion constraints (e.g., class
analysis, points-to analysis) and add a dimension of pre-
cision by choosing appropriate annotations (e.g., field sen-
sitivity, context sensitivity). Thus, the framework encom-
passes a large spectrum of relatively precise flow analyses.

We illustrate the framework by expressing two points-to
analyses for Java. Points-to analysis for Java answers the
question what objects a given reference variable or a refer-
ence object field may point to. It is a fundamental flow anal-
ysis that has a wide variety of uses in software tools. The
first analysis is a field-sensitive context-insensitive points-to
analysis; it is built on top of the Java version of the field-
insensitive points-to analysis for C from [2, 1, 23, 6] by us-
ing appropriate annotations that model field sensitivity and
virtual dispatch. The second analysis is a novel context-
sensitive points-to analysis referred to as object-sensitive
analysis; it is built on top of the field-sensitive context-
insensitive analysis by adding appropriate annotations that
model flow of values for different contexts of invocation.

Previous experiments reported in [19, 13] compared
field-sensitive and field-insensitive analyses; they showed
that adding annotations to model field sensitivity leads to
more precise and less costly analysis. In the experiments
reported in this paper we compare field-sensitive context-
insensitive analysis and object-sensitive analysis. The ex-
periments show that adding annotations to model object
sensitivity has substantial impact on client analyses such as
side-effect analysis and downcast safety analysis. In the
same time, the object-sensitive analysis remains efficient
and practical. Our experiments indicate that the framework
can be successfully used to implement precise and efficient
flow analyses for the purposes of testing, static checking,
debugging and reverse engineering.

This work has the following contributions:

• We propose annotated inclusion constraints — a new
general framework that enables modeling of dimen-
sions of precision in inclusion-based flow analysis.

• We express several flow analyses as framework in-
stances and present experimental results that evaluate
these analyses.

2 Annotated Inclusion Constraints

This section defines the general structure of the frame-
work. Previous constraint-based flow analyses employ non-

annotated inclusion constraints [6, 23]. Our new general
constraint-based approach extends previous work [6, 23] by
introducing constraint annotations that are used to model
various dimensions of analysis precision.

Annotation Language and Operations. The set of an-
notations is a finite set S. One element of the set is des-
ignated as the empty annotation and is denoted by ε. The
following operations defined on elements of S are neces-
sary for the integration of the annotations in the constraint
solution procedure: match: S × S → boolean, concat :
S × S → S, and transpose: S → S. The role of these op-
erations in constraint resolution will be explained shortly.
Operation concat requires the predicate match to hold. In-
tuitively, the set S and the operations acting on the elements
of S can be instantiated to model a specific precision dimen-
sion. For example, if the annotations are used to model field
sensitivity, S is derived from the set of field identifiers. An
inclusion relation annotated with f represents flow of values
through field f of a given object.

Constraint language. Flow analyses that incorporate
dimensions of precision can be modeled using annotated
inclusion constraints of the form L ⊆a R, where L and R
correspond to some program elements and a ∈ S is chosen
from the set of annotations described earlier. We use L ⊆ R
to denote constraints labeled with the empty annotation. L
and R are set expressions, defined by the grammar:

L, R → v | c(v1, . . . , vn) | proj (c, i, v) | 0 | 1

Here v and vi are set variables, c(. . .) are constructed terms
and proj (. . .) are projection terms. Each constructed term
is built from an n-ary constructor c. A constructor is either
covariant or contravariant in each of its arguments; the role
of this variance in constraint resolution will be explained
shortly. Constructed terms may appear on both sides of in-
clusion relations. 0 and 1 represent the empty set and the
universal set; they are treated as nullary constructors. Pro-
jections of the form proj (c, i, v) are terms used to select the
i-th argument of any constructed term c(.., vi,..). Projection
terms may appear only on the right-hand side of an inclu-
sion. Intuitively, set variables, constructed terms and pro-
jection terms represent program elements and the inclusion
relation represents flow of values between these elements.

Annotated Constraint Graphs. Systems of constraints
can be represented as directed multi-graphs. Constraint
L ⊆a R is represented by an edge from the node for L
to the node for R; the edge is labeled with the annotation
a. There can be multiple edges between the same pair of
nodes, each with a different annotation.

The nodes in the graph can be classified as variables,
sources, and sinks. Sources are constructed terms that occur
on the left-hand side of inclusions. Sinks are constructed
terms or projections that occur on the right-hand side of
inclusions. The graph only contains edges that represent
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c(v1, ..., vn) ⊆a c(v′
1, ..., v

′
n) ⇒{

vi ⊆a v′
i if c is covariant in i for i=1...n

v′
i ⊆transpose(a) vi if c is contravariant in i for i=1...n

c(v1, ..., vn) ⊆a proj (c, i, v) ⇒{
vi ⊆a v if c is covariant in i
v ⊆transpose(a) vi if c is contravariant in i

Figure 1. Rules for non-atomic constraints.

atomic constraints of the following forms: Source ⊆a Var,
Var ⊆a Var, or Var ⊆a Sink. If the constraint system con-
tains a non-atomic constraint, the resolution rules from Fig-
ure 1 are used to replace this constraint with new atomic
constraints, as described below.

We use annotated constraint graphs based on the in-
ductive form representation [3]. Inductive form is an effi-
cient sparse representation that does not explicitly represent
the transitive closure of the constraint graph. The graphs
are represented with adjacency lists pred(n) and succ(n)
stored at each node n. Edge (n1, n2, a), where a is an an-
notation, is represented either as a predecessor edge by hav-
ing 〈n1, a〉 ∈ pred(n2), or as a successor edge by having
〈n2, a〉 ∈ succ(n1), but not both. Source ⊆a Var is always
a predecessor edge and Var ⊆a Sink is always a successor
edge. Var ⊆a Var is either a predecessor or a successor
edge, based on a fixed total order τ : Vars → N . Edge
(v1, v2, a) is a predecessor if and only if τ(v1) < τ(v2).

Solving Systems of Annotated Inclusion Constraints.
Every system of annotated inclusion constraints can be rep-
resented by an annotated constraint graph in inductive form.
The system is solved by computing the closure of the graph
under the following transitive closure rule:

〈L, a〉 ∈ pred(v)
〈R, b〉 ∈ succ(v)
match(a, b)

}
⇒ L ⊆concat(a,b) R (TRANS)

The closure rule can be applied locally, by examining
pred(v) and succ(v). The new transitive constraint is cre-
ated only if the annotations of the two existing constraints
”match”—that is, only if match(a, b) holds, where match
is the specific binary predicate on the annotations. Intu-
itively, the annotations ”color” the edges in the graph and
the TRANS rule uses the colors to filter out infeasible flow.
The annotation on the new constraint is produced by apply-
ing the concatenation operation to annotations a and b.

If the new constraint generated by the TRANS rule is
atomic, a new edge is added to the graph. Otherwise, the
resolution rules from Figure 1 are used to transform the con-
straint into several atomic constraints and their correspond-
ing edges are added to the graph. For covariant arguments,
the direction of flow is preserved and the annotation is also
preserved. For contravariant arguments the direction of flow

is reversed and a new annotation is produced by applying
the specific transpose operation.

The closure of a constraint graph under the TRANS rule
is the solved inductive form of the corresponding constraint
system. The least solution of the system is not explicit [3],
but is easy to compute by examining all predecessors of
each variable. For an annotated graph, the least solution is
computed by applying transitive acyclic traversal as in [3],
but the annotations are used as in rule TRANS:

LS(v) = {〈c(. . .), a〉 | 〈c(. . .), a〉 ∈ pred(v)} ∪
{〈c(. . .), concat(x, y)〉 | 〈u, y〉 ∈ pred(v) ∧

〈c(. . .), x〉 ∈ LS(u) ∧ match(x, y)}

For simplicity we presented the framework using a single
set of annotations; multiple sets, each modeling a differ-
ent dimension of precision, can be combined by performing
point-wise match, concat and transpose. A detailed dis-
cussion of this issue and other relevant framework proper-
ties occurs in [13].

3 Field-sensitive Context-insensitive Points-
to Analysis for Java

This section briefly outlines a popular flow- and context-
insensitive points-to analysis for Java previously described
in [19]. Section 3.1 discusses the semantics of the analy-
sis and outlines its formulation in terms of annotated con-
straints. We add appropriate annotations to track flow
through fields and to model virtual dispatch. Section 3.2 il-
lustrates how context insensitivity inherently compromises
analysis precision and stresses the need for efficient context-
sensitive analyses.

3.1 Semantics and Framework Formulation

The analysis is defined in terms of three sets. Set R con-
tains all reference variables in the analyzed program (in-
cluding static variables). Set O contains names for all ob-
jects created at object allocation sites; for each allocation
site si, there is a separate object name oi ∈ O. Set F con-
tains all instance fields in program classes. The analysis
constructs points-to graphs containing two kinds of edges.
Edge (r, oi) ∈ R × O shows that at run time reference
variable r may point to an object represented by oi. Edge
(〈oi, f〉, oj) ∈ (O ×F )×O shows that field f of an object
represented by oi may point to an object represented by oj .

For brevity, we only discuss the following kinds of state-
ments: (1) direct assignment: l = r, (2) instance field write:
l.f = r, (3) instance field read: l = r.f , (4) object creation:
l = new C, and (5) virtual call: l = r0.m(r1, ..., rk). Other
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〈l = new oi〉 ⇒ {ref (oi, voi , voi) ⊆ vl}
〈l = r〉 ⇒ {vr ⊆ vl}
〈l.f = r〉 ⇒ {vl ⊆ proj (ref , 3, u), vr ⊆f u}, u fresh

〈l = r.f〉 ⇒ {vr ⊆ proj (ref , 2, u), u ⊆f vl}, u fresh

〈l = r0.m(r1, . . . , rk)〉 ⇒ {vr0 ⊆m lam(0, vr1 , . . . , vrk , vl)}

Figure 2. Field-sensitive analysis for Java.

kinds of statements (e.g. calls to static methods) are handled
in a similar fashion. The analysis processes the statements
and adds points-to edges to the graph. For example, at a di-
rect assignment l = r it adds edges from l to all objects that
r may point to. Similarly, at an indirect write l.f = r the
analysis finds all objects that l may point to and adds edges
labeled f from each to all objects that r may point to. At a
virtual call, resolution is performed for every receiver object
pointed to by r0. The analysis uses the class of the receiver
and the compile-time target of the call to determine the ac-
tual method mj invoked at run-time. Variables p0, ..., pn are
the formal parameters of mj ; variable p0 corresponds to the
implicit parameter this. Variable retj contains the return
values of mj (we assume that each method has a unique
variable that is assigned all values returned by the method;
this can be achieved by auxiliary assignments).

To formulate the analysis within the framework for an-
notated constraints we make use of the points-to representa-
tion from [6, 23]. The set of objects pointed to by location x
is represented by a set variable vx and each object is repre-
sented by a constructed term of the form ref (o, vo, vo). The
last two arguments to the ref constructor are the same vari-
able but with different variance. As in [6, 23] the overline
bar denotes contravariant arguments. Intuitively, the second
argument is used to read the fields of object o, while the
third argument is used to write the fields of o. Constraint
ref (o, vo, vo) ⊆ vr represents the fact that r may point to o.

The standard constraint systems from [6, 23] allow for-
mulation of field-insensitive points-to analysis—that is,
flow through different object fields is not distinguished
which leads to substantial imprecision. Our system allows
us to easily add field sensitivity by using field annotations.
The set of field annotations is the set of unique field iden-
tifiers F plus the empty field annotation εf . Operations
match and concat are defined as follows:

match(f1, f2) =

{
true if f1 = εf or f2 = εf

true if f1 = f2

false otherwise

concat(f1, f2) =

{
f1 if f2 = εf

f2 if f1 = εf

εf otherwise

We also have transpose(f) = f . Intuitively, the field anno-
tation is propagated until it is matched with another instance
of itself, after which the two instances cancel out. The anal-
ysis infers constraints of the form ref (o2, vo2 , vo2) ⊆f vo1

to represent that field f of o1 may point to object o2.
The constraints for program statements are shown in Fig-

ure 2. The first rule expresses that object oi, represented in
the constraint system with the appropriate ref term, flows to
the points-to set of l. Similarly, the rule for l = r expresses
that the point-to set of r flows to the points-to set of l. The
rule for l.f = r uses the first constraint to access the points-
to set of l. As a result of this constraint, all ref (o, vo, vo)
terms to the left of vl are matched with the projection term
during resolution (i.e., the objects in the points-to set of l
are found). This results in constraints of the form u ⊆ vo.
Combining with the second constraint generated for l.f = r
results in vr ⊆f u ⊆ vo, meaning that the points-to set of r
flows into the points-to set of field f of all objects o pointed
to by l. Similarly, the rule for indirect read statements uses
two constraints to read the values of field f in all objects
pointed to by r.

To model virtual dispatch we use method annotations.
The rule for virtual calls in Figure 2 is based on a lam
(lambda) constructed term which encapsulates the actual
arguments and the left-hand-side variable of the call. The
annotation on the constraint is a unique identifier of the
compile-time target method of the call. To model the ef-
fects of virtual calls, we define an additional closure rule
VIRTUAL. This rule encodes the semantics of virtual calls
described earlier in this section and is used together with
the TRANS rule to obtain the solved form of the con-
straint system. VIRTUAL is applied whenever we have
two constraints of the form ref (o, vo, vo) ⊆ v, v ⊆m

lam(0, vr1 , . . . , vrk
, vl). As described in Section 2, the

edge from the ref term is a predecessor edge, and the edge
to the lam term is a successor edge. Thus, the VIRTUAL clo-
sure rule can be applied locally, by examining sets pred(v)
and succ(v). Whenever two such constraints are detected,
the analysis uses a precomputed lookup table to find the
lambda term for the run-time method corresponding to ob-
ject o and compile-time target method m. The result of ap-
plying VIRTUAL are two new constraints:

ref (o, vo, vo) ⊆ vp0

lam(vp0 , vp1 , . . . , vpk , vret ) ⊆ lam(0, vr1 , . . . , vrk , vl)

The first constraint creates the association between this
of the invoked method and the receiver object. The second
constraint immediately resolves to vri ⊆ vpi (for i ≥ 1)
and vret ⊆ vl, plus the trivial constraint 0 ⊆ vp0 .

3.2 Imprecision of Context-insensitive Analysis

Context-insensitive analysis is imprecise for many fun-
damental object-oriented features and programming id-
ioms such as encapsulation, inheritance, and containers and
maps. For example, if field f is written through a method in-
vocation, during context-insensitive analysis field f of each
receiver will point to all objects passed as arguments to the
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class X { void n() {...} }
class Y extends X { void n() {...} }
class Z extends X { void n() {...} }
class A {

X f;
1 A(X xa) { this.f = xa; } }
class B extends A {

2 B(X xb) { super(xb); ... }
... }

class C extends A {
3 C(X xc) { super(xc); ... }

... }
4 s1:Y y = new Y();
5 s2:Z z = new Z();
6 s3:B b = new B(y);
7 s4:C c = new C(z);

Figure 3. Field write through a superclass.

method which writes that value of f . As a result, context-
insensitive analysis can incur significant imprecision.

The detailed example in Figure 3 illustrates basic object-
oriented features (inheritance and encapsulation) for which
context-insensitive analysis produces imprecise results. At
line 2, B.this points to o3 and B.xb points to o1. After
the analysis processes the call to the superclass constructor,
A.this and A.xa point to o3 and o1, respectively. Be-
cause of the call at line 3, A.this will point to o4 and
A.xa will point to o2. Thus, at statement this.f=xa
at line 1, spurious edges (〈o3, f〉, o2) and (〈o4, f〉, o1) are
added to the graph. This imprecision usually propagates
further and affects both the points-to analysis and its clients.

Instance field access through method invocation, initial-
ization through a superclass constructor, and the use of con-
tainers and maps are several inherent object-oriented fea-
tures and idioms for which context-insensitive analysis pro-
duces imprecise results. The use of these features and id-
ioms is widespread. Thus, it is necessary to develop tech-
niques for practical context-sensitive analysis.

4 Object-sensitive Analysis

Section 4.1 briefly describes the semantics of object-
sensitive analysis, a new form of context-sensitive analysis
for object-oriented languages [14, 13]. With object sensi-
tivity, instance methods (i.e., non-static methods) and con-
structors are analyzed separately for objects on which such
methods may be invoked. Section 4.2 shows how context
sensitivity can be added to the analysis from 3.1 by using
appropriate annotations that filter infeasible flow due to im-
precise handling of different contexts of method invocation.

4.1 Semantics of Object-sensitive Analysis

The semantics of object-sensitive analysis is defined in
terms of a set of contexts C, a set of replicated object names
O′ and a set of replicated reference variables R′.

Object contexts. Let S be the set of all allocation sites
in the program. Set C ⊆ S ∪ {ε} represents the space of all
possible object contexts. For the rest of the paper we will
use oi or simply the index i to denote object context si. An
instance method or constructor m is separately analyzed for
context oi ∈ C, if m is invoked on an object allocated at site
si. For simplicity, static methods (e.g., main) are analyzed
in the special context ε.

Set O′ ⊆ S ∪ S2 represents the set of replicated object
names. If allocation site si appears in an instance method
or constructor, there is a separate object name oij ∈ O′ for
each context oj ∈ C reaching the enclosing method of si.
If si is enclosed by a static method, there is a single object
name oi (short for oiε) that represents the objects created at
that site. For the set of statements in Figure 3 all allocation
sites occur in main; thus, set O′ equals {o1, o2, o3, o4}.
The separate analysis for reference variables is achieved by
maintaining context copies of reference variables for each
possible context. The set of replicated reference variables
R′ ⊆ R × C is defined as follows. If r is a local variable in
an instance method or constructor, r is mapped to a ”fresh”
variable rc for every context c ∈ C that reaches m during
the analysis. If r ∈ R is a static variable or a local in a static
method, r is mapped to itself. For the set of statements in
Figure 3, constructorsB.B and A.A are invoked on receiver
o3. Thus, context o3 reaches B.B and A.A, and R′ includes
B.thiso3 , B.xbo3 , A.thiso3 , and A.xao3 .

Effects of program statements. The analysis constructs
a points-to graph with nodes from R′ and O′. The effects of
the program statements are essentially equivalent to analyz-
ing each statement separately for each enclosing context.
For example, if the analysis encounters direct assignment
l = r under context c, it infers that lc may point-to the ob-
jects that rc may point to. Similarly, if it encounters si:
l = new oi under context oj , it infers that oij appears in the
points-to set of loj (recall that the set of contexts coincides
with the set of object creation sites).

At virtual call statements the analysis resolves the call
separately for each context. When l = r0.m(r1, ..., rn) is
encountered under context c, the analysis resolves the call
based on each object oij in the points-to set of rc

0. For each
oij it determines an actual target method n based on the
class of oij and the compile-time target m. The analysis
then updates the set Cn, which represents the set of reach-
ing contexts of n (i.e., the set of contexts for which the state-
ments in n are analyzed), with the new context oi. It maps
the formal parameters and return variable of n to the con-
text of oi and performs appropriate updates. For example,
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the analysis infers that formal parameter poi

j points to every
object in the points-to set of rc

j ; similarly, lc points to every
object in the points-to set of return variable retoi

n .

4.2 Framework Formulation

Object sensitivity as a dimension of precision can be
expressed in the framework for annotated constraints by
adding object annotations with appropriate operations.

Object annotations. The object annotations are tuples
of the form [i × j] where i and j correspond (roughly)
to object allocation sites. The index on the left describes
the object context of the program element corresponding to
the term on the left-hand side of a constraint; the one on
the right describes the context of the element correspond-
ing to the term on the right-hand side. Roughly, constraint
vr ⊆[i×j] vl represents that the points-to set of roi is a sub-
set of the points-to set of loj .

We use the wildcard symbol ∗ to efficiently represent
all possible object contexts that may reach the term on the
corresponding side of the constraint (i.e., context that may
reach the enclosing method). It may appear on either side
of an object annotation. There are five kinds of object an-
notations: (1) [i × j], (2) [i × ∗], (3) [∗ × j], (4) [∗ × ∗]
and (5) [ × ], where i and j are allocation site indices and
[ × ] is the empty object annotation, also denoted by εo.
The meaning of the first four kinds is straightforward. For
example, vr ⊆[i×j] vl represents that the points-to set of roi

is a subset of the points-to set of loj . Similarly, vr ⊆[i×∗] vl

represents that for every possible context c reaching l, the
points-to set of roi is a subset of the points-to set of lc.

The empty object annotation [ × ] represents all possible
contexts reaching the terms on the left and right-hand side
of the constraint. In other words, constraint vr ⊆[ × ] vl

represents that for every context c of the enclosing method
of r and l, the points-to set of rc is a subset of the points-
to set of lc. The role of the empty object annotations is
to model flow in contexts that may be unknown; this ef-
fectively avoids processing and generating constraints for
program statements multiple times. For example, when the
analysis processes statement 1 in Figure 3, the possible con-
texts of invocation of 1 are unknown and depend on the
possible receivers of A.A. The analysis creates constraints
vA.this ⊆ proj (ref , 3, u) and vA.xa ⊆f u, where the empty
annotation represents flow for all possible contexts of A.A;
these constraints summarize intraprocedural flow and avoid
processing of the statements in A.A multiple times.

Continuing with Figure 3, the semantics of the object-
sensitive analysis specifies that the points-to set of y flows
to the points-to set of B.xbo3 and subsequently to A.xao3 .
The formulation in our framework expresses this flow with
constraints vy ⊆[∗×3] vB.xb and vy ⊆[∗×3] vA.xa, where the
only possible context of y is ε.

The operations on object annotations are as follows:
match(s1, s2) ⇒


true if s1 = εo or s2 = εo

true if s1 = [i × j], s2 = [k × l] and j = k
true if s1 = [i × j], s2 = [k × l] and j = ∗ or k = ∗
false otherwise

Consider vx ⊆s1 vy ⊆s2 vz . If s1 is the empty object
annotation, the constraints represent valid flow because the
empty annotation can be instantiated to the context on the
left side of s2. If j and k are the same allocation site index,
the two constraints can be combined to represent valid flow
as well. Similarly, if j is ∗, the constraints represent valid
flow, because the wildcard symbol matches every reaching
context of y, including k. Clearly, if j and k are different
allocation site indices the two constraints represent flow into
and from two different context copies of y and cannot be
combined to represent valid flow from x to z. If match
holds, the analysis performs concatenation:

concat(s1, s2) ⇒
{

s2 if s1 = εo

s1 if s2 = εo

[i × l] if s1 = [i × j], s2 = [k × l]

Consider vx ⊆ vy ⊆[k×j] vz . The first constraint repre-
sents flow from xc to yc for every context c of the enclosing
method of x and y; thus, it can be instantiated for k to repre-
sents flow from xk to yk. The new constraint vx ⊆[k×l] vz

correctly represents flow from xk to zl. It remains to define
transpose: transpose([i × j]) = [j × i].

Constraint generation. For all statements, the analy-
sis generates constraints with empty object annotations as
shown in Figure 2. These constraints represent flow that is
valid for all possible contexts of the method. During res-
olution, points-to sets and object annotations reaching the
left-hand side of the constraint (e.g., vr of vr ⊆ vl) are
propagated to the right-hand side of the constraint (i.e., the
flow is instantiated to the appropriate context). Consider
Figure 3. Constraint vy ⊆[∗×3] vA.xa represents the fact
that the points-to set of y in main flows to the points-to set
of A.xao3 . Due to statement 1, a constraint vA.xa ⊆ u is
generated as shown in Figure 2; it represents that for every
enclosing context c of A.A the points-to set of A.xac flows
to uc. The empty annotation is instantiated and the result-
ing constraint represents correctly that the points-to set of y
flows only to uo3 .

In order to model the semantics of the object-sensitive
resolve , the closure rule VIRTUAL from Section 3.1 is mod-
ified to handle object annotations. If object annotations
s1 and s2 ”match” in ref (oi, voi , voi) ⊆s1 v, and v ⊆s2

m
lam(0, vr1 , . . . , vrk

, vl) the analysis consults the lookup ta-
ble and based on the class of oi and the compile-time target
m finds a lambda term lam(vp0 , vp1 , . . . , vpk

, vret) corre-
sponding to the definition of the run-time target method. If
concat(s1, s2) = εo the analysis creates constraints

ref (oi, voi , voi) ⊆[∗×i] vp0
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lam(vp0 , vp1 , . . . , vpk , vret ) ⊆[i×∗] lam(0, vr1 , . . . , vrk , vl)

When concat(s1, s2) = εo, allocation site si and the call
site modeled by lambda term lam(0, vr1 , . . . , vrk

, vl) ap-
pear in the same method. Therefore, for every enclosing
context on of this method, object oin flows to the points-to
set of poi

0 . Similarly, the points-to set of each context copy
ron

j flows to the points-to set of the corresponding formal

poi

j . This is reflected by constraints ref (oi, voi , voi) ⊆[∗×i]

vp0 and vrj ⊆[∗×i] vpj .
In the case when concat(s1, s2) = [X × Y ] 	= εo, ob-

ject oi flows to the call site represented by the lambda term
due to some interprocedural flow. The analysis creates the
following constraints:

ref (oi, voi , voi) ⊆[X×i] vp0

lam(vp0 , vp1 , . . . , vpk , vret ) ⊆[i×Y ] lam(0, vr1 , . . . , vrk , vl)

X represents object contexts c ∈ C, the contexts of in-
vocation of the enclosing method of si. Y represents the
contexts of the method invocation site.

Example. This example illustrates object-sensitive anal-
ysis in our framework. Consider the statements in Figure 3.
At line 6, the analysis creates constraints

ref (o3, vo3 , vo3) ⊆ vb vb ⊆B.B lam(0, vy)

Applying the object-sensitive VIRTUAL results in:

ref (o3, vo3 , vo3) ⊆[∗×3] vB.this

lam(vB.this, vB.xb) ⊆[3×∗] lam(0, vy)

After applying the rules for non-atomic constraints in Fig-
ure 1 we have

ref (o3, vo3 , vo3) ⊆[∗×3] vB.this vy ⊆[∗×3] vB.xb

and after line 2 we have

ref (o3, vo3 , vo3) ⊆[∗×3] vB.this vB.this ⊆A.A lam(0, vB.xb)

The analysis applies concat on s1 = [∗×3] and s2 = [ × ]
and after appropriate context instantiation of [ × ] it infers
that object o3 flows to the invocation site denoted by the
lambda term only when the invocation occurs in the context
of o3. Applying the object-sensitive VIRTUAL followed by
the rules in Figure 1 results in constraints

ref (o3, vo3 , vo3) ⊆[∗×3] vA.this (1) vB.xb ⊆[3×3] vA.xa (2)

Applying the analogous sequence of rules for o4 at lines 7
and 3 results in

ref (o4, vo4 , vo4) ⊆[∗×4] vC.this vz ⊆[∗×4] vC.xc

and subsequently in

ref (o4, vo4 , vo4) ⊆[∗×4] vA.this (3) vC.xc ⊆[4×4] vA.xa (4)

At line 1 the analysis generates the following constraints:

vA.this ⊆ proj (ref , 3, u) (5) vA.xa ⊆f u (6)

Applying TRANS followed by the resolution rules for struc-
tural constraints to (1) and (5) results in u ⊆[3×∗] vo3 . Sim-
ilarly, from (3) and (5) we have u ⊆[4×∗] vo4 . Clearly, the
annotations are used to distinguish between flow from vari-
able u in two separate object contexts. In the first case, the
constraint represents flow from the context copy of u for
object context o3 and in the second case it represents flow
from the context copy for o4. Thus,

vy ⊆[∗×3] vB.xb ⊆[3×3] vA.xa ⊆f u ⊆[3×∗] vo3

vz ⊆[∗×4] vC.xc ⊆[4×4] vA.xa ⊆f u ⊆[4×∗] vo4

Clearly, [4 × 4] and [3 × ∗] do not ”match” and the anal-
ysis avoids inferring constraints vC.xc ⊆f vo3 and sub-
sequently ref (o2, vo2 , vo2) ⊆f vo3 . The last constraint
erroneously implies a field edge between o3 and o2. [3 × 3]
and [4 × ∗] do not match and the constraint that implies a
spurious field edge between o4 and o1 is avoided as well.

For simplicity we avoid discussion of handling of static
variables, analysis complexity and analysis correctness. De-
tailed discussion of these issues occurs in [13].

4.3 Parameterized Object Sensitivity

For context-sensitive flow analyses, which are rela-
tively expensive, it is important to propose parameteriza-
tion mechanisms that enhance analysis flexibility. It should
be possible to define analyses that achieve targeted con-
text sensitivity by essentially selecting parts of the program
for which keeping more precise information is likely to im-
prove the quality of the flow information. Recent work has
shown that targeted context sensitivity is crucial for flow-
analysis-based production-strength software tools [17].

For the object-sensitive analysis we discuss two direc-
tions of parameterization; these and other directions are dis-
cussed in detail in [13]. First, the analysis designer can se-
lect the degree of precision in the context naming scheme.
This is done by selecting a subset of the allocation sites to be
used as contexts as described in Sections 4.1. For the rest
of the sites, instead of the allocation site, the class of the
allocated object is used as context. Clearly, this typically
results in fewer contexts and more efficient analysis.

Second, the analysis can avoid analyzing certain state-
ments separately for each enclosing context. For example,
consider a virtual call r0.m(r1, ..., rn). The analysis may
keep summary points-to sets r′0, r′1, ..., r

′
n, that contain the

union of the points-to sets of r0, r1, ..., rn for all possible
contexts. When the call is processed, instead of examining
the call in each enclosing context c as the semantics speci-
fies (recall Section 4.1), the call is examined once and infor-
mation is propagated once to each callee from the summary
points-to sets. For example if oij appears in the points-to
set of r′0 due to some rc

0, instead of propagating rc
j to poi

j ,
the analysis propagates r′j to poi

j .
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These parameterizations can be easily modeled in the
framework for annotated constraints. For example, the sec-
ond parameterization can be trivially modeled as follows:
lam(vp0 , vp1 , ..., vpn , vret) ⊆[i×∗] lam(0, vr1 , ..., vrn , vl);
the wildcard annotations reflect that values are propagated
to context copies poi

j from every possible context of the cor-
responding actual rj .

5 Empirical Results

The goal of this experimental study is to address two
questions. First, how costly is the addition of the annota-
tions for modeling dimensions of precision? Second, what
is the impact of the additional dimensions of precision on
the flow analysis and its clients? The answers to these ques-
tions will provide insights about the usefulness of the frame-
work as a basis for software tools.

Benchmarks. We performed experiments on a set of 23
publicly available Java programs. Column (1) in Table 1
shows the size of the programs, including library classes
and methods, after using class hierarchy analysis (CHA) [5]
to filter out irrelevant classes and methods1. The number
of methods is essentially the number of nodes in the call
graph computed by CHA. Details on the benchmarks and
our analysis infrastructure appear in [13].

Framework instances. In order to answer the two ques-
tions stated above, we investigated four different points-
to analyses and their formulations in the framework. The
first one is a field-insensitive, flow- and context-insensitive
points-to analysis referred to as FieldInsens; it is essentially
a Java version of the analysis for C formulated using non-
annotated inclusion constraints [6, 23]. The second one
adds field sensitivity by using field annotations as described
in Section 3; this analysis is referred to as FieldSens. Re-
sults from the detailed empirical investigation that contrasts
the FieldInsens and FieldSens appear in [19, 13]. In sum-
mary, FieldInsens is on average about four times more ex-
pensive than FieldSens, and substantially less precise.

In addition, we investigated two object-sensitive anal-
yses. The first one, denoted by FullObjSens adds object
sensitivity to FieldSens by adding object annotations as de-
scribed in Section 4. The fourth one, denoted by ObjSens,
applies the following parameterizations: first, if there are
more than fifty instances of a given class, the analysis uses
the class name rather than the object name as context; sec-
ond, for instance calls not through this, the analysis per-
forms propagation using wildcard symbols as described at
in Section 4.3. The detailed comparison between FullOb-
jSens and ObjSens appears in [13]. In summary, FullOb-
jSens is more expensive than ObjSens for some of the large

1CHA is an inexpensive analysis that determines the possible targets of
a virtual call by examining the class hierarchy of the program.

programs, and exactly as precise. Table 1 presents a detailed
comparison between FieldSens and ObjSens.

Analysis cost. Column (2) of Table 1 shows the cost of
FieldSens and ObjSens. All experiments were performed on
a 900MHz Sun Fire-280R shared machine with 4Gb phys-
ical memory. For the majority of programs, the two anal-
yses have comparable running times and memory usage.
In certain cases, ObjSens actually performs better. This is
consistent with previous results which show that FieldSens
performs better than FieldInsens; in both cases the annota-
tions seem to ”cancel” edges that represents infeasible flow,
which leads to smaller points-to sets and less work for the
analysis. Thus, using annotations to model dimensions of
precision can result in practical flow analysis.

Analysis precision. To address the second question we
considered two client analyses of points-to analysis. Modi-
fication side-effect analysis determines, for each statement,
the set of objects that may be modified by that statement.
The analysis has a variety of uses in software tasks. It can
be used to determine what methods are free of side-effects,
and to compute coverage requirements for data-flow-based
testing. For such applications side-effect analysis precision
is essential because imprecise analysis typically results in
wasted time for developers and testers. Downcast safety
analysis determines, for each downcast statement, the set of
objects that may be subject to the downcast; if all objects are
of a class that is a subtype of the type in the cast, the down-
cast is determined to be safe. Since Java currently lacks
generic types programmers have been using pseudo-generic
classes expressed in terms of Object (e.g., Hashtable).
Downcast safety analysis can be helpful in identifying er-
rors due to incorrect use of pseudo-generic classes; also, it
can be applied in tools for converting legacy Java source to
use generics which will be added in Java 1.5.

Columns (3) in Table 1 summarizes the experiments with
side-effect analysis. It shows the distribution of the num-
ber of modified objects per program statement for FieldSens
and ObjSens. Each column corresponds to a specific range
of numbers. For example, the first column corresponds to
statements that may modify one, two or three objects, and
the second column corresponds to statements that may mod-
ify at least 10 objects. Each column shows what percentage
of the total number of statements that modify at least one
object, corresponds to the particular range of numbers of
modified objects. The measurements in Table 1 show that
object sensitivity significantly improves analysis precision.
For side-effect analysis based on ObjSens, on average 57%
of the statements modify at most three objects. In contrast,
for side-effect analysis based on FieldSens this percentage
is 18%. It is significant to note that for FieldSens nearly
80% of the statements modify at least 10 objects. This is
substantial imprecision that can be reduced by ObjSens.

Column (4) in Table 1 summarizes the experiments with
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(1) Program Size (2) Analysis Cost (3) Side-effect Analysis (4) Downcast Safety
Program Classes Methods FieldSens ObjSens FieldSens ObjSens FieldSens ObjSens

Time Mem Time Mem 1-3 ≥10 1-3 ≥10

proxy 565 3283 4.8 35.1 5.3 34.8 19% 75% 76% 10% 24% 67%
compress 568 3316 8.3 39.6 10.1 40.1 23% 73% 68% 23% 24% 71%
db 565 3339 9.2 40.6 10.6 42.5 20% 76% 66% 25% 24% 74%
jb 574 3393 6.0 36.7 5.8 36.9 16% 80% 73% 12% 12% 44%
echo 577 3544 18.7 49.2 44.9 66.2 24% 69% 63% 26% 18% 43%
raytrace 582 3451 7.8 42.2 10.8 46.1 23% 72% 67% 24% 23% 71%
mtrt 582 3451 9.4 42.1 11.3 46.2 23% 72% 67% 24% 23% 71%
jtar 618 3583 16.8 50.3 24.4 58.9 19% 74% 62% 25% 17% 44%
jlex 578 3381 6.7 39.8 7.3 40.6 18% 79% 57% 10% 22% 78%
javacup 581 3564 23.2 55.8 21.2 58.5 14% 83% 54% 9% 9% 85%
rabbit 615 3770 9.1 46.2 11.7 45.6 20% 76% 48% 17% 23% 68%
jack 613 3573 28.7 54.8 24.9 56.7 17% 80% 54% 38% 15% 63%
jflex 608 3692 28.5 63.5 30.3 66.4 18% 78% 64% 13% 4% 62%
jess 715 3973 35.8 59.4 87.5 61.0 16% 79% 63% 29% 20% 73%
mpegaudio 608 3531 11.6 44.0 10.4 48.4 23% 78% 67% 24% 23% 68%
jjtree 620 4078 8.6 46.8 32.1 64.4 8% 90% 32% 42% 65% 80%
sablecc 864 5151 34.5 78.5 51.2 75.3 20% 77% 67% 20% 33% 47%
javac 730 4470 100.5 110.0 168.5 129.0 14% 83% 38% 42% 12% 36%
creature 626 3881 64.3 94.3 105.5 124.8 19% 79% 55% 32% 18% 33%
mindterm 686 4420 37.2 78.5 51.5 90.5 20% 73% 57% 30% 25% 47%
soot 1214 5669 139.4 117.8 115.9 117.9 31% 73% 46% 40% 17% 25%
muffin 894 5253 120.7 133.9 115.1 149.7 16% 80% 45% 49% 13% 35%
javacc 615 4198 99.6 96.6 93.4 101.9 10% 89% 29% 22% 6% 59%
Average 18% 78% 57% 36% 20% 58%

Table 1. Java programs and analysis results.

downcast safety analysis. ObjSens analyzes pseudo-generic
classes such as containers context-sensitively and is able to
resolve on average, almost 60% of the downcasts; in con-
trast FieldSens merges flow into containers and is able to
resolve only 20% of the downcasts. Thus, object sensitivity
is essential for downcast safety analysis.

These experiments indicate that adding dimensions of
precision has substantial impact on the points-to analysis
and its clients, while the analysis remains efficient and prac-
tical. Therefore, analyses based on annotated inclusion con-
straints can be usefully incorporated in software tools.

6 Related Work

In [19] we presented an ad-hoc formulation of field-
sensitive analysis. In [14], we proposed object sensitivity
and presented an implementation based on variable and con-
straint copying, not on annotated inclusion constraints. The
implementation based on annotated constraints is clearly
more general and flexible. For example, it allows precise
object naming which is essential for the handling of contain-
ers and thus for downcast safety analysis. It is not imple-
mented in [14]. The current paper introduces the framework
for annotated constraints and uses the object-sensitive anal-

ysis only as an example analysis that can be expressed pre-
cisely and intuitively using annotated inclusion constraints.
Our work is related to work in the following areas.

Constraint-based flow analysis. Fähndrich et al. [16,
7] present precise context-sensitive analysis for problems
expressible with structural constraints. For non-structural
constraints such as the inclusion constraints, the problem
appears to be harder; context sensitivity cannot be expressed
in the CFL reachability model from [16, 7].

Efficient implementations of Andersen’s points-to anal-
ysis for C are presented in [6, 23] and [10]. These analyses
are based on non-annotated constraints and do not model
field or context sensitivity. Foster et al. present a context-
sensitive points-to analysis for C based on Andersen’s anal-
ysis using non-annotated inclusion constraints [8]. They
conclude that (i) using an implementation based on con-
straint copying may result in impractical context-sensitive
analysis and (ii) context sensitivity does not improve the
precision of Andersen’s analysis for C. Our experiments
show that for object-oriented programs, field and context
sensitivity are necessary to achieve useful points-to analy-
ses because of inherent object-oriented features.

O’Callahan presents a unification-based context-
sensitive alias analysis for Java [15] similar to [16, 7] that
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seems not to scale. Our analyses are inclusion-based and
the experiments indicate that they may be more practical.

Points-to Analysis for Java. Recent work by Whaley
and Lam [24] presents a context-sensitive points-to analy-
sis using BDDs, based on the call-string approach to con-
text sensitivity [21]. Our approach can model a variety of
flow analyses and add dimensions of precision to them in
the form of annotations; it can model both call-string-based
and functional context sensitivity [21]). In addition, the ap-
proach from [24] appears to use a less precise object naming
scheme than our analysis; as in our previous work [14], it
distinguishes objects only by allocation sites which may be
insufficient for downcast safety analysis.

In [20] Ruf presents flow-insensitive, context-sensitive
alias analyses for Java. The analyses are based on
the almost-linear unification-based Steensgaard’s points-
to analysis for C, and unlike our analyses, use bottom-
up traversal on an approximate call graph, and method
summaries to model context sensitivity. Other context-
sensitive points-to analyses for Java are presented in [9].
In general, these analyses are more precise and signifi-
cantly more costly than ours, due to their flow sensitivity.
Flow-insensitive and context-insensitive points-to analyses
for Java are described in [22, 12, 19, 11, 4].

7 Conclusions

We propose annotated inclusion constraints—a new gen-
eral framework for formulating and implementing precise
inclusion-based flow analyses. We implement several flow
analyses as framework instances. The experiments show
that adding precision dimensions as annotations has sub-
stantial impact on analysis precision, while the analysis re-
mains practical. We plan to investigate analyses expressible
in the framework and their impact on software tasks.
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