
Static Dominance Inference

Ana Milanova1 and Jan Vitek2

Rensselaer Polytechnic Institute 2 Purdue University

Abstract. Dominance, the property that all paths to a given object
must go through another object, is at the heart of ownership type dis-
ciplines. While ownership types have received abundant attention, own-
ership inference remains an open problem, and crucial questions about
the practical impact of ownership remain unanswered. We argue that a
static program analysis that infers dominance is a crucial first step to
ownership types inference. This paper describes an algorithm for stati-
cally computing dominance relations and shows that it can be used as
part of an ownership inference algorithm.

1 Introduction

Dominance is at the heart of virtually every ownership discipline [3, 2, 5], and
therefore one would expect dominance inference should be a key part of own-
ership inference. While there are many ownership disciplines, and there is little
question about their benefits, practical adoption is lacking. This is due in part
to the lack of software tools that support ownership such as automatic inference
and refactoring tools incorporated in IDEs. Dominance inference is the founda-
tion of ownership inference: an algorithm that statically computes dominance
relations between objects, allows language designers to prototype ownership in-
ference with respect to different ownership disciplines. Dominance inference has
other applications as well. As it subsumes escape analysis, it can be used for
lock elimination and deadlock detection [12]. Dominance inference can enable
data-centric synchronization [18]. Additionally, dominance inference can be in-
tegrated into architecture extraction tools [8], and help enable reasoning about
encapsulation properties.

The problem of dominance inference is defined in terms of the notion of ob-
ject graph. Nodes in the graph are objects, and edges capture references between
those objects. An edge links object i to object j if i has a field that refers to j,
or a local variable in a method invoked on receiver i, refers to j. Fig. 1 shows a
program and two object graphs: (1) shows the concrete object graph that sum-
marizes the references between objects that arise as the program is evaluated,
and (2) shows an abstract object graph which is a static approximation of the
concrete graph obtained by program analysis. Static analysis entails a loss of
precision. In this example, allocation site e is executed twice, resulting in ob-
jects e1 and e2. A typical static analysis abstraction scheme maps every concrete
object to its allocation site, thus e1 and e2 map to the same abstract object e.
Every object in the concrete object graph has a dominance boundary, defined
as the maximal subgraph rooted at that object whose nodes are dominated by
the object. The problem of dominance inference is stated as follows: given an

class Main {
X x;
Y y;
static void main(String[] arg) {

Main m = new Main(); m

m.meth();
}
void meth() {

this.x = new X(); x

x.m();
this.y = new Y(); y

y.m();
}
}
class X {

Contain c;
void m() {
this.c = new Contain(); c

c.put(0,1);
Iter i = c.iter();
}

}

class Y {
Contain d;
void m() {
this.d = new Contain(); d

d.put(1,1);
}

}
class Contain {

int[] e;
Contain() {

this.e = new int[10]; e

}
void put(int i, int j) { e[i] = j; }
Iter iter() {

Iter h = new Iter(e); f

return h;
} }
class Iter {

int[] f;
Iter(int[] f) { this.f = f; }

}
m

yx

e2e1

c
f

d

!""#$

m
yx

e
c

f
d

!""#$

Fig. 1. Concrete (1) and abstract (2) object graphs for the simple program.

abstract object graph Ĝ and an object i in Ĝ, find a subgraph with root i that
safely approximates the dominance boundary of all concrete objects mapped to
i. Dominance inference using dynamic analysis has been studied before [11, 14,
5, 19]. The appeal of dynamic inference lies in its simplicity. During program ex-
ecution a concrete object graph is maintained by the implementation. However,
like all dynamic approaches the results are unsound; there is no guarantee that
inferred dominance won’t be broken by an unseen execution path. Addition-
ally, scalability and performance overheads limit the applicability of dynamic
techniques. Surprisingly, static dominance inference has received almost no at-
tention. Traditional dominator algorithms [6] cannot be applied on an abstract
object graph as an abstract node corresponds to multiple nodes in the concrete
object graph and straight-forward application of dominator algorithms breaks
both precision and correctness. Consider Fig. 1. Clearly, d does not dominate
e in the abstract graph, thus the results of the dominator algorithm cannot be
used to conclude that concrete d dominates e2. As we shall see, our dominance
inference algorithm determines precisely that the abstract dominance boundary
of d includes e, and therefore d does dominate e2.

2 Formal Account of Object Graphs

We explain our algorithm and, later, ownership types, in terms of core Java-like
calculus. Throughout the paper we will use the following notation for graphs.
A graph G is a pair (N,E) where N is a set of nodes ranged over by variables
i, j, k, l and E is a set of directed edges written i . j. We write G∪ i . j to denote
the addition of i and j to N and i . j to E.We write i ∈ G and i . j ∈ G to test,
respectively node and edge membership. For sets (of nodes, edges, etc.) we write
S += S′ to denote adding S′ to set S and S−= S′ for removing S′ from S.

2.1 Concrete Semantics

For brevity, we restrict our formal attention to a core calculus in the style of [18]
whose syntax appears in Fig. 2. The language models Java with a syntax in
A-normal form. Features not strictly necessary were omitted. The semantics
operates over configurations of the form S H G C where S is a stack, H is a heap,
G is an object graph and C is a creation graph. A stack is a sequence of frames
〈F s〉 consisting of a mapping F from variables to locations and a statement s.
An object o = C(i) consists of a class C and values i for the object fields. A heap
is a mapping from indices, ranged over by meta-variables i, j, k, l, to objects. An
object graph G summarizes the references between objects that occur at any
time during program execution. A creation graph C records the creator of each
object. We write i to denote a sequence of indices, τ z for a sequence of local
variable declarations, etc. We write 0 to denote the null reference.

Fig. 3 shows the rules of the concrete semantics. Object creation (dnew)
instantiates a new object with all fields set to null and uses a fresh index j to
refer to the newly allocated object. The rule adds an edge from i, the receiver of
the current frame, to j the newly created object, to G. In addition, it records the
edge from i, the creator of j, to j, in creation graph C. Writing to an object field
(dwrite) updates the heap. The value of field f of object C(j′, jf , j′′) is jf . The
rule also adds edge from k to j to G. Reading a field into a local variable (dread)
has the expected semantics. The summary graph records the read by adding a
reference from the receiver (i.e. this) to the value of the field. Invoking a method
(dcall) entails pushing a new frame on the stack with local variables initialized
to null and formal parameters set to corresponding actual arguments. Function
mbody(C.m) retrieves the formal parameters, local variables and method body
of the corresponding method. The summary graph records the edges from the
receiver of the call (i.e., F (y) = k) to all arguments.

cd ::= class C extends D {fd md} class
fd ::= τ f field
md ::= τ m(τ x){τ z s; return y} method
s ::= s; s | x = new τ() | x = y.f statement
| x.f = y | x = y.m(z)

τ ::= C type

H ::= [] | H[i 7→ o] heap
S ::= ε | 〈F s〉S stack
F ::= [] | F [y 7→ i] frame
o ::= C(i) object

Fig. 2. Syntax.

(dnew)

o = C(0) j fresh F (this) = i G′ = G ∪ i . j C′ = C ∪ i . j

〈F x = new C(); s〉S H G C → 〈F [x 7→ j] s〉S H[j 7→ o] G′ C′

(dwrite)

F (x) = k H(k) = C(j′, jf , j′′) F (y) = j H ′ = H[k 7→ C(j′, j, j′′)] G′ = G ∪ k . j

〈F x.f = y; s〉S H G C → 〈F s〉S H ′ G′ C

(dread)

F (y) = i H(i) = C(j′, jf , j′′) F (this) = k G′ = G ∪ k . jf

〈F x = y.f; s〉S H G C → 〈F [x 7→ jf] s〉S H G′ C

(dcall)

F (y) = k F (z) = j H(k) = C(. . .) mbody(C.m) = τx x′; τy y′; s
′; return y′′

F ′ = [y′ 7→ 0][x′ 7→ j][this 7→ k] G′ = G ∪ {k . j | j ∈ j}

〈F x = y.m(z); s〉S H G C → 〈F ′ s′; return y′′〉〈F x = y.m(z); s〉S H G′ C

(dret)

F (this) = k F ′(y) = j G′ = G ∪ k . j

〈F ′ return y〉〈F x = y′.m(z); s〉S H G C → 〈F [x 7→ j] s〉S H G′ C

Fig. 3. Concrete semantics.

Lemma 1. The object graph constructed by the above semantics is a superset
of the object graph as defined by Clarke et al. [3].

2.2 Abstract semantics

We assume a may points-to analysis [15, 7] that computes a safe approximation

of the heap Ĥ and stack Ŝ. The abstract semantics computes safe approxima-
tions of G and C, denoted Ĝ and Ĉ respectively. As Ĥ and Ŝ are conservative
approximations, the semantics operates on sets of abstract objects. Thus, F̂ (x)
evaluates to a set of abstract objects, not to a single object. Similarly, fields of
an object in Ĥ are sets of references (denoted I). We assume that all allocation
sites are labelled with an unique identifier.

The abstraction function α is specific to our points-to analysis and is chosen
so that α(i) = i′ where i′ is the index of the allocation site that created i. α
acts on G in the obvious way: α(G) = (N,E) where N = {α(i) | i ∈ G} and
E = {α(i) . α(j) | i . j ∈ G}. As the points-to analysis is safe, the following two
conditions hold at every step. The first condition ensures the safety of variables,

(anew)

Ĝ′ = Ĝ ∪ {i . j | i ∈ F̂ (this)} Ĉ′ = Ĉ ∪ {i . j | i ∈ F̂ (this)}

〈F̂ x = newj C(); s〉Ŝ Ĥ Ĝ Ĉ 〈F̂ s〉Ŝ Ĥ Ĝ′ Ĉ′

(awrite)

if x 6= this then Ĝ′ = Ĝ ∪ {k . j |k ∈ F̂ (x) and j ∈ F̂ (y)} else Ĝ′ = Ĝ

〈F̂ x.f = y; s〉Ŝ Ĥ Ĝ Ĉ 〈F̂ s〉Ŝ Ĥ Ĝ′ Ĉ

(aread)

if y = this then Ĝ′ = Ĝ else

Ĝ′ = Ĝ ∪ {k . j |k ∈ F̂ (this) and i ∈ F̂ (y) and Ĥ(i) = C(. . . If . . .) and j ∈ If}

〈F̂ x = y.f; s〉Ŝ Ĥ Ĝ Ĉ 〈F̂ s〉Ŝ Ĥ Ĝ′ Ĉ

Fig. 4. Abstract Semantics. (Partial)

and the second ensures the safety of fields.

F (x) = i ⇒ α(i) ∈ F̂ (x)

H(i) = C(. . . kf . . .) ⇒ Ĥ(α(i)) = C(. . . If . . .) and α(kf) ∈ If

Fig. 4 shows the rules of the semantics that deal with object creation and field
read/write. Rule (anew) adds new edges to Ĝ and Ĉ from every abstract receiver

i of current frame F̂ , to the abstract object j created at allocation site j. Rule
(awrite) adds new edges to Ĝ from every abstract object k in the points-to set
of x to every j in the points-to set of y. The only interesting aspect of this rule
is that the edges are added only when x 6= this. The intuition is that when x is
this, the relevant edges are already in Ĝ and there is no need to add them again.

Lemma 2. Ĝ and Ĉ are safe. That is, α(G) ⊆ Ĝ and α(C) ⊆ Ĉ hold.

3 Dominance Inference Analysis

The dominance inference analysis uses the abstract object and creation graphs as
constructed by the above abstract semantics. It takes as input an abstract object
i, and computes an abstract dominance boundary, which safely approximates the
dominance boundaries of the concrete objects represented by i.

3.1 Flow Triples

Let us consider how object references can be transferred. Assume that i has a
reference to j. We say that j flows to k from i if k acquires a reference to j from
i. This can happen in one of the following four ways:

1. (dwrite): Local variable y is assigned to a field of local variable x.
2. (dread): The field of local variable y is assigned to local variable x.

3. (dcall): Local variable z is passed as argument to a method of y.
4. (dret): The local variable y is returned to the receiver of the parent frame.

In each case, the operation adds an edge to the object graph as a side effect.
Consider (dwrite), x.f = y, and let F (this, x, y) = i, k, j. Since y holds j, there
has to be an edge i . j in the object graph. Similarly, as x holds k, and there
is an edge i . k in the graph. After the operation, k . j is added to the graph.
We refer to this pattern as a flow triple and denote it 〈i, k, j〉. Consider Fig. 1.
Expression i = c.iter() in method X.m causes the iterator object f to flow to x
from c. Before the call, c holds c and h in Contain.iter holds f , and thus, x . c
and c . f . After the call, a new edge, x . f is added to the graph. The pattern is
reflected by flow triple 〈x, c, f〉.

The analysis records flow triples while processing the rules of the abstract
semantics, namely (awrite), (aread), (acall) and (aret). We set relation
isTriple(〈i, j, k〉) to true whenever a flow triple is encountered. For example, for

(awrite), we set isTriple(〈i, k, j〉) to true for every i ∈ F̂ (this), k ∈ F̂ (x) and

j ∈ F̂ (y).
A flow triple captures transfer (i.e., exposure) of an object to another object,

and is crucial to our analysis. Consider edge d . e in the abstract graph in
Fig. 1. There is no triple that includes this edge, which means that the concrete
e referred by d, namely e2, is not transferred, and therefore it is not exposed
to any object but d; the analysis concludes that at runtime d dominates the
concrete e it refers to. On the other hand, edge c . e is part of triple 〈c, f, e〉
which captures that c’s concrete e, e1, is exposed to f (i.e., we have f .e1). Edge
c.f is part of triple 〈x, c, f〉 and thus f is exposed to x (i.e., x.f). The analysis
concludes that c does not dominate its run-time e, because said run-time e is
exposed to f , and f in turn is exposed to x (i.e., there is a path x . f . e1 that
does not go through c).

3.2 Analysis Description

We begin with several definitions. The root of a graph, is a node j, such that
there is a sequence of edges from j to any node i. We assume that G has root
root. A boundary of a node i is a graph Bi ⊆ G such that i is a root of Bi. A
node j dominates node j′ in boundary Bi if all paths from i to j′ go through j.
The dominance boundary of i in G is the maximal boundary Bi such that for all
nodes j ∈ Bi, i dominates j in G. We denote the dominance boundary of i in G
as Di. closure(G, i) computes the transitive closure of i inductively:

G′0 = {i . j | i . j ∈ G} ... G′n = G′n−1 ∪ {j . k | j ∈ G′n−1 and j . k ∈ G}

The analysis uses closure(G, i) on the abstract creation graph. closure(Ĉ, i) =

Ĉ ′ returns the creation dependences from i. We overload the notation slightly,
and use closure(Ĉ, i) to refer to the nodes in Ĉ ′, that is, the objects created by
i, directly or transitively.

The analysis uses a predicate isOutside:

isOutside(i, j) = ∃k . isTriple(〈k, i, j〉)

Algorithm computeBoundary(i, Ĝ, Ĉ)

output B̂i

[1] Out = {j | isOutside(i, j)}
[2] In = closure(Ĉ, i)−Out

[3] W = {i . j | i . j ∈ Ĝ and j ∈ Out}, W+ = W

[4] while W 6= ∅
[5] W −= k . j

[6] if j ∈ closure(Ĉ, i)

[7] In −= closure(Ĉ, j)

[8] Out += closure(Ĉ, j)

[9] foreach k′ ∈ closure(Ĉ, j)

[10] foreach k′′ . k′ ∈ Ĉ and k′′ ∈ In
[11] if k′′ . k′ /∈W+ then W += k′′ . k′, W+ += k′′ . k′

[12] foreach k′ ∈ Ĝ s.t. isTriple(〈k, j, k′〉)
[13] In −= k′, Out += k′

[14] if k . k′ /∈W+ then W += k . k′, W+ += k . k′

[15] foreach k′ ∈ Ĝ s.t. isTriple(〈k, k′, j〉) and k′ ∈ In
[16] if k′ . j /∈W+ then W += k′ . j, W+ += k′ . j

[17] foreach k′ ∈ Ĝ s.t. isTriple(〈k′, k, j〉) and k′ ∈ In
[18] if k′ . j /∈W+ then W += k′ . j, W+ += k′ . j

[19] B̂i = {j . k | j ∈ In and k ∈ In and j . k ∈ Ĝ}

Fig. 5. computeBoundary returns B̂i.

The predicate captures edges i . j that are part of a triple 〈k, i, j〉. Such a triple
indicates that there are paths from root to j through k that do not go through
i, and therefore, i does not dominate j.

The analysis is presented in Fig. 5. It takes as input an abstract object i and
uses Ĝ and Ĉ. It computes B̂i, a boundary of i in Ĝ. The analysis maintains sets
of abstract objects In and Out . Set In contains the current overapproximation
of the set of objects in every concrete dominance boundary. Set Out contains the
current underapproximation of the set of objects in the frontier of the dominance
boundary. The analysis starts with initial sets In, Out and tracks flow of objects
using isTriple. Eventually, all potentially exposed objects are removed from In.
The nodes remaining in In and the edges between them form boundary B̂i. The
correctness of the analysis is stated by the following theorem:

Theorem 1. Let G be any object graph and i be any object in G. Let B′i be any

boundary of i in G. If α(B′i) ⊆ B̂α(i) then B′i ⊆ Di.

The theorem states that the computed boundary B̂α(i) safely approximates the
dominance boundary of every i. That is, for any concrete boundary B′i repre-

sented by B̂α(i), B
′
i is included in Di; thus i dominates in G all of the nodes in

B′i. In our running example, B̂d is the one-edge graph d . e. The theorem states
that concrete edge d . e2 is in the dominance boundary of d, or in other words,
d dominates e2.

4 Application: Ownership Type Inference

We present one application of the dominance inference analysis: ownership type
inference. We choose the owner-as-dominator type system of [3] restricted to one
ownership parameter. This restriction simplifies the problem; in future work we
plan to investigate empirically the necessity for multiple ownership parameters,
as well as extend the current analysis with handling of multiple parameters.

4.1 Type System

The type system of [3] assigns an ownership type 〈p|p′〉 to each local variable,
field and allocation site. The type annotation C〈p|p′〉 x (also written as p C〈p′〉 x),
has the following interpretation: p is the owner of the object i referred to by x,
and p′ is an ownership parameter passed to that object. p takes one of the
following three values: rep, own or p (for brevity, we rename owner to own and
omit discussion of norep [3]). rep denotes that object i is owned by this, own
denotes that i is owned by the owner of this, and p denotes that i’s owner is
passed from this as an ownership parameter. p′ takes the same values. rep is
the most precise value, followed by own, followed by p, or in other words, we
have rep < own < p. For this paper we impose the following restriction on
ownership types 〈p|p′〉 : p ≤ p′. Even though types where p > p′ (e.g., 〈p|rep〉)
are allowed in ownership types, the properties of the system entail that if the
program type checks with 〈p|p′〉, where p > p′, it will type check with 〈p′|p′〉

(tnew)

E(x) = C t

E ` x = new C t

(twrite)

x 6= this E(x) = C tx typeof (C.f) = D tf
E(y) = D ty adapt(tf , tx) = ty

E ` x.f = y

(twritethis)

E(this) = C t′ typeof (C.f) = D t
E(y) = D t

E ` this.f = y

(tread)

y 6= this E(y) = C ty typeof (C.f) = D tf
E(x) = D tx adapt(tf , ty) = tx

E ` x = y.f

(treadthis)

E(this) = C t′ typeof (C.f) = D t
E(x) = D t

E ` x = this.f

(tcall)

E(y) = C ty typeof (C.m) = D t→ D′ t′

y 6= this E(x) = D′ tx E(z) = D tz
adapt(t, ty) = tz adapt(t′, ty) = tx

E ` x = y.m(z)

(tcallthis)

E(this) = C t′′

typeof (C.m) = D t→ D′ t′

E(x) = D′ t′ E(z) = D t

E ` x = this.m(z)

Fig. 6. Type rules.

as well. Our analysis naturally restricts the inferred types to the following six
ownership types, ordered in order of decreasing precision:

〈rep|rep〉 < 〈rep|own〉 < 〈rep|p〉 < 〈own|own〉 < 〈own|p〉 < 〈p|p〉

Note that the above is an ordering relation over the set of types, not a subtyping
relation. The ordering relation is necessary to define an inference algorithm based
on fixpoint iteration.

The rules for the ownership type system are given in Fig. 6 (see [3] for
additional details). The system assigns types C t, where C is the class type and
t is the ownership type. For brevity, features not strictly necessary are omitted.
The viewpoint adaptation function adapt(t, t′), gives the view of ownership type
t from ownership type t′:

adapt(〈own|own〉, 〈p|p′〉) = 〈p|p〉
adapt(〈own|p〉, 〈p|p′〉) = 〈p|p′〉
adapt(〈p|p〉, 〈p|p′〉) = 〈p′|p′〉

Viewpoint adaptation originates from work on Universe types [4]. As it is ex-
plained in [4], the intuition behind adapt is the folowing: if object i sees object j
as having ownership type t′, and j sees k as having ownership type t, then i sees
k as having ownership type t′′ where t′′ = adapt(t, t′) (i.e., t′′ is the adapted t
from the point of view of t′). In [3] viewpoint adaptation is accomplished through
substitution function σ and its inverse ψ; we believe that adapt is more intuitive
and have taken the liberty to use adapt .

adapt is partially defined: no t that contains rep can be viewed from another
type t′, which accounts for static visibility.

4.2 Type Inference

Fig. 7 shows the ownership type annotations for our example program as inferred
by our analysis. The iterator object at allocation site f receives type 〈own|own〉
(written in the code as own Iter〈own〉). The owner is own which means that the
container’s owner, x for container c and y for container d, is the owner of the
iterator. The ownership parameter passed to the iterator is own as well, but it
remains unused, as the analysis infers that the iterator’s owner, x or y, owns
the corresponding array, e1 or e2 respectively. Our prototype reports types for
allocation sites and fields. It infers types for local variables as they appear in
the intermediate representation but does not map these to Java variables. This
is an engineering issue that we plan to address. We stay faithful to the output
of our current prototype and show the types it infers.

We infer an ownership type on every edge of Ĝ. Subsequently, we join these
types to compute types for local variables, fields and allocation sites, and show
that the computed types type check in the above type system. Each edge i.j ∈ Ĝ
receives an ownership type T (i.j) = 〈p|p′〉. p is j’s owner from the point of view
of i: if p is rep, then i is the owner of j; otherwise, if p is own, then the owner of
i is also the owner of j, and finally, if p0 is p, then i’s ownership parameter is the

class Main {
rep X<rep> x; rep Y<rep> y;
static void main(String[] arg) {

Main m = new Main(); m

m.meth();
}
void meth() {

x = new rep X<rep>(); x

x.m();
y = new rep Y<rep>(); y

y.m();
}
}
class X<p> {

rep Contain<rep> c;
void m() {
this.c = new rep Contain<rep>(); c

c.put(0,1);
Iter i = c.iter();
}

}

class Y<p> {
rep Contain<rep> d;
void m() {
this.d = new rep Contain<rep>(); d

d.put(1,1);
}

}
class Contain<p> {

own int[] e;
Contain() { this.e = new own int[10]; } e

void put(int i, int j) { e[i] = j; }
Iter iter() {

Iter h = new own Iter<own>(e); f

return h;
}

}
class Iter<p> {

own int[] f;
Iter(int[] f) { this.f = f; }

}

Fig. 7. Ownership types for simple program.

owner of j. Analogously, p′ is j’s ownership parameter from the point of view of
i. The problem at hand is a constraint problem. We seek type assignment T on
the edges of Ĝ such that every flow triple 〈i, j, k〉 in Ĝ is well-typed:

isTriple(〈i, j, k〉)⇒ adapt(T (j . k), T (i . j)) = T (i . k)

These constraints capture the type constraints in Sec. 4.1. Consider rule
(twrite) which types x. f = y. In the object graph we have flow triple 〈i, k, j〉
where this holds i, x holds k and y holds j. tx is the type of x from the point of
view of this, and T (i . k) is the type of k (x) from the point of view of i (this); tf
is the type of field f from the point of view of an object of class C, and T (k . j)
is the type of j from the point of view of k; finally, ty is the type of y from the
point of view of this and T (i . j) is the type of j from the point of view of i. Our
analysis makes tx = T (i . k), tf = T (k . j) and ty = T (i . j). The well-typedness
of flow triple 〈i, k, j〉 (i.e., adapt(T (k . j), T (i . k)) = T (i . j)) guarantees the
well-typedness of x. f=y (i.e, adapt(tf , tx) = ty).

Clearly, there are many assignments that satisfy the adapt constraints. For
example, a trivial assignment would assign 〈p|p〉 to all edges in Ĝ except edges
root . i, to which it would assign 〈rep|rep〉. This assignment is bad however, as
it produces a flat (and useless) ownership tree where root is the owner of all
objects. A good assignment would assign a large number of rep types.

A triple typing is a triple of types 〈tij , tjk, tik〉. A well-typed triple typing is
a triple typing that meets the adapt constraint: adapt(tjk, tij) = tik. There are

18 well-typed triple typings: tjk ranges over 〈own|own〉, 〈own|p〉 and 〈p|p〉, and
tij ranges over 〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉 (recall that
adapt restricts the values of its first argument to account for static visibility).
We define an ordering over the set of well-typed triple typings:

〈〈rep|rep〉, 〈own|own〉, 〈rep|rep〉〉 < 〈〈rep|own〉, 〈own|own〉, 〈rep|rep〉〉 <
〈〈rep|p〉, 〈own|own〉, 〈rep|rep〉〉 < 〈〈rep|rep〉, 〈own|p〉, 〈rep|rep〉〉 <
〈〈rep|own〉, 〈own|p〉, 〈rep|own〉〉 < 〈〈rep|p〉, 〈own|p〉, 〈rep|p〉〉 <
〈〈rep|rep〉, 〈p|p〉, 〈rep|rep〉〉 < 〈〈rep|own〉, 〈p|p〉, 〈own|own〉〉 <
〈〈rep|p〉, 〈p|p〉, 〈p|p〉〉 < 〈〈own|own〉, 〈own|own〉, 〈own|own〉〉 <
〈〈own|p〉, 〈own|own〉, 〈own|own〉〉 < 〈〈own|own〉, 〈own|p〉, 〈own|own〉〉 <
〈〈own|p〉, 〈own|p〉, 〈own|p〉〉 < 〈〈own|own〉, 〈p|p〉, 〈own|own〉〉 <
〈〈own|p〉, 〈p|p〉, 〈p|p〉〉 < 〈〈p|p〉, 〈own|own〉, 〈p|p〉〉 <
〈〈p|p〉, 〈own|p〉, 〈p|p〉〉 < 〈〈p|p〉, 〈p|p〉, 〈p|p〉〉

Triple typings with two rep owners are most precise, followed by triple typings
with one rep owner, followed by triple typings with three own owners, etc. The
least precise typing is the one where all three edges have type 〈p|p〉. Function
raiseTriple takes a flow triple 〈i, j, k〉 as an argument and returns the smallest
(i.e., most precise) typing 〈tij , tjk, tik〉 in the above ordering, such that T (i.j) ≤
tij and T (j .k) ≤ tjk and T (i.k) ≤ tik. Intuitively, when the analysis encounters
a flow triple 〈i, j, k〉, which is not well-typed, it invokes raiseTriple to find the
most precise well-typed typing that is larger than the typing on 〈i, j, k〉. It then
raises the types on 〈i, j, k〉 to 〈tij , tjk, tik〉 to make 〈i, j, k〉 well-typed. Function
adjTriples takes an edge i.j as an argument and returns the set of all flow triples
adjacent to this edge: {〈i, j, k〉} ∪ {〈i, k′, j〉} ∪ {〈k′′, i, j〉}. If an edge changes its
type, the change affects all adjacent triples. The analysis is shown in Fig. 8.
It uses the dominance analysis from Sec. 3. Procedure assignEdgeTypes assigns
an initial type to every edge in Ĝ as follows: if the edge is in the dominance
boundary of its source, then its initial type is 〈rep|rep〉; otherwise, its type is
〈own|own〉 (lines 1-5). Unfortunately, not all flow triples will be well-typed under
this initial assignment. The analysis collects the triples that are not well-typed
(lines 6-8), and invokes resolve (line 9), which repeatedly raises types until it
reaches a fixpoint. Procedure assignTypes assigns types on locals and fields. For
each variable x, it joins the types of the edges in Ĝ that correspond to x (line
8); notation

∨
has the standard lattice-theoretic interpretation as the join of

all values — E(x) is assigned the largest T (i . j), i . j ∈ M , according to the
ordering of ownership types from Sec. 4.1. If one of the edges in M has a type
smaller than E(x), the analysis raises its type to E(x) and places its adjacent
triples on the conflict list (lines 5-8). The procedure repeats for fields.

Theorem 2. Let E be the type assignment for program P computed by the anal-
ysis. P is well-typed in the system from Sec. 4.1.

Discussion. The above analysis, a fixpoint iteration, can be applied to any
initial type assignment. An optimistic initial assignment would assign a large
number of rep types, and a pessimistic assignment would assign less rep types

procedure assignEdgeTypes(Ĝ)
output T

[1] foreach i . j ∈ Ĝ
[2] if i . j ∈ B̂i

[3] T (i . j) = 〈rep|rep〉
[4] else
[5] T (i . j) = 〈own|own〉
[6] foreach 〈i, j, k〉 s.t. isTriple(〈i, j, k〉)
[7] if adapt(T (j . k), T (i . j)) 6= T (i . k)
[8] K += 〈i, j, k〉
[9] T = resolve(Ĝ,K , T)
[10]return T

procedure resolve(Ĝ,K , T)
output T
[1] W = K
[2] while W 6= ∅
[3] W −= 〈i, j, k〉
[4] 〈tij , tjk, tik〉 = raiseTriple(〈i, j, k〉)
[5] if tij 6= T (i . j)
[6] T (i . j) = tij
[7] W+= adjTriples(i . j)
[8] if tjk 6= T (j . k)
[9] T (j . k) = tjk
[10] W+= adjTriples(j . k)
[11] if tik 6= T (i . k)
[12] T (i . k) = tik
[13] W+= adjTriples(i . k)
[14]return T

procedure assignTypes(Ĝ, Ĥ, Ŝ, T)
output well-typed E, T
[1]change = true
[2] while change
[3] change = false,K = ∅
[4] foreach class C ∈ program P
[5] foreach method m ∈ C
[6] foreach variable x ∈ m

[7] M = {i . j | i . j ∈ Ĝ and

i ∈ F̂ (thism) and j ∈ F̂ (x)}
[8] E(x) =

∨
i.j∈M T (i . j)

[9] foreach i . j ∈M
[10] if E(x) 6= T (i . j)
[11] T (i . j) = E(x)
[12] change = true
[13] K += adjTriples(i . j)
[14] foreach field f ∈ C

[15] M = {i . j | i . j ∈ Ĝ and

Ĥ(i) = C(...If ...) and j ∈ If}
[16] E(C.f) =

∨
i.j∈M T (i . j)

[17] foreach i . j ∈M
[18] if E(C.f) 6= T (i . j)
[19] T (i . j) = E(C.f)
[20] change = true
[21] K += adjTriples(i . j)

[22] T = resolve(Ĝ,K , T)
[23] return E, T

Fig. 8. Type assignment.

and more own and p types. An unwise initial assignment would affect scalability,
precision or both. If the assignment is overly optimistic, the majority of edges
would need to be lowered from rep (since most edges are not rep anyway), and this
would likely prohibit scaling the analysis beyond small programs. On the other
hand, if the assignment is overly pessimistic, the analysis will converge faster
to a fixpoint, but will lose precision. We conjecture that our initial assignment,
which makes use of dominance inference, is key to the scalability and precision of
ownership type inference. It would immediately filter out edges that cannot be
rep; as a result, very few edges would change type (predominantly from 〈own|own〉
to 〈p|p〉), and the analysis would scale well. Also, few edges that can be rep, would
not be assigned rep in the initial assignment.

5 Implementation

The object graph analysis, dominance inference analysis and type inference anal-
ysis are implemented in Java using Soot 2.2.3 [17] and the Andersen-style points-
to analysis provided by Spark [7]. We performed whole-program analysis with

Program Description Size Create Fields Time
#Class #Meth #Create dom #Field dom Pt Dom

gzip GZIP IO streams 6 3819 35 31 7 4 25s 2s

zip ZIP IO streams 6 3844 29 21 10 5 25s 3s

checked streams/checksums 4 3766 9 8 2 0 96s 2s

collator text collation 15 3868 40 31 17 9 25s 3s

breaks iter. over text 13 3822 270 268 7 0 26s 3s

number number formatting 10 3880 124 119 3 1 25s 4s

jdepend Quality metrics 17 3962 84 66 29 19 26s 3s

javad Decompiler 41 3838 48 37 36 19 26s 2s

JATLite Agent system 45 6279 273 117 142 35 42s 20s

undo Undo functionality 237 5644 728 313 290 56 50s 31s

soot Analysis framework 579 6046 703 274 283 64 40s 179s

sablecc Parser generator 300 7970 1261 865 284 25 49s 34s

polyglot Compiler 267 7449 1180 278 431 52 141s 365s

antlr Parser generator 126 5102 596 434 152 38 39s 13s

bloat Bytecode optimizer 289 6402 1047 453 449 79 41s 95s

jython Python interpreter 163 5606 520 143 206 41 38s 122s

pmd Source analyzer 718 8653 374 163 114 46 67s 105s

ps Postscript engine 200 5396 424 113 19 7 38s 136s

Table 1. Information about benchmarks and dominance inference results.

Create Fields

rep|rep rep|own rep|p own|own own|p p|p rep|rep rep|own rep|p own|own own|p p|p
6 5 24 1 10 1 2 5 11 1 6 11

Table 2. Type inference results for benchmark javad.

the Sun JDK 1.4.1 libraries. All experiments were done on a MacBook Pro with
4GB of RAM. The implementation, which includes Soot and Spark, was run
with a max heap size of 1400MB; however, all benchmarks ran within a memory
footprint of 800MB. Native methods are handled by utilizing the models pro-
vided by Soot. Reflection is handled by specifying the dynamically loaded classes
which Spark uses to appropriately resolve reflection calls.

Our benchmark suite is presented in Table 1. It includes 6 software com-
ponents (from gzip through number) which we have used in previous work and
are familiar with. Each component is transformed into a whole program by at-
taching an artificial main method to complete it which allows whole-program
analysis [16]. In addition, the suite includes 12 whole programs: jdepend, javad,
JATLite and undo, benchmarks soot and sablecc from the Ashes suite, polyglot ,
and antlr , bloat, jython, pmd and ps from the DaCapo benchmark suite version
beta051009. #Class gives the size of the benchmarks in classes; #Meth gives
the size of the benchmarks in methods (user and library) reachable by Spark.

5.1 Results

We report dominance inference results on allocation sites and instance fields
of reference type. Multicolumn Create in Table 1 shows the number of object

creation sites in user classes, excluding String and StringBuffer . Column dom
shows the number inferred as dominated by their creating object. Multicolumn
Fields shows analogous information for instance fields of reference type in user
classes, again excluding fields of type String and StringBuffer .

On average, for the 12 large benchmarks, roughly 50% of all creation sites
and 30% of all fields were reported as dom. This suggests that ownership occurs
frequently in real-world object-oriented programs. The high percentage of dom
creation sites is not surprising because programs typically create a large number
of temporary objects that remain method-local (roughly 30% according to one
study [15]). Our analysis captures method-local objects, as well as “object-local”
objects (i.e., objects assigned to fields, but remaining in the boundary of their
creating “owner” object). These results suggest that the dominance analysis will
fare well in another application: escape analysis. Column Pt shows the running
time for Spark’s points-to analysis, Dom shows the running time for dominance
inference. Except for polyglot , an outlier for all analyses, inference scales well,
completing in under 200 seconds.

Additionally, Table 2 shows type inference results for benchmark javad. javad,
4000LOC, was annotated manually and type-checked by a checker built on top of
the Checkers framework [13]. Table 2 lists 47 creation sites instead of 48 because
one site was static and annotated as norep (see [3]). Interestingly, the additional
constraints that ownership types impose on dominance, do not cause dom an-
notations to become own or p. All but one creation site, and all but one field
inferred as dom by dominance inference, stay rep after type inference. We do not
report inference results on the other programs, because we have not type checked
those programs; we are in the process of integrating the inference analysis with
the type checker, which will enable automatic inference and checking.

5.2 Precision

Addressing the issue of precision is highly non-trivial. To the best of our knowl-
edge, there are no large programs annotated with ownership types, that could be
used to objectively evaluate an ownership inference analysis. In order to evaluate
the precision of our analysis, we performed a study of absolute precision [16, 8]
on a subset of the fields. Specifically, we considered all fields in components gzip
through number and all fields in javad. This accounted for 82 fields. Of these, 38
were reported as dom and 44 were reported as not dom.

To evaluate the precision of the dominance inference, we examined every field
f that was not reported as dom, and attempted to prove exposure. That is, we
attempted to show that there is an execution such that an object j stored in field
f of object i is exposed outside of i, or more formally, that i does not dominate j
in the concrete object graph. In every case, we were able to prove such exposure.
In addition, we examined every dom field. Although the analysis is proven safe
and therefore, a dom field must be indeed dominated by its enclosing object, we
conducted the detailed examination in order to gain further confidence in the
functional correctness of the implementation. In every case, the dom field was
indeed dominated as expected. Therefore, for this set of 82 fields, the inference
analysis achieved very good precision.

6 Related Work

Despite significant effort on ownership types, ownership inference has received
much less attention. Work on dynamic ownership inference includes [14, 11, 5,
19]. In their essence, these works take the same approach. They reason about
dominance (and hence ownership) on dynamic (i.e., concrete) object graphs by
applying well-known dominator algorithms [6] on those graphs. They face chal-
lenges such as large concrete object graphs [14, 11] and runtime overhead [19],
and they are inherently unsafe since inferred dominance (i.e., ownership) holds
only on observed runs. Our dominance inference is fundamentally different: it
performs deep semantic analysis on the abstract object graph and avoids the
problems inherent in dynamic analysis. The empirical investigation suggests that
it avoids the usual pitfall of static analysis (i.e., imprecision), and presents a
”sweet spot” in the spectrum: an inexpensive but precise analysis. Ma and Fos-
ter present Uno [9], a static analysis-based tool for inference of encapsulation
properties in Java programs. Among other things, their analysis computes what
fields are owned. They report 16% of the fields across their benchmarks as owned,
while we report (roughly) 30% as owned. The difference can be explained by the
difference in the inferred ownership. Uno infers exclusive ownership: that is, an
owned object must be accessed only by its owner. Our model is less-restrictive:
an owned object can be passed to other owned objects. We inferred exclusive
ownership in our framework and we found that 20% of all fields were exclusively
owned. This result is close to Uno’s 16%. It suggests that objects often flow to
other objects, while remaining encapsulated in their owner and therefore, exclu-
sive ownership may not be enough. We observed multiple such cases in our case
studies. Aldrich et al. [1] present an ownership type system which includes anno-
tations for uniqueness, ownership, sharing and parameters. They present a type
inference analysis and report preliminary results on small programs and Java
library classes. Their inference algorithm is conceptually different from ours; it
creates several kinds of constraints at the level of the source, namely equality
constraints, component constraints and instantiation constraints; subsequently,
it uses a worklist-based procedure to resolve the constraints. Our analysis solves
one kind of constraints, essentially equality constraints defined with adapt ; it
relies on dominance inference to start at a “good point” in the solution space,
which, we conjecture, speeds-up the resolution procedure. It is difficult to judge
which analysis is better because the analysis from [1] is never fully described; [1]
focuses on the type system and experience with type checking, not on type in-
ference as our work does. Aldrich has pointed out that reasoning about multiple
ownership parameters presents significant difficulty. In this sense, we solve a
simpler problem, as for this paper we focus on a system with one ownership
parameter; we plan to address multiple ownership parameters in future work.
Finally, we contrast this work with our own previous work [8] and [10]. This
paper presents a substantial extension in that it computes abstract ownership
boundaries, while [8] reasoned about specific edges in the object graph. The work
in [10] presents a preliminary version of the dominance inference analysis.

7 Conclusion

We have presented a novel static dominance inference analysis. One direction of
future work is to build a framework for ownership inference. Different inference
analyses, each addressing a specific ownership discipline, can be coded easily on
top of dominance inference.

References

1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program un-
derstanding. In OOPSLA, pages 311–330, 2002.

2. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In POPL, pages 213–223, 2003.

3. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In OOPSLA, pages 48–64, 1998.

4. D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, P. Muller, and
A. Summers. Universe types for topology and encapsulation. In FMCO, 2008.

5. W. Dietl and P. Müller. Runtime Universe type inference. In IWACO, 2007.
6. T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph.

ACM TOPLAS, 1(1):121–141, May 1979.
7. O. Lhotak and L. Hendren. Scaling Java points-to analysis using Spark. In CC,

pages 153–169, 2003.
8. Y. Liu and A. Milanova. Ownership and immutability inference for UML-based

object access control. In ICSE, pages 323–332, 2007.
9. K. Ma and J. Foster. Inferring aliasing and encapsulation properties for Java. In

OOPSLA, pages 423–440, 2007.
10. A. Milanova. Static inference of Universe types. In IWACO, 2008.
11. N. Mitchell. The runtime structure of object ownership. In ECOOP, pages 74–98,

2006.
12. M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In

ICSE, pages 386–396, 2009.
13. M. Papi, M. Ali, T. Correa Jr., J. Perkins, and M. Ernst. Practical pluggable types

for Java. In ISSTA, pages 261–272, 2008.
14. A. Potanin, J. Noble, and R. Biddle. Checking ownership and confinement. Con-

currency - Practice and Experience, 16(7):671–687, 2004.
15. A. Rountev, A. Milanova, and B. Ryder. Points-to analysis for Java using anno-

tated constraints. In OOPSLA, pages 43–55, 2001.
16. A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing of

polymorphism in Java software. IEEE TSE, 30(6):372–386, 2004.
17. R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.

Optimizing Java bytecode using the Soot framework: Is it feasible? In CC, pages
18–34, 2000.

18. M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek. A type system for data-
centric synchronization. In ECOOP, pages 304–328, 2010.

19. M. Vetchev, E. Yahav, and G. Yorsh. Phalanx: Parallel checking of expressive heap
assertions. In ISMM, pages 41–50, 2010.

