
Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA
Rensselaer Polytechnic Institute
ATANAS ROUNTEV
Ohio State University
and
BARBARA G. RYDER
Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference
variable or a reference object field. We present object sensitivity, a new form of context sensitivity
for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method
separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that
allows analysis designers to control the tradeoffs between cost and precision in the object-sensitive
analysis.

Side-effect analysis determines the memory locations that may be modified by the execution of a
program statement. Def-use analysis identifies pairs of statements that set the value of a memory
location and subsequently use that value. The information computed by such analyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object-sensitive points-to analysis.

We have implemented two instantiations of our parameterized object-sensitive points-to analy-
sis. On a set of 23 Java programs, our experiments show that these analyses have comparable cost
to a context-insensitive points-to analysis for Java which is based on Andersen’s analysis for C. Our
results also show that object sensitivity significantly improves the precision of side-effect analysis
and call graph construction, compared to (1) context-insensitive analysis, and (2) context-sensitive
points-to analysis that models context using the invoking call site. These experiments demonstrate
that object-sensitive analyses can achieve substantial precision improvement, while at the same
time remaining efficient and practical.

A preliminary version of this article appeared in Proceedings of the International Symposium on
Software Testing and Analysis (July), 2002, pp. 1–11.
This research was supported in part by National Science Foundation (NSF) grant CCR-9900988.
Author’s addresses: A. Milanova, Department of Computer Science, Rensselaer Polytechnic Insti-
tute, 110 8th Street, Troy, NY 12180; email: milanova@cs.rpi.edu; A. Rountev, Department of Com-
puter Science and Engineering, Ohio State University, 2015 Neil Avenue, Columbus, OH 43210;
email: rountev@cse.ohio-state.edu; B. G. Ryder, Department of Computer Science, Rutgers Univer-
sity, 100 Frelinghuysen Road, Piscataway, NJ 08854; email: ryder@cs.rutgers.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1049-331X/05/0100-0001 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005, Pages 1–41.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1044834.1044835&domain=pdf&date_stamp=2005-01-01

2 • A. Milanova et al.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Object-oriented programming; D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement—Re-
structuring, reverse engineering, and reengineering; D.3.2 [Programming Languages]: Language
Classifications—Object-oriented languages; D.3.4 [Programming Languages]: Processors—Com-
pilers; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Pro-
gram analysis

General Terms: Languages, Algorithms

Additional Key Words and Phrases: Static analysis, points-to analysis, class analysis, def-use anal-
ysis, side-effect analysis, context sensitivity

1. INTRODUCTION

Points-to analysis is a fundamental static analysis used by optimizing com-
pilers and software engineering tools to determine the set of objects whose
addresses may be stored in reference variables and reference fields of objects.
These points-to sets are typically computed by constructing one or more points-to
graphs, which serve as abstractions of the run-time memory states of the ana-
lyzed program. (An example of a points-to graph is shown in Figure 1, which is
discussed in Section 2.1.)

Optimizing Java compilers can use points-to information to perform various
optimizations such as virtual call resolution, removal of unnecessary synchro-
nization, and stack-based object allocation. Points-to analysis is also a prereq-
uisite for a variety of other analyses—for example, side-effect analysis, which
determines the memory locations that may be modified by the execution of a
statement, and def-use analysis, which identifies pairs of statements that set
the value of a memory location and subsequently use that value. These analy-
ses are necessary to perform compiler optimizations such as code motion and
partial redundancy elimination. In addition, such analyses are needed in the
context of software engineering tools: for example, def-use analysis is needed
for program slicing and data-flow-based testing. Points-to analysis is a crucial
prerequisite for employing these analyses and optimizations.

Because of this wide range of applications, it is important to investigate ap-
proaches for precise and efficient computation of points-to information. The two
major dimensions in the design space of points-to analysis are flow sensitivity
and context sensitivity. Intuitively, flow-sensitive analyses take into account
the flow of control between program points inside a method, and compute sep-
arate solutions for these points. Flow-insensitive analyses ignore the flow of
control between program points, and therefore can be less precise and more
efficient than flow-sensitive analyses. Context-sensitive analyses distinguish
between the different contexts under which a method is invoked, and analyze
the method separately for each context. Context-insensitive analyses do not sep-
arate the different invocation contexts for a method, which improves efficiency
at the expense of some possible loss of precision.

Recent work [Razafimahefa 1999; Streckenbach and Snelting 2000; Liang
et al. 2001; Rountev et al. 2001; Lhoták and Hendren 2003; Berndl et al. 2003]
has shown that flow- and context-insensitive points-to analysis for Java can

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 3

Fig. 1. Sample program and its points-to graph.

be efficient and practical even for large programs, and therefore is a realistic
candidate for use in optimizing compilers and software engineering tools. How-
ever, context insensitivity inherently compromises the precision of points-to
analysis for object-oriented languages such as Java. This imprecision results
from fundamental object-oriented features and programming idioms. (Section 2
presents several examples that illustrate this point.) The imprecision decreases
the impact of the points-to analysis on client optimizations (e.g., virtual call res-
olution) and leads to less precise client analyses (e.g., def-use analysis). To make
existing flow- and context-insensitive analyses more useful, it is important to
introduce context sensitivity that targets the sources of imprecision that are
specific to object-oriented languages. At the same time, the introduction of con-
text sensitivity should not increase analysis cost to the point of compromising
the practicality of the analysis.

In this article, we propose object sensitivity as a new form of context sensi-
tivity for flow-insensitive points-to analysis for Java. Our approach uses the re-
ceiver object at a method invocation site to distinguish different calling contexts.
Conceptually, every method is replicated for each analysis object name that
represents a possible receiver object. The analysis computes separate points-to
information for each replica of a local variable; the separate points-to infor-
mation is valid for method invocations with the corresponding receiver object.
Furthermore, the naming of objects is also object-sensitive: each object alloca-
tion site may be represented by several object names, corresponding to different
receiver objects for the enclosing method.

We propose a parameterization framework that allows precision improve-
ment through object sensitivity without incurring the cost of nondiscriminatory
replication for all objects and variables. The framework is parameterized in two
dimensions. Analysis designers can select the degree of precision in the object
naming scheme, as well as the set of reference variables for which the analysis
maintains multiple points-to sets. This approach can be used to tune the cost of
the analysis and to define targeted sensitivity for certain objects and variables
for which more precise handling is likely to improve the analysis precision.

In this article, we discuss parameterized object-sensitive points-to analy-
sis that is based on an Andersen-style points-to analysis for Java. Andersen’s
analysis for C [Andersen 1994] is a well-known flow- and context-insensitive

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

4 • A. Milanova et al.

points-to analysis. Recent work [Streckenbach and Snelting 2000; Liang et al.
2001; Rountev et al. 2001; Lhoták and Hendren 2003] shows how to extend this
analysis for Java. Although we demonstrate our technique on Andersen’s anal-
ysis, parameterized object sensitivity can be trivially applied to enhance the
precision of other flow- and context-insensitive analyses for Java (e.g., anal-
yses that are based on flow- and context-insensitive points-to analyses for C
[Steensgaard 1996; Shapiro and Horwitz 1997b; Das 2000]).

Modification side-effect analysis (MOD) determines, for each statement, the
set of objects that may be modified by that statement. Similarly, USE analysis
computes the set of objects that may be read by a statement. This information
plays an important role in optimizing compilers and software productivity tools.
Side-effect analysis requires the output of a points-to analysis, and the precision
of the underlying points-to information directly affects the precision of the side-
effect analysis. We define and evaluate a new object-sensitive MOD analysis
that is based on the parameterized object-sensitive points-to analysis. Although
we omit the discussion, our approach also applies to the corresponding USE
analysis.

The goal of def-use analysis is to compute def-use associations between pairs
of statements. A def-use association for a memory location l is a pair of state-
ments (m, n) such that m assigns a value to l and subsequently n uses that value.
Similarly to MOD analysis, def-use analysis requires the output of a points-to
analysis. We define a new object-sensitive def-use analysis that is based on
parameterized object-sensitive points-to analysis. In addition, we show how
object-sensitive points-to analysis can be used to compute contextual def-use
associations [Souter and Pollock 2003], a generalization of standard def-use
associations defined for the purposes of data-flow-based testing.

We have implemented two instantiations of our parameterized object-
sensitive analysis. We compare these instantiations with an Andersen-style
flow- and context-insensitive points-to analysis. For a set of 23 Java programs,
our experiments show that the cost of the three analyses is comparable. In
some cases the object-sensitive analyses are actually faster than the context-
insensitive analysis. We also evaluate the precision of the three analyses with
respect to several client applications. MOD analyses based on object-sensitive
points-to analyses are significantly more precise than the corresponding MOD
analysis based on context-insensitive points-to analysis. Object sensitivity also
improves the precision of call graph construction and virtual call resolution.
In addition, we compare the object-sensitive analyses with a context-sensitive
points-to analysis which uses the call site to distinguish different calling
contexts.1 Our experimental results show that object-sensitive analyses are
capable of achieving significantly better precision than context-insensitive
and call-site-based context-sensitive ones, while at the same time remaining
efficient and practical. This improved precision is due to the fact that the object-
sensitive analyses specifically target object-oriented features and idioms, while
the precision of the other two analyses is compromised due to these features.

1This analysis is similar to the 1-1-CFA analysis from Grove et al. [1997], and Grove and Chambers
[2001].

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 5

Contributions. The contributions of our work are the following:

—We propose object sensitivity as a new form of context sensitivity for flow-
insensitive points-to analysis for Java.

—We define a parameterization framework that allows analysis designers to
control the degree of object sensitivity and consequently the cost/precision
tradeoffs of the analysis.

—We define a new object-sensitive side-effect analysis for Java that is based
on parameterized object-sensitive points-to analysis.

—We define two new object-sensitive def-use analyses that are based on pa-
rameterized object-sensitive points-to analysis.

—We compare two instantiations of the parameterized object-sensitive analy-
sis with an Andersen-style flow- and context-insensitive analysis and with
a call-site-based context-sensitive analysis. Our experiments on a large set
of programs show that the object-sensitive analyses are practical and signif-
icantly improve the precision of MOD analysis, call graph construction, and
virtual call resolution.

Outline. The rest of the article, is organized as follows: Section 2 describes
Andersen’s analysis for Java and discusses some sources of imprecision due to
context insensitivity. Section 3 defines our object-sensitive analysis. Section 4
discusses parameterized object sensitivity and Section 5 describes techniques
for its efficient implementation. The new MOD analysis is defined in Section 6.
Section 7 describes the def-use analyses. The experimental results are pre-
sented in Section 8. Section 9 discusses related work and Section 10 presents
conclusions and future work.

2. FLOW- AND CONTEXT-INSENSITIVE POINTS-TO ANALYSIS FOR JAVA

Previous work proposes various flow-insensitive and context-insensitive analy-
ses for Java [Razafimahefa 1999; Streckenbach and Snelting 2000; Liang et al.
2001; Rountev et al. 2001; Lhoták and Hendren 2003; Berndl et al. 2003].
These analyses are typically derived from similar analyses for C. This section
describes a flow- and context-insensitive points-to analysis for Java that is de-
rived from Andersen’s points-to analysis for C [Andersen 1994]; this analysis
was previously described in detail in Rountev et al. [2001]. The section also
illustrates how context insensitivity compromises analysis precision.

2.1 Analysis Semantics

Andersen’s analysis for Java is defined in terms of three sets. Set R contains all
reference variables in the analyzed program (including static variables). Set O
contains names for all objects created at object allocation sites; for each alloca-
tion site si, there is a separate object name oi ∈ O. Set F contains all instance
fields in program classes. The analysis constructs points-to graphs containing
two kinds of edges. Edge (r, oi) ∈ R × O shows that reference variable r points
to object oi. Edge (〈oi, f 〉, o j) ∈ (O × F)× O shows that field f of object oi points
to object o j . A sample program and its points-to graph are shown in Figure 1.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

6 • A. Milanova et al.

Fig. 2. Points-to effects of program statements for Andersen’s analysis.

For brevity, we discuss in detail only the kinds of statements listed below.2

Other kinds of statements (e.g., calls to constructors and static methods) are
handled in a similar fashion, as discussed shortly.

—Direct assignment: l = r

—Instance field write: l.f = r

—Instance field read: l = r.f

—Object creation: l = new C

—Virtual invocation: l = r0.m(r1,...,rn)

At a virtual call, name m uniquely identifies a method in the program. This
method is the compile-time target of the call, and is determined based on the
declared type of r0 [Gosling et al. 1996, Sect. 15.11.3]. At run time, the invoked
method is determined by examining the class of the receiver object and all of
its superclasses, and finding the first method that matches the signature and
the return type of m [Gosling et al. 1996, Sect. 15.11.4].

Analysis semantics is defined in terms of transfer functions that add new
edges to points-to graphs; no edges are ever removed from these graphs during
the analysis. Each transfer function represents the semantics of a program
statement. The functions for different statements are shown in Figure 2 in the
format f (G, s) = G ′, where s is a statement, G is an input points-to graph,
and G ′ is the resulting points-to graph. Pt(G, x) denotes the points-to set (i.e.,
the set of all successors) of x in graph G. The analysis computes the closure
of the empty graph under the application of all transfer functions for program
statements.

For most statements, the effects on the points-to graph are straightforward;
for example, statement l = r creates new points-to edges from l to all objects
pointed to by r. For virtual call sites, resolution is performed for every receiver
object pointed to by r0. Function dispatch uses the class of the receiver object and
the compile-time target of the call to determine the actual method m j invoked

2Assumptions that the program consists of these kinds of statements are often used in the analysis
literature to simplify the presentation. If necessary, temporary variables may be introduced to
achieve these restrictions.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 7

Fig. 3. Imprecision due to field encapsulation.

at run time. Variables p0, . . . , pn are the formal parameters of the method;
variable p0 corresponds to the implicit parameter this. Variable ret j contains
the return values of m j (we assume that each method has a unique variable
that is assigned all values returned by the method; this can be achieved by
inserting auxiliary assignments).

Calls to static methods (not shown in Figure 2) are resolved immediately and
the appropriate updates of parameters and return values are performed: for
example, formal-actual bindings are treated as direct assignments. We assume
that object creation is represented by “l = new C” followed immediately by a
call “l.C(..)” to the appropriate constructor. The constructor call is treated as
an instance call for which there is only one target method. The analysis ignores
statements that have no effect on the flow of reference values—for example,
assignments to variables of primitive types such as int, boolean, etc.

2.2 The Imprecision of Context-Insensitive Analysis

This section presents several examples of basic object-oriented features and
programming idioms for which context-insensitive analysis produces imprecise
results.

2.2.1 Encapsulation. Figure 3 illustrates the typical situation when an
encapsulated field is written through a modifier method. At the call site at line
6, y1 points to o3 and x1 points to o1. After the analysis applies the transfer
function for the virtual call (as shown in Figure 2), the implicit parameter
this of method set points to o3 and formal parameter x points to o1. After the
analysis processes the call at line 7, this points to o4 and x points to o2. Thus,
at statement this.f=x at line 1, the analysis erroneously infers points-to edges
(〈o3, f 〉, o2) and (〈o4, f 〉, o1).

This imprecision can be avoided if the analysis distinguishes invocations
of set on o3 from invocations of set on o4. This distinction could be achieved
if the analysis were able to associate multiple points-to sets with this and
with x, one for each of the objects on which set is invoked. This would allow
statement this.f=x to be analyzed separately for each of the receiver objects,
and would avoid creating spurious points-to edges. In Section 3, we show how
object-sensitive analysis achieves this goal.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

8 • A. Milanova et al.

Fig. 4. Field assignment through a superclass.

During context-insensitive analysis, there is a single copy of every method
for all possible invocations. Therefore, field f of each receiver object will point
to all objects passed as arguments to the method which sets the value of f. In
object-oriented languages, encapsulation and information hiding are strongly
supported, and fields are almost always accessed indirectly through method
invocations. As a result, context-insensitive analysis can incur significant
imprecision.

2.2.2 Inheritance. Consider the example in Figure 4. At line 2, which is
executed after the constructor at line 10 is invoked, B.this points to o3 and B.xb
points to o1.3 After the analysis processes the call to the superclass constructor,
A.this and A.xa point to o3 and o1, respectively. Because of the call at line 5,
which occurs due to the constructor call at line 11, A.this will point to o4 and
A.xa will point to o2. Thus, at statement this.f=xa at line 1, spurious edges
(〈o3, f 〉, o2) and (〈o4, f 〉, o1) are added to the graph. The imprecision propagates
further, as the analysis infers that xb at line 3 points to both o1 (of class Y) and o2
(of class Z). Therefore, it appears that the possible targets of the virtual call at
line 4 are Y.n and Z.n (the same problem also occurs at line 7). As a result, the

3We use C.m to refer to method/constructor m in class C. Similarly, we use C.m.v to refer to local
variable or formal parameter v in method/constructor m in C; sometimes m.v is used for brevity.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 9

Fig. 5. Simplified container class.

calls at lines 4 and 7 cannot be devirtualized using the solution computed by the
context-insensitive analysis. The imprecision is due to statement this.f=xa in
the constructor of superclass A, which merges the information for all possible
receiver objects.

In the presence of inheritance, instance fields are often located in super-
classes and are written through invocations of superclass constructors or meth-
ods. During context-insensitive analysis, fields of subclass instances point to
objects intended for instances of other subclasses. Thus, in the presence of wide
and deep inheritance hierarchies, context insensitivity can lead to substantial
imprecision.

2.2.3 Collections and Maps. Consider the example in Figure 5. There is
a single object name o1 which represents the data arrays of both instances
of Container. Therefore, objects stored in individual containers appear to be
shared between the two containers. In order to avoid this imprecision, the data
array of every instance of Container should be represented by a distinct object
name. In addition, the analysis should be able to assign distinct points-to sets
to put.this and put.e for every possible receiver object of put.

Context insensitivity causes data that is stored in one instance of a collection
or a map to be retrieved from every other instance of the same class, and very
likely from all instances of its subclasses. Since collections (e.g., Vector) and
maps (e.g., Hashtable) are commonly used in Java, context insensitivity can
seriously compromise analysis precision.

3. OBJECT-SENSITIVE ANALYSIS

In context-sensitive analysis, a method is analyzed separately for different call-
ing contexts. We define a new form of context-sensitive points-to analysis for

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

10 • A. Milanova et al.

Java which we refer to as object-sensitive analysis; this approach was first
introduced in Milanova et al. [2002], and Milanova [2003]. With object sen-
sitivity, each instance method (i.e., nonstatic method) and each constructor is
analyzed separately for each object on which this method/constructor may be
invoked. More precisely, the analysis uses a set of object names to represent ob-
jects allocated at run time. If a method/constructor may be invoked on run-time
objects represented by object name o, the object-sensitive analysis maintains
a separate contextual version of that method/constructor that corresponds to
invocation context o.

Our object-sensitive analysis is based on Andersen’s analysis for Java from
Section 2.1. However, the same approach can be trivially applied to other flow-
and context-insensitive analyses for Java (e.g., analyses derived from flow- and
context-insensitive points-to analyses for C [Steensgaard 1996; Shapiro and
Horwitz 1997b; Das 2000]). Section 3.1 defines the semantics of the object-
sensitive analysis. Section 3.2 discusses why object sensitivity is appropriate
for flow-insensitive analysis of object-oriented programs, and compares this
approach with other context-sensitive analyses.

3.1 Analysis Semantics

Our object-sensitive analysis is defined in terms of five sets. Recall from
Section 2.1 that set R contains all reference variables in the analyzed program
(including static variables), and set F contains all instance fields in program
classes. Set S contains all object allocation sites in the program. We also use a
set of object names O ′ and a set of replicas of reference variables R ′; both sets
will be discussed shortly.

To simplify the presentation, we define a relation α which shows that a
method or a constructor m may be invoked on instances of a given class C.
Suppose that m is defined in some class D. Relation α(C, m) holds if and only
if C and D are the same class or C is a subclass of D. Note that α(C, m) should
hold even if m is overridden somewhere on the inheritance chain between D
and C, because m could still be invoked on instances of C through super. We
extend the notation to object names: for any o ∈ O ′ which represents instances
of class C, α(o, m) if and only if α(C, m).

3.1.1 Object Names. The analysis uses a set of object names O ′ ⊆ S ∪
S2 ∪ · · · ∪ Sk , where k ≥ 1 is a parameter of the analysis. We will use oij···pq to
denote the sequence of allocation sites (si, sj , . . . , sp, sq). Consider an allocation
site sq ∈ S in method m. If m is a static method, the run-time objects allocated
at sq are represented by a single object name oq . If m is an instance method or
a constructor, the run-time objects allocated at sq are represented by a set of
object names from O ′ of the form oij···pq.

A particular name oij···pq represents all run-time objects that were created by
sq when the enclosing instance method or constructor was invoked on an object
represented by name oi j ...p which was created at allocation site sp. This context-
sensitive naming scheme allows the analysis to distinguish among different
objects created by the same allocation site. (In contrast, Andersen’s analysis
uses a single object name per allocation site.) For example, allocation site s1 in

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 11

Figure 5 appears in the constructor of Container. Sites s2 and s3 create instances
of Container; thus, there are two object names o21 and o31 that correspond to s1.

The formal definition of O ′ is as follows:

—oq ∈ O ′ for each sq ∈ S located in a static method
—if oi j ...p ∈ O ′ and sq ∈ S is located in an instance method or a constructor m

such that α(oi j ...p, m), then
(1) if |ij · · · p| < k, then oij···pq ∈ O ′

(2) if |ij · · · p| = k, then o j ···pq ∈ O ′

This definition ensures that each object name corresponds to a sequence of at
most k allocation sites, where k is an analysis parameter. Continuing with our
Container example, if k = 1, allocation sites 2 and 3 are dropped from sequences
o21 and o31 respectively, leaving object name o1 to represent all objects created
at allocation site s1.

3.1.2 Context Sensitivity. Set C = O ′ ∪ {ε} represents the space of all pos-
sible contexts for our object-sensitive analysis. A static method is always an-
alyzed under the empty context ε. Any instance method or constructor m is
separately analyzed for each context o ∈ O ′ for which α(o, m) holds. This sep-
aration is achieved by maintaining multiple replicas of reference variables for
each possible context. The set of replicas of reference variables R ′ is defined
by a partial injective function map : R × C → R ′. If r ∈ R is a static vari-
able or a local variable in a static method, the pair (r, ε) is mapped to r. If
r is a local variable or a formal parameter of an instance method or a con-
structor m, the pair (r, o) is mapped to a “fresh” variable ro for every context
o ∈ O ′ for which α(o, m) holds. For the rest of the paper we will refer to the
elements of R ′ as context copies. For example, in Figure 4, we have α(o3, A.A)
and α(o4, A.A), and there are two copies of A.this corresponding to contexts o3
and o4. Similarly, there are two copies of A.xa. For the example, in Figure 5,
we have α(o2, Container.put) and α(o3, Container.put); therefore there are con-
text copies of put.this, put.data tmp, and put.e corresponding to contexts o2
and o3.

The analysis can be easily extended to analyze static methods separately
for the contexts of their invoking instance methods or constructors. In Java
programs static methods rarely change the state of the invoking object, and
we expect that analyzing static methods for different contexts will only lead
to relatively small gains in precision while making the analysis more complex.
Therefore, we have decided to treat static methods in an intuitive manner and
to analyze them only under the special context ε. The same approach is used
for naming the objects allocated by static methods: the run-time objects created
at an allocation site sq are represented by a single object name oq .

3.1.3 Transfer Functions. The analysis constructs points-to graphs in
which the nodes are elements of R ′ and O ′. Analysis semantics can be de-
fined by transfer functions that add new edges to these points-to graphs. For
statements that are located inside static methods, the transfer functions are
identical to those in Figure 2. For statements located in instance methods and

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

12 • A. Milanova et al.

Fig. 6. Object-sensitive points-to effects of statements in instance methods and constructors. Cm
is the set of possible contexts for the enclosing method.

constructors, the transfer functions are presented in Figure 6. For example,
the transfer function for an allocation site creates points-to edges from context
copies l c to the appropriate object names. Operation c⊕k sq adds sq to the end of
c and (if necessary) removes allocation sites from the beginning of c to ensure
that the length of the resulting name does not exceed k.

The effects of F (G, s) are essentially equivalent to applying the correspond-
ing f (G, s) from Figure 2 for each context from the set Cm = {o ∈ C | α(o, m)},
where m is the method in which s is located. For simplicity, we present the se-
mantics as if all elements of Cm are possible contexts. As discussed in Section 5,
analysis implementations only need to consider contexts that actually occur at
calls to m.

The correctness of these transfer functions can be established by consider-
ing a small-step operational semantics for Java. We can define an abstraction
relation that encodes the correspondence between entities in the semantics
(e.g., stack variables, static fields, heap objects, and points-to relationships) and
nodes/edges in the points-to graphs. It can be shown that the semantic effects
of each kind of statement are modeled correctly by the corresponding transfer
function from Figure 6: if the abstraction relation holds before the statement,
it also holds after the statement is executed. Based on this property, a proof
by induction can be used to demonstrate that any points-to relationship that
can occur at run time is represented by an appropriate points-to edge in the
analysis solution.

3.1.4 Example. Consider the set of statements in Figure 4. Since α(B, B.B)
and α(B, A.A), we have

{B.thiso3 , B.xbo3 , A.thiso3 , A.xao3} ⊆ R ′

Similarly, we have

{C.thiso4 , C.xco4 , A.thiso4 , A.xao4} ⊆ R ′

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 13

At line 2, B.thiso3 points to o3 and B.xbo3 points to o1. When the analysis
processes the call to A.A at line 2, A.this and A.xa are mapped to the context
copies corresponding to o3, and points-to edges (A.thiso3 , o3) and (A.xao3 , o1)
are added to the graph. Similarly, because of line 5, A.thiso4 points to o4 and
A.xao4 points to o2. Statement this.f=xa at line 1 occurs in the context of o3
and o4. Thus,

A.thiso3 = A.xao3 A.thiso4 = A.xao4

which produces edges (〈o3, f 〉, o1) and (〈o4, f 〉, o2). Since α(B, B.m) and α(C, C.m),
we have

{B.m.thiso3 , B.m.xbo3 , C.m.thiso4 , C.m.xco4} ⊆ R ′

When the analysis processes the statement at line 3, B.m.xb and B.m.this will
be mapped to the context copies corresponding to o3. Since B.m.thiso3 points to
o3 and 〈o3, f 〉 points only to o1, the statement at line 3 produces edge (B.m.xb, o1).
Similarly, the statement at line 6 produces edge (C.m.xc, o2).

3.2 Advantages of Object Sensitivity

In object-oriented languages such as Java, one of the primary roles of instance
methods is to access or modify the state of the objects on which they are invoked.
Instance methods typically work on encapsulated data, using the implicit pa-
rameter this to modify or retrieve data from the object structure rooted at the
receiver object. If points-to analysis does not distinguish the different receiver
objects of instance methods, the states of these objects are essentially merged
and any access/modification of the state of one object is propagated to all other
objects. Therefore, it is crucial to distinguish the different objects pointed to by
this and to analyze instance methods separately for different receiver objects.
Similarly, the role of a constructor is to create the initial object state. To avoid
merging the initial states of all objects pointed to by this, points-to analysis
should distinguish the different objects on which a constructor is invoked.

Context sensitivity mechanisms of finer granularity than a receiver object
may create redundant contextual versions. For example, one of the most pop-
ular mechanisms for context sensitivity is the call string approach, which rep-
resents invocation context using a string of k enclosing call sites [Sharir and
Pnueli 1981]. For k = 1, a method is analyzed separately for each call site
that invokes that method. For many statements, it is redundant to distinguish
between distinct call sites that have the same receiver object. For example, if
statement this.f=formal were analyzed separately for distinct call sites that
have the same receiver object, the effect would be the same as if it were ana-
lyzed once for that object: field f of the receiver would point to all objects in the
points-to sets of the corresponding actual parameters at all call sites. Clearly,
because of the flow insensitivity of the analysis, the effects of the distinct per-
call-site versions of the statement are merged. The same kind of redundancy
also occurs for statements that read the value of any field of the receiver ob-
ject (e.g., l=this.f), as well as for certain method invocations on the receiver
(e.g., l=this.m()). These redundancies cause the call string approach to incur
increased analysis cost for such cases, without any gain in precision. On the

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

14 • A. Milanova et al.

other hand, object-sensitive analysis performs exactly the necessary amount of
work for such statements.

In certain cases, distinguishing calling context by a chain of enclosing call
sites can be less precise than distinguishing context per receiver object. To
illustrate such a case, recall the set of statements from Figure 4. Suppose that
the following new statement is added at line 14:

14 s5 : C c2 = new C(y);

If calling context is distinguished per call site (k = 1), the effects of constructor
A.A invoked at line 5 are merged for receivers o4 and o5. Thus, there are redun-
dant points-to edges (〈o4, f 〉, o1) and (〈o5, f 〉, o2). The imprecision propagates
and affects both the points-to analysis and its clients; for example, the virtual
call at line 7 cannot be resolved.

In other cases, distinguishing context by a chain of enclosing call sites can
be more precise than distinguishing context per receiver object. Suppose that
there is an instance method that returns its formal parameter:

X m(X param) { return param; }
If there are two different call sites of m with the same receiver, and if the
actual parameters passed at the two call sites are different, the object-sensitive
analysis propagates redundant information to the left-hand side of each call.
An analysis that distinguishes calling context per call site infers correctly that
the information passed at each call site does not flow to the left-hand side of
the other call site. In general, object sensitivity (an instance of the functional
approach to context sensitivity [Sharir and Pnueli 1981]) and call chain context
sensitivity (an instance of the call string approach) are incomparable in terms
of precision.

Our observations of many Java programs indicate that situations in which
object sensitivity is more beneficial than call chain context sensitivity occur
frequently in practice. We have examined the output of two client analyses: (1)
the side-effect analysis described in Section 6, and (2) an analysis that com-
putes test coverage requirements for error recovery code in Java web service
applications [Fu et al. 2004]. We encountered many situations for which using
the simple and practical object-sensitive analysis produces precise results; in
the same time, the call chain approach would require a call chain of length at
least four to achieve the same level of precision (call chains of length greater
than one are typically considered impractical). We are yet to find a situation in
a Java program for which distinguishing context per call site will produce more
precise results with respect to some client analysis, compared to distinguish-
ing context per receiver object. The empirical results in Section 8 also indicate
that in practice, object sensitivity has more significant impact on precision than
context sensitivity based on call chains.

4. PARAMETERIZED OBJECT SENSITIVITY

In this section, we define a parameterized framework for object-sensitive anal-
ysis. The least precise and least costly instantiation of the framework is the

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 15

context-insensitive Andersen’s analysis, while the most precise and most ex-
pensive instantiation is the object-sensitive analysis described in Section 3.

The framework is parameterized in two dimensions. First, the analysis de-
signer can select the degree of precision in the naming scheme for object names.
This is accomplished by defining a separate context depth kq for each allocation
site sq , instead of having a single depth k for the entire analysis. Second, the
analysis designer can specify the set of reference variables for which multiple
points-to sets should be maintained. The analysis replicates only these selected
variables.

The goal of the parameterization is to enhance the flexibility of the object-
sensitive analysis. By varying the object naming scheme and the set of vari-
ables that are replicated, the analysis designer can control directly the size of
the points-to graph and the cost of the analysis. Furthermore, the parameter-
ization allows targeted context sensitivity. Instead of using the global nondis-
criminatory replication presented in Section 3, the analysis designer can choose
objects and variables for which keeping more precise information is likely to
improve the precision of the points-to solution (e.g., implicit parameters this,
formal parameters, return variables, subobjects of composite objects, etc.).

The parameterization for object names is based on a separate context depth
kq for each allocation site sq . For every object name of the form oij···pq, the analy-
sis ensures that |i j · · · pq| ≤ kq . For the boundary case kq = 1, there is a single
object name for the allocation site (similarly to Andersen’s analysis). For exam-
ple, if k1 = 2 for allocation site s1 in Figure 5, the analysis will maintain two
separate object names o21 and o31 for s1. In the case when k1 = 1, the analysis
will maintain a single object name o1 corresponding to s1. It is straightforward
to modify the definition of O ′ from Section 3.1 to accommodate this parameter-
ization. A similar change can be made to the first transfer function in Figure 6:
instead of ⊕k , it should use ⊕kq .

The parameterization for reference variables is based on a set R∗ ⊆ R which
contains all variables that should be replicated during the analysis. For the
boundary case R∗ = ∅, there is no replication and analysis behavior is similar
to Andersen’s analysis. Function map : R × C → R ′ constructs R ′ as follows:
if r ∈ R∗ is a local variable in an instance method or a constructor m, r is
mapped to a “fresh” variable ro for every context o ∈ O ′ such that α(o, m). Any
other variable is mapped to itself. Thus, map replicates variables in R∗ for all
applicable contexts, and preserves variables not in R∗ (i.e., map(r, c) = r for
any r /∈ R∗). For example, if A.xa and A.this in Figure 4 are in R∗, the analysis
will maintain two separate context copies for each variable, one for context
o3 and one for context o4. If A.xa and A.this are not in R∗, there are just
single variables; as a result, statement this.f=xa at line 1 is analyzed context-
insensitively and introduces spurious points-to edges. The transfer functions
in the parameterized analysis are identical to the ones from Figure 6, except
for the use of the modified function map based on parameter set R∗.

Clearly, there are other possible dimensions of parameterization. For exam-
ple, the analysis designer may choose to analyze a sequence of constructor calls
context-sensitively; or the designer may choose to analyze parts of the program
per class, instead of per object, etc. The parameterizations for object names and

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

16 • A. Milanova et al.

reference variables are simple to formulate and intuitive to understand. Due
to their simplicity, these dimensions of parameterization were chosen to for-
malize the idea of targeted context sensitivity. We have started experimental
studies of other dimensions of parameterization and plan to continue work in
this direction in the future.

5. IMPLEMENTATION TECHNIQUES

A typical implementation of Andersen’s flow- and context-insensitive analysis
for Java uses a statement processing routine which processes different kinds
of program statements, and a virtual dispatch routine which models the se-
mantics of virtual calls. The parameterized object-sensitive analysis can build
on any existing implementation I of Andersen’s analysis for Java. This can be
achieved by (1) implementing function map(v, c), (2) augmenting the statement
processing routine in I to process each statement once for every possible con-
text in accordance with the rules from Figure 6, and (3) augmenting the virtual
dispatch routine in I to map the formal parameters and return variable of the
invoked method to the corresponding invocation context.

Let I ′ be an implementation of the parameterized analysis which augments I
with function map and alters the statement processing routine and the virtual
dispatch routine. Any such I ′ can be optimized in several ways.

First, the semantics in Figure 6 implicitly assumes that all possible contexts
of a method m are actually used at calls to that method—that is, m is invoked
with every context o for which α(o, m) holds. Clearly, I ′ can keep track of which
contexts actually occur at calls to m. Thus, I ′ would take into account the effects
of a statement in m for context o if and only if m can be invoked with receiver
object o according to the current analysis solution.

Second, whenever the points-to set of a replica thiso is needed, the analysis
can return the singleton set {o}. Thus, I ′ can avoid storing replicas thiso and
redundant points-to edges as well as retrieving the points-to set of thiso.

Third, whenever I ′ processes a statement s which contains only nonrepli-
cated variables, there is no need to analyze s multiple times for different con-
texts. Similarly, if a replicated variable l is assigned only at statements of the
form l=r or l=r.f where r /∈ R∗, these statements can be analyzed only once. In
this case, all context copies of l have the same values, and the analysis needs to
keep only one copy for l . In other words, transfer function F (G, s) from Figure 6
can be replaced with f (G, s) from Figure 2. For the rest of the article, we refer
to statements that can be analyzed only once as context-independent, and to
statements that need to be analyzed multiple times for different contexts as
context-dependent.

Other kinds of statements can also be analyzed once instead of multiple
times. For example, consider the following statements that occur in an instance
method m, and suppose that p ∈ R∗ and x, y /∈ R∗:

void m(X p) { x=p.f; y=p; }
Suppose that the analysis keeps a non-replicated variable p′ such that the
points-to set of p′ is the union of the points-to sets of all context copies of p.
It is easy to see that instead of analyzing statements x=p.f and y=p multiple

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 17

times, the analysis algorithm can analyze statements x=p′.f and y=p′ only once
without affecting the computed points-to sets.

This observation leads to an implementation technique that recognizes
statements which contain replicated variables but may be processed context-
independently (i.e., processed once instead of multiple times). The technique
does not affect analysis correctness or precision. Suppose l is a replicated vari-
able. The simplification creates a new nonreplicated variable l ′ and a new
(context-dependent) statement l′=l. Clearly, the points-to set of l ′ is the union
of the points-to sets of all context copies of l . Consider assignments of the form
l=p, l.f=p, l=p.f, p=l, p=l.f, and p.f=l for which p /∈ R∗. If the left-hand side
is a replicated variable (as in l=r and l=p.f), no changes can be made because if
l is replaced by l ′, context-sensitive information may be lost. For the remaining
four kinds of statements, l can be replaced by l ′ and the statement can be ana-
lyzed context-independently. To see that there is no loss of precision, consider
l.f=p. If it is processed context-dependently, for every context c the analysis
will get an object from the points-to set of l c and will set its f field to refer
to the objects pointed to by p. If l′.f=p is processed context-independently, the
analysis will process exactly the same objects and will create exactly the same
points-to edges.

Similar reasoning can be used to determine that l can be replaced by l ′ in cer-
tain calls. Consider a virtual call x=l.m(p1,..,pn) such that pi /∈ R∗ for every i
and x /∈ R∗. This call can be analyzed context-independently without loss of pre-
cision, because in both cases the analysis would examine the same set of receiver
objects and would process the same set of formal-actual assignments (recall that
the points-to set of l ′ is the union of the points-to sets of l c for every context
c). Similarly, if r /∈ R∗ and x /∈ R∗, call x=r.m(p1,..,l,..,pn) can be processed
context-independently. Since r is not replicated, the same set of target methods
is invoked for all contexts of the call. If the call is analyzed context-dependently,
the analysis will process several assignments paramo = l c1 , . . . , paramo = l ck ,
where param is a formal parameter of method m′ = target(o, m). If the call is
analyzed context-independently, the analysis will process only one assignment
paramo = l ′ which has equivalent effect. For ease of explanation, in the rest of
this section we will use Cci to denote the set of all (context-independent) calls
in these two categories.

We would like to analyze context-independently even sites ci:
x=l.m(l1,..,ln) for which l and some of the li ’s are replicated. For this,
we precompute certain information and provide it as input to the points-to
analysis. The computation uses a conservative call graph (e.g., computed by
CHA [Dean et al. 1995]). Site ci can be analyzed context-independently by
replacing l with l ′, l1 with l ′

1, etc. and by modifying the transfer function
to assign the values of the actuals to the non-replicated p′

i corresponding
to the formals pi. This change occurs if the values of pi are not used in a
context-dependent manner by ci ’s callees, which can be guaranteed under the
following two conditions.

First, assignments that contain only replicated variables should not be reach-
able from ci in the conservative call graph—that is, the value of a replicated
formal will not be used in context-dependent manner by assignments in the

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

18 • A. Milanova et al.

callees. For example, for the sample method m shown earlier, p is only used in
statements that contain nonreplicated variables; therefore, calls to m satisfy
this condition. Second, any call site c j reachable from ci (including ci) must be
either monomorphic, or must belong to the set Cci defined earlier. Otherwise,
the information at c j may be propagated imprecisely. For example, consider the
sample method m and a call site ci : l.m(l1) that invokes m for some context
o1 and another method m′ for context o2. Here only the value of l o1

1 should be
propagated to m, not the value of l ′

1. If the two conditions hold for ci, all formal-
actual pairs can be treated context-independently. Finding such call sites can
be done in a single pass through the conservative call graph. In order to have
access to the points-to sets of context copies pc of formals, additional context-
dependent assignments p=q need to be added at ci for formal-actual pair (p, q).
As described below, in many cases such assignments can be removed before the
points-to analysis.

One technique that increases the number of context-independent calls takes
into account a sequence of constructor calls c1, c2, . . . , cn, where ci invokes a
constructor of some class X and ci+1 invokes a constructor of the superclass of
X . Such sequences are common when new objects are created. Whenever one
of the constructors contains an assignment this.f=parami where parami is a
formal, this assignment is “inlined” at the call site c j to that constructor and if
possible at call sites c j−1, c j−2, etc. For example, statement 1 in Figure 4 can be
inlined in constructors B.B and C.C, and subsequently at the constructor calls
at lines 10 and 11. As a result, the calls to A.A at lines 2 and 5, to B.B at line 10,
and to C.C at line 11 become context-independent and therefore inexpensive to
process.

Depending on the intended uses of the points-to analysis, the introduction of
a non-replicated variable l ′ can be used to remove completely the context copies
of a replicated variable l . Suppose that for the purposes of the analysis clients
(e.g., call graph construction), it is sufficient to compute the union of the points-
to sets of replicas l c. In this case, all l c can be eliminated by changing function
map to map l to l ′ for all contexts. To perform this change, all occurrences of l
in statements from the original program must have been replaced by l ′ using
the techniques discussed earlier. In this case, statements l=q introduced at call
sites (as described above) can be removed.

6. SIDE-EFFECT ANALYSIS

In this section, we present a MOD analysis based on object-sensitive points-to
analysis. For each statement s and context c of the method enclosing s, our
MOD algorithm computes the set Mod(s, c) of objects that could be modified by
executing s when in c. The algorithm is shown in Figure 7. Pt(x) denotes the
set of objects pointed to by context copy x. We say that statement s appears in
context c if α(c, m) holds for the method m enclosing s. MMod(m, c) stores the
sets of objects modified by each contextual version of a method (i.e., objects that
are modified when m is invoked with context c). For virtual calls (lines 6–10)
the target methods are determined for each receiver object o in context c, based
on the class of o and the compile-time target m. In addition, object o determines

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 19

Fig. 7. Object-sensitive MOD analysis. P(X) denotes the power set of X .

which set of modified objects associated with the target method will be added
to the Mod set at line 9. For static calls (lines 11–14) we use ε to denote the
special empty context in which the statements in those methods appear.

Although formulated with respect to an underlying object-sensitive analy-
sis, the MOD analysis can be easily generalized to account for an arbitrary
method of context sensitivity. For example, consider a points-to analysis that
distinguishes context per call site. A MOD algorithm based on this points-to
analysis will compute Mod(s, c) sets for each statement s and for each call site
of the enclosing method of s. For virtual calls (lines 6 through 10), the target
methods will be determined for each receiver object o in context c, based on the
class of o and the compile-time target m. The update of Mod(s, c) at line 9 will
be altered to add the set MMod(target(o, m), c) of objects associated with the
target method under the context represented by call site c.

In the case of context-insensitive MOD analysis, there will be a single Mod
set for each statement and a single MMod set for each method. For example,
the treatment of virtual calls becomes

[6] foreach virtual call s : l = r.m(. . .) ∈ Stmt do
[7] foreach object o ∈ Pt(r) do
[8] Mod(s) := Mod(s) ∪ MMod(target(o, m))
[9] add Mod(s) to MMod(EnclMethod(s))

Example. Consider the example in Figure 4. MOD analysis based on
context-insensitive points-to analysis erroneously determines that the Mod sets
for statements 2 and 5 are {o3, o4}. Consider a MOD analysis based on the object-
sensitive points-to analysis from Section 3. The statement at line 1 appears in
two contexts: o3 and o4. Therefore, MMod(A.A, o3) is {o3} and MMod(A.A, o4)
is {o4}. The receiver for the call statement at line 2 is o3; therefore the MOD
analysis infers that Mod(2, o3) is {o3}. Similarly, Mod(5, o4) is {o4}.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

20 • A. Milanova et al.

The MOD algorithm from Figure 7 can be easily adapted to exploit the im-
plementation techniques from Section 5. Recall that if a client analysis for the
points-to analysis does not need the individual points-to sets for the context
replicas of a variable v ∈ R∗, in some cases all replicas of v can be eliminated.
The MOD analysis can be modified so that the points-to sets of context copies of
certain formal parameters are not necessary as part of the MOD analysis input.
In particular, this is possible for each formal parameter that is not assigned in-
side the body of its method; in reality, formals are almost never assigned inside
methods. Let Param denote the set of explicit formal parameters param such
that (1) param is never assigned in the body of its method, and (2) param ∈ R∗.
The modified MOD analysis introduces additional sets PtParam: Param × C →
P(O ′). Set PtParam(p, o) contains the points-to sets of context copies po of a
formal parameter p ∈ Param. All such sets are initialized to ∅ in the beginning
of the MOD analysis. The modified part of the analysis becomes

[5] while changes occur in Mod, MMod or PtParam do
[6] foreach instance field write s : param. f = q do
[7] foreach context c in which s appears do
[8] Mod(s, c) := PtParam(param, c)
[9] add Mod(s, c) to MMod(EnclMethod(s), c)
[10] foreach virtual call s : l = r.m(r1, . . . , rn) do
[11] foreach context c in which s appears do
[12] foreach object o ∈ Pt(rc) do
[13] add MMod(target(o, m), o) to Mod(s, c)
[14] foreach parami where 1 ≤ i ≤ n do
[15] add Pt(rc

i) to PtParam(parami , o)
[16] add Mod(s, c) to MMod(EnclMethod(s), c)

Lines 6–9 update the set Mod(s, c) for indirect write statements s through
param ∈ Param whenever the corresponding set PtParam(param, c) is modi-
fied. Note that in most cases indirect writes are done through implicit param-
eters this; thus, one would expect that the analysis will perform work due
to lines 6–9 infrequently. Lines 14–15 propagate the points-to set of the con-
text copy of the actual to the set PtParam(parami, o). If ri ∈ Param, Pt(rc

i) is
PtParam(ri, c); otherwise Pt(rc

i) is Pt(map(ri, c)). In most programs chains of
parameters are rare (i.e., typically ri /∈ Param) and the amount of work due to
statements 14–15 is expected to be small.

In addition, the implementation of the MOD analysis can take advantage
of the fact that some variables are not in R∗. For some statements the anal-
ysis does not need to maintain multiple Mod sets; the set of such statements
is denoted by Sci. Similarly, for some methods the analysis does not need to
maintain multiple MMod sets; the set of such methods is denoted by Mci. Con-
sider an assignment si: p.f=q where p /∈ R∗, and a call sj : x.m(..) where
x /∈ R∗. Clearly, Mod(si, c′) = Pt(p) for all contexts c′ of si and Mod(sj , c′′) =
∪{MMod(target(o, m), o) | o ∈ Pt(x)} for all contexts c′′ of sj . Thus, the analysis
needs to maintain only a single Mod set for each such statement. If all state-
ments in a method m are in Sci, then m is in Mci. Furthermore, call statements
can be added repeatedly to Sci as follows: whenever all possible targets of a
call become members of Mci, the call itself can be added to Sci. Using these

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 21

techniques, the analysis can avoid storing and processing redundant context-
sensitive Mod and MMod sets.

7. DEF-USE ANALYSIS

The goal of def-use analysis is to compute def-use associations between pairs
of statements. A def-use association for a memory location l is a pair of state-
ments (m, n) such that m assigns a value to l and subsequently n uses that
value. For procedural languages such as Fortran and C, there are well-known
algorithms (e.g., Aho et al. [1986], Harrold and Soffa [1994], and Reps et al.
[1995]) for computing intraprocedural associations in which m and n are in
the same procedure, as well as interprocedural associations in which m and
n are in different procedures. This information has a wide variety of uses in
optimizing compilers (e.g., for dependence analysis) and in software tools (e.g.,
for slicing and for data-flow-based testing). In the presence of pointers, def-use
analyses must use the output of a pointer analysis to disambiguate indirect
definitions and indirect uses. Typically, this analysis is followed by a reaching
definitions analysis which determines sets of definitions that may reach each
program statement, in order to identify the def-use associations.

For object-oriented languages, such def-use analyses can be defined in a sim-
ilar manner. For Java, there are three different categories of memory locations
that need to be considered. Local variables (including formals) in Java cannot
have aliases, and therefore only intra-method def-use associations can exist
for them. This is true both for variables of primitive types and for variables of
reference types. Traditional intraprocedural def-use analyses can be trivially
applied in this situation. Global variables (i.e., static fields) also cannot have
aliases, but their def-use associations may cross method boundaries. Such as-
sociations can be identified with traditional interprocedural def-use analyses.

Def-use associations for object fields can be computed in a manner similar
to associations in procedural languages with pointers. Points-to analysis must
be used to determine which objects may be accessed by expressions of the form
p. f . For each object oi in the points-to set of p, memory location oi. f is added
to the DEF or USE set for the corresponding statement.

7.1 Standard Def-Use Analysis

In this section, we present a def-use analysis for object fields that directly in-
stantiates standard techniques for interprocedural def-use analysis [Reps et al.
1995]. This analysis takes as input the solution computed by the parameterized
object-sensitive points-to analysis, and computes a set of def-use associations.
The analysis input also contains the interprocedural control-flow graph (ICFG)
of the program [Sharir and Pnueli 1981]. The ICFG is a directed graph with
nodes representing statements and edges representing flow of control between
statements. Each method has associated a single entry node and a single exit
node. Each call statement is represented by a pair of nodes, a call node and a
return node. As described later, the ICFG contains edges from a call node to the
entry nodes of the methods invoked by the call site (for virtual calls there may

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

22 • A. Milanova et al.

Fig. 8. Standard def-use analysis.

be multiple outgoing edges). The graph also contains matching edges from the
exit nodes of the called methods to the return node at the call site.

Without loss of generality, we make the simplifying assumption that any
statement that writes an object field is of the form p. f = q and any statement
that reads an object field has the form q = p. f . Therefore, the DEF set of an
ICFG node n can be defined as

DEF(n) = {o. f | n occurs in context c ∧ o ∈ Pt(pc)}
if n has the form p. f = q, and as DEF(n) = ∅ for all other nodes. USE(n) can
be defined similarly. For example, for the program in Figure 4, the nonempty
sets are DEF(1) = {o3. f , o4. f }, USE(3) = {o3. f }, and USE(6) = {o4. f }.

For each node n, the analysis computes a set of reaching definitions RD(n).
Each definition is a pair of the form (m, o. f), where m is an ICFG node. If
(m, o. f) ∈ RD(n) and o. f ∈ USE(n), the analysis reports the def-use association
(m, n, o. f). For example, the computed associations for Figure 4 are (1, 3, o3. f)
and (1, 6, o4. f).

The analysis can be defined as an instance of a more general framework for
interprocedural analysis due to Reps et al. [1995]. The system of equations in
Figure 8 defines the analysis semantics. For each method m, the set MDEF(m)
contains the definitions that are created in m and in all direct or indirect callees

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 23

Fig. 9. Imprecision of standard def-use analysis.

of m. All such definitions are propagated back to the return nodes of calls to
m. This is due to the fact that the analysis cannot perform kills of definitions,
since it has only “may-point-to” information.

Interprocedural propagation is based on sets Callees(n) and CallNodes(n).
If n is the call node for a virtual call p.m(. . .), Callees(n) is the set of methods
{target(o, m) | o ∈ Pt(pc)} for each context c in which n occurs. This set encodes
the (call, entry) edges at the call site. For nonvirtual instance calls and for
static calls, the set contains only the compile-time target method. A similar set
Callees(m) can be defined for a method m, as the union of the corresponding
sets for all call sites inside m. For an entry node n, set CallNodes(n) contains
all call nodes n′ such that Callees(n′) contains the enclosing method of n.

Example. Consider the statements in Figure 4. Since DEF(1) = {o3. f , o4. f },
MDEF(B.B) = {(1, o3. f), (1, o4. f)}. Therefore, these two definitions reach the
bottom of statement 10 and are propagated to statement 12. As a result, RD(3) =
{(1, o3. f), (1, o4. f)}, and since USE(3) = {o3. f }, the analysis reports def-use
association (1, 3, o3. f). Similarly, RD(6) = {(1, o3. f), (1, o4. f)}, which results in
association (1, 6, o4. f).

7.2 Object-Sensitive Def-Use Analysis

Any points-to analysis can be used to construct sets DEF and USE in order
to compute def-use associations for object fields. However, a straightforward
application of standard def-use analyses may introduce imprecision. For the
example, in Figure 4, both (1, o3. f) and (1, o4. f) reach the bottom of node 10,
while in reality only the first definition is feasible for that program point. For
this particular example, the imprecision does not create infeasible def-use as-
sociations. However, in general, an arbitrary number of infeasible associations
may be introduced.

Example. Consider the set of statements in Figure 9. In this case, USE(1) =
DEF(2) = {o3. f , o4. f }. Therefore, the definitions reaching the bottom of

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

24 • A. Milanova et al.

statement 8 are (2, o3. f) and (2, o4. f), and due to statement 9 they are prop-
agated to the body of method m. As a result, the analysis reports def-use asso-
ciations (2, 1, o3. f) and (2, 1, o4. f). However, both associations are infeasible
because field f is null in both cases when m() is called.

A potential source of imprecision in the standard def-use analysis is the fact
that it treats uniformly all definitions created within a method. As a result,
such definitions are propagated back to all callers of the method. In the example
above, definition (2, o4. f) is valid only if the calling context is o4. Therefore, this
definition should not be propagated back to statement 8, because the calling
context at 8 is o3. This problem can be solved if the def-use analysis uses the
output of an object-sensitive points-to analysis. In this case, the def-use analysis
itself can be object-sensitive, as described below.

For each node n that has the form p. f = q, we define several DEF sets as
follows:

DEF(n, c) = {o. f | n occurs in context c ∧ o ∈ Pt(pc)}.
For all other nodes, DEF(n, c) = ∅. Sets USE(n, c) can be defined similarly.
For example, for the program in Figure 9, the nonempty sets are USE(1, o3) =
{o3. f }, USE(1, o4) = {o4. f }, DEF(2, o3) = {o3. f }, and DEF(2, o4) = {o4. f }.

There are also multiple RD sets for each node: RD(n,c) contains pairs of
the form (m, o. f) for definitions that reach n when the calling context for the
enclosing method is c. If (m, o. f) ∈ RD(n,c) and o. f ∈ USE(n,c), the analysis
reports the association (m, n, o. f). For an entry node n and a context c, the
analysis uses a set CallNodes(n,c) defined as follows: if the enclosing method of
n is called under context c from a call site node n′ when n′ occurs in context c′,
(n′, c′) is in CallNodes(n,c). This set can be constructed easily from the object-
sensitive points-to solution. During the def-use analysis, for each pair (n′, c′) in
this set, the definitions reaching n′ in context c′ are propagated to entry node n
for context c.

The semantics of the object-sensitive def-use analysis is defined by the equa-
tions in Figure 10. Whenever information is propagated into a callee or back
to a caller, the propagation takes into account the available information about
the calling context. For example, if a definition reaches a call site n under
some context c for n’s enclosing method, the definition is propagated only into
callees that are potentially invoked by n under context c. Similarly, a defi-
nition created inside a callee under some context is propagated back only to
callers that introduce this context (this restriction is encoded by the definition of
CallMDEF).

For the example in Figure 9, the set of definitions reaching the bottom of
node 8 is CallMDEF(8, ε). Since Pt(pε) = {o3}, this is equivalent to MDEF(n, o3),
which contains only (2, o3. f). Because the object-sensitive analysis keeps track
of the calling context for n, it avoids propagating the spurious definition
(2, o4. f) back to the bottom of node 8. In the final solution, RD(1, o3) = ∅ and
RD(1, o4) = {(2, o3. f)}. Since USE(1, o4) = {o4. f }, the object-sensitive analy-
sis correctly concludes that there are no def-use associations involving nodes 1
and 2. In contrast, the standard def-use analysis presented in Figure 8 reports
two spurious associations: (2, 1, o3. f) and (2, 1, o4. f).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 25

Fig. 10. Object-sensitive def-use analysis.

7.3 Contextual Def-Use Analysis

Object-oriented programs typically manipulate object state through the invoca-
tion of instance methods. Therefore, for the purposes of data-flow-based testing
(e.g., for test construction), standard def-uses may provide insufficient informa-
tion because they do not include information about the calling context enclos-
ing definition and use statements. To address this problem, Souter and Pollock
[2003] propose contextual def-use associations, a generalization of standard def-
uses which includes information about the context enclosing field writes and
field reads.

A contextual def-use association is a tuple of the form (CDEF, CUSE, o. f)
where CDEF is a chain of call sites enclosing a statement p. f = q which writes
the field f of location o; similarly, CUSE is a chain of call sites enclosing a
statement r = s. f that reads location o. Unlike standard def-use analysis which
assigns non-empty DEF sets exclusively to statements of the form p. f = q, the

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

26 • A. Milanova et al.

Fig. 11. Algorithm for CDEF computation.

contextual def-use analysis assigns CDEF sets to call sites; the call sites lead
directly or indirectly to a definition statement p. f = q. For example, for the
set of statements in Figure 4, the contextual analysis associates a CDEF tuple
(10-2-1,o3. f) with statement 10 and a CUSE tuple (12-3,o3. f) with statement
12; instead of computing def-use association (1,3,o3. f), this analysis computes
association (10-2-1,12-3,o3. f).

Contextual def-use associations can be computed using object-sensitive
points-to analysis. The computation consists of two phases. In the first phase,
the analysis determines the CDEF and CUSE tuples associated with program
statements. In the second phase, it uses this information to construct the con-
textual def-use associations.

7.3.1 Construction of CDEF and CUSE Tuples. Object-sensitive points-
to analysis can be used to determine the CDEF and CUSE sets for program
statements. The algorithm for CDEF construction, parameterized by an object-
sensitive points-to analysis, is described in Figure 11 (CUSE construction is
essentially the same). For brevity, we only show calls to instance methods;

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 27

calls to static methods can be handled similarly. The algorithm produces object-
sensitive sets CDEF(n, c) for any node n that represents a field write or a call;
for all other nodes, the CDEF sets are empty.

Similarly to the propagation of standard DEF sets from callees to callers
(Figure 10), statements of the form p. f = q along with the modified location are
propagated to the callers. This propagation is expressed through the equations
for statements of the form p.x(· · ·), which compute the CallMDEF and CDEF
sets. The call site at the propagation point is attached to the chain which forms
the context for the definition. The backward propagation is defined in terms of
auxiliary function Escapes. For a method m and an object o, Escapes(m,o) holds
if and only if o is reachable in the points-to graph from the formal parameters of
m, the return variable of m, or a global (static) variable. Intuitively, if the object
escapes, it is passed from the caller or escapes from the callee to the caller;
therefore, the call site affects the definition and becomes part of the contextual
chain [Souter and Pollock 2003]. For example, accesses through this are always
propagated to the caller.

Appropriate mechanisms can be used to prevent infinite call chains: for exam-
ple, decomposition of the call graph into strongly connected components [Souter
and Pollock 2003], or a k-limit on the length of the call chains. Limiting the call
chains to the last call site provides a practical approximation of the precise
contextual def-use analysis.

Example. Consider the example in Figure 4. Using the algorithm in
Figure 11 we have

EDEF (1, o3) = EDEF (A.A, o3) = {(1, o3. f)}
EDEF (1, o4) = EDEF (A.A, o4) = {(1, o4. f)}

Propagating these definitions to the callers of A.A and attaching the correspond-
ing call sites results in

MDEF (B.B, o3) = {(2-1, o3. f)}
MDEF (C.C, o4) = {(5-1, o4. f)}

The algorithm computes the following CDEF sets:

CDEF (10, ε) = {(10-2-1, o3. f)}
CDEF (11, ε) = {(11-5-1, o4. f)}

Similarly, there are the following contextual uses: CUSE(12, ε) = {(12-3, o3. f)}
and CUSE(13, ε) = {(13-6, o4. f)}.

As another example, consider again the statements in Figure 4 and suppose
that class Xhas an integer field g and method Z.n contains a statement this.g=0
at line 33. Also, suppose that the following statement is added after line 13:

14 int h = z.g;

In this case, the contextual def tuple for field g of object o2 is (13-7-33, o2.g),
and the corresponding use tuple is (14, o2.g).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

28 • A. Milanova et al.

Fig. 12. Contextual reaching definitions.

7.3.2 Construction of Def-Use Associations. In the second phase, the anal-
ysis computes reaching definitions for each node by propagating CDEF tuples
intraprocedurally on the control flow graph of the method enclosing the CDEF
tuple. The algorithm for R D computation is shown in Figure 12; it computes
essentially the same information as computed by the tuple construction algo-
rithm from Souter and Pollock [2003].

The algorithm propagates to a return node the reaching definitions for its
corresponding call node n′ ∈ m, and the CDEF tuples associated with n′. Note
that no definition is propagated backwards from the callee. Every statement
of the form n: p. f = q that modifies an object visible in method m is propa-
gated during the CDEF construction phase of the analysis (shown in Figure 11).
Therefore, n appears with the appropriate context either in CDEF(n′, c) or in a
CDEF tuple in some caller of m. Similarly, no definition is propagated to the en-
try of a method, because the corresponding uses have already been propagated
backwards with the appropriate context during the first phase of the analysis.

Contextual def-use tuples are constructed by examining RD(n, c) and
CUSE(n, c) for every node n. For each contextual definition cd ∈ RD(n, c) that
writes o. f and for each matching cu ∈ CUSE(n, c), the algorithm computes
a def-use association (cd, cu, o. f). If n is a call node, the algorithm also con-
siders each cd ∈ CDEF(n, c), and creates def-use associations with matching
cu ∈ CUSE(n, c).

Example. For the example in Figure 4, contextual definition (10-2-1, o3. f)
reaches nodes 11, 12, and 13. Similarly, (11-5-1, o4. f) reaches nodes 12 and
13. At node 12, (10-2-1, o3. f) matches with the corresponding use (12-3, o3. f),
which results in contextual def-use tuple (10-2-1, 12-3, o3. f). Similarly, at node
13, (11-5-1, o4. f) is matched with (13-6, o4. f) which leads to the construction
of (11-5-1, 13-6, o4. f). If the example is augmented with an integer field g as
described earlier, tuple (13-7-33, 14, o2.g) will also be created.

7.3.3 Imprecision of Context-Insensitive Analysis. Clearly, CDEF and
CUSE tuples can be computed context-insensitively. However, ignoring the con-
text in the backward propagation in Figure 11 can introduce substantial impre-
cision because all modified locations are propagated uniformly to the callers,
regardless of the invocation context.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 29

For example, consider the set of statements in Figure 4. If the algorithm
in Figure 11 does not take into account object context, it will compute sets
EDEF(1) = EDEF (A.A) = {(1, o3. f), (1, o4. f)}. Propagating these definitions to
the callers of A.A and attaching the corresponding call sites results in

MDEF (B.B) = {(2-1, o3. f), (2-1, o4. f)}
MDEF (C.C) = {(5-1, o4. f), (5-1, o3. f)}

which leads to the infeasible contextual definitions (10-2-1, o4. f) ∈ CDEF(10)
and (11-5-1, o3. f) ∈ CDEF(11). This imprecision results in infeasible contextual
def-use associations (10-2-1, 13-6, o4. f) and (11-5-1, 12-3, o3. f).

8. EMPIRICAL RESULTS

We chose to implement two particular instantiations of the parameterized
object-sensitive points-to analysis. In the first instantiation (denoted by
ObjSens1) we keep context-sensitive information for implicit parameters this
and formal parameters of instance methods and constructors. In the second
instantiation (denoted by ObjSens2) we keep context-sensitive information for
implicit parameters this, formal parameters, and return variables of instance
methods and constructors. In both cases, we use context depth 1 for alloca-
tion sites. Since methods and constructors in Java are usually short, keeping
precise information for formals (including this) and for return variables has
the potential to improve considerably the points-to solution without signifi-
cant increase in analysis cost. Other potentially beneficial instantiations of the
object-sensitive framework may use context depth of 2 for allocation sites in
container classes—for example, the array of hash entries in Hashtable, the ar-
ray of objects in Vector, etc. Such increased precision in the object naming will
allow to avoid “sharing” of objects stored in different containers. More gener-
ally, object naming with context depth ≥2 may be beneficial for sub-objects of
composite objects: for example, for allocations sites in constructors which create
new objects that are immediately assigned to instance fields of the object that
is being constructed.

In addition to the two object-sensitive analyses, we implemented a context-
sensitive analysis based on an instantiation of the popular call string approach
to context sensitivity for call string length k = 1. This analysis distinguishes
context per call site and is conceptually similar to the 1-1-CFA algorithm
from Grove et al. [1997], and Grove and Chambers [2001]. In order to al-
low comparison with the two object-sensitive analyses, the context replica-
tion is performed for this, formal parameters, and return variables in in-
stance methods and constructors. As discussed in Section 3.2, this approach
to context sensitivity is theoretically incomparable with the object-sensitive
analyses.

Object-sensitive analyses ObjSens1 and ObjSens2 were compared with
Andersen’s context-insensitive analysis (denoted by And) and with the call
string context-sensitive analysis (denoted by CallSite). The three context-
sensitive analyses were built on top of an existing constraint-based implemen-
tation of Andersen’s analysis [Rountev et al. 2001]. In our implementation,

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

30 • A. Milanova et al.

Table I. Characteristics of the Data Programs. First Two Columns
Show the Number and Bytecode Size of User Classes. Last Three

Columns Include Library Classes

User Size Whole-program
Program Class (Kb) Class Method Stmt
proxy 18 56.6 565 3283 58837
compress 22 76.7 568 3316 60010
db 14 70.7 565 3339 60747
jb-6.1 21 55.6 574 3393 60898
echo 17 66.7 577 3544 62646
raytrace 35 115.9 582 3451 62755
mtrt 35 115.9 582 3451 62760
jtar-1.21 64 185.2 618 3583 65112
jlex-1.2.5 25 95.1 578 3381 65437
javacup-0.10 33 127.3 581 3564 66463
rabbit-2 52 157.4 615 3770 68277
jack 67 191.5 613 3573 69249
jflex-1.2.2 54 198.2 608 3692 71198
jess 160 454.2 715 3973 71207
mpegaudio 62 176.8 608 3531 71712
jjtree-1.0 72 272.0 620 4078 79587
sablecc-2.9 312 532.4 864 5151 82418
javac 182 614.7 730 4470 82947
creature 65 259.7 626 3881 83454
mindterm1.1.5 120 461.1 686 4420 90451
soot-1.beta.4 677 1070.4 1214 5669 92521
muffin-0.9.2 245 655.2 824 5253 94030
javacc-1.0 63 502.6 615 4198 102986

we use the techniques described in Sections 5 and 6 in order to identify
context-independent statements and to eliminate unnecessary replication of
replicated variables. The Soot framework (www.sable.mcgill.ca) was used
to process Java bytecode and to build a typed intermediate representa-
tion [Vallée-Rai et al. 2000]. The points-to analysis used the BANE toolkit
(bane.cs.berkeley.edu) for constraint-based program analysis [Aiken et al.
1998].

All experiments were performed on a 900MHz Sun Fire-280R shared ma-
chine with 4 Gb physical memory. The reported times are the median val-
ues out of three runs. We used 23 publicly available data programs, ranging
in size from 56 Kb to about 1 Mb of bytecode. The same set of programs
was used in our previous work on Andersen’s analysis [Rountev et al.
2001]. The set includes programs from the SPEC JVM98 suite, other bench-
marks used in previous work on analysis for Java, as well as programs
from an Internet archive (www.jars.com) of popular publicly available Java
applications.

Table I shows some characteristics of the data programs. The first two
columns show the number of user (i.e., nonlibrary) classes and their bytecode
size. The next three columns show the size of the program, including library
classes, after using class hierarchy analysis (CHA) [Dean et al. 1995] to fil-
ter out irrelevant classes and methods. CHA is an inexpensive analysis that

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 31

Table II. Running Time and Memory Usage of the Analyses

And CallSite ObjSens1 ObjSens2
Time Mem Time Mem Time Mem Time Mem

Program [sec] [Mb] [sec] [Mb] [sec] [Mb] [sec] [Mb]
proxy 4.4 40 6.9 39 5.9 40 6.1 40
compress 12.0 46 12.0 47 8.8 46 13.2 46
db 12.2 47 11.4 47 11.7 48 12.2 46
jb 7.5 43 7.3 43 7.1 43 7.0 43
echo 27.3 60 24.8 59 24.3 59 27.2 59
raytrace 13.9 50 12.6 51 13.6 50 13.8 50
mtrt 15.4 50 12.9 51 15.2 50 15.6 50
jtar 23.3 58 19.9 56 21.4 56 20.6 56
jlex 8.5 46 9.0 46 8.8 46 8.7 46
javacup 13.1 57 17.3 56 16.8 53 15.1 56
rabbit 16.1 52 14.5 52 13.9 52 13.9 52
jack 38.4 62 38.1 62 37.5 62 37.6 62
jflex 20.2 71 20.1 70 19.7 70 19.7 70
jess 24.6 67 26.1 67 24.3 66 26.9 67
mpegaudio 15.4 52 14.1 54 16.2 52 13.2 54
jjtree 12.4 53 11.8 53 11.2 53 8.7 51
sablecc 68.7 115 40.1 94 62.3 113 35.9 94
javac 427.6 121 430.7 123 430.2 120 416.9 120
creature 85.2 100 61.1 86 55.7 88 57.6 86
mindterm 44.5 91 44.9 89 49.9 88 42.6 92
soot 80.8 130 92.6 132 69.8 128 89.7 132
muffin 110.0 144 108.4 135 99.6 132 101.1 133
javacc 76.2 112 82.3 112 81.4 116 80.1 112

determines the possible targets of a virtual call by examining the class hierar-
chy of the program. The number of methods is essentially the number of nodes
in the call graph computed by CHA. The last column shows the number of state-
ments in Soot’s intermediate representation. In these size measurements and
in the subsequent points-to analyses, the effects of JVM startup code and native
methods (for JDK 1.1.8) are encoded in stubs included in the analysis input.
Dynamic class loading (e.g., through Class.forName) and reflection (e.g., calls to
Class.newInstance) are resolved manually; similar approaches are typical for
static whole-program compilers and tools [IBM Corporation 1997; Fitzgerald
et al. 2000; Tip et al. 1999; Tip and Palsberg 2000].

8.1 Analysis Cost

The measurements of analysis cost are presented in Table II. The first two
columns show the running time and memory usage of Andersen’s analysis. The
next columns show the cost of CallSite, ObjSens1, and ObjSens2. The running
times are for the executions of the constraint-based analyses, not including the
construction of the Soot intermediate representation.

The empirical results demonstrate that the object-sensitive analyses are
practical in terms of running time and memory consumption. For the majority
of programs they have comparable performance to Andersen’s analysis. In cer-
tain cases (e.g., sablecc and creature) the cost of the object-sensitive analyses

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

32 • A. Milanova et al.

is significantly lower than the cost of the context-insensitive analysis. There
are two factors that could explain these results. First, the improved precision
produces smaller points-to sets, which results in less work and reduced memory
consumption for the analysis. In the case when the points-to sets are signifi-
cantly smaller, ObjSens1 and ObjSens2 can actually run faster than And, as ob-
served for some of our data programs. Second, even if the points-to sets were the
same, for many statements And, ObjSens1, and ObjSens2 perform comparable
amount of work. One might expect that because the object-sensitive analyses
analyze context-dependent statements multiple times (once for each context),
they would be more expensive. However, for any statement s that accesses the
receiver object (e.g., any s containing this), there are as many different contex-
tual versions as the number of receivers of the enclosing method. When And
processes s, it has to consider all of the possible receivers. The amount of work
that And has to perform for one receiver roughly corresponds to the amount of
work that ObjSens1 and ObjSens2 perform for one contextual version. There-
fore, for this statement And and the object-sensitive analyses have comparable
cost. Given that many statements in instance methods and constructors ac-
cess the receiver object, this may explain why the analyses exhibit comparable
costs.

For the majority of programs, adding return variables to R∗ does not result in
increased analysis cost. The reason is that in most cases assignments to return
variables can be analyzed as context-independent (recall from Section 5 that
context-independent statements can be analyzed only once, regardless of the
calling contexts). If this is not the case (e.g., for statement ret var=this.f),
the statement typically involves implicit parameter this; for such statements
And, ObjSens1, and ObjSens2 perform a comparable amount of work. In certain
cases, the replication of return variables has substantial effect on the analy-
sis. For example, sablecc declares a pair of methods (set and get) at the root
of a wide and deep inheritance hierarchy. These methods write and read a
field of the receiver object, and are invoked frequently on receivers of differ-
ent classes. ObjSens1 is able to separate the object context of an invocation for
set and the object fields are assigned correctly. However, when the get method
is invoked, the results are merged over all possible receivers because return
variables are not distinguished for different contexts. By replicating return
variables ObjSens2 avoids this imprecision, which results in significant reduc-
tion in the running time. Although the most substantial benefits from object
sensitivity are due to parameter replication, replicating return variables does
not increase analysis cost and in some cases results in significant precision and
cost improvements. Therefore, it is beneficial to replicate return variables in
addition to formal parameters.

Similarly to the object-sensitive analyses, the call string context-sensitive
analysis achieves practical cost. This is due to two factors. First, it is im-
plemented using optimization techniques analogous to the ones described in
Section 5. Second, CallSite also benefits from increased precision over context-
insensitive analysis. However, for the nine largest programs in our experiments,
the running times of CallSite are slower than ObjSens2; this may be explained
by the fact that CallSite is less precise than ObjSens2.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 33

8.2 Analysis Precision

We evaluated the precision improvements of ObjSens2 over the context-
insensitive analysis and the call string analysis with respect to MOD analysis,
call graph construction, and virtual call resolution.

8.2.1 MOD Analysis. Using the MOD algorithm described in Section 6, we
performed measurements for ObjSens2, CallSite, and And in order to estimate
the impact of the analyses on MOD analysis. More precise points-to analyses
produce a smaller number of modified objects per statement.

We considered all methods that both ObjSens2 and CallSite reported as po-
tentially executable (i.e., methods that are reachable from main, static initializ-
ers, and JVM start-up methods). For all statements in such methods, we com-
puted (1) Mod sets according to the algorithm from Figure 7, (2) Mod sets using
CallSite and the corresponding version of the algorithm from Figure 7 which
distinguishes context per invocation site, and (3) Mod sets using And and the
corresponding context-insensitive version of the algorithm from Figure 7. In
order to compare the output of CallSite with the output of And, we merged the
Mod sets for CallSite for different contexts to obtain a single Mod set. Similarly,
we merged the Mod sets for ObjSens2 for different object contexts. For example,
the aggregate ObjSens2-based Mod set for line 1 in Figure 4 is {o3, o4}, which
is the union of Mod(1, o3) and Mod(1, o4). Analogously, the CallSite-based Mod
set for 1 is {o3, o4}, which is the union of Mod(1, 2) and Mod(1, 5).

Table III shows the distribution of the number of modified objects per pro-
gram statement for the three analyses. Only statements that modify at least
one object were considered for these results. Each column corresponds to a spe-
cific range of numbers. For example, the first column corresponds to statements
that may modify one, two or three objects, while the last column corresponds to
statements that may modify at least 10 objects. Each column shows what per-
centage of the total number of statements corresponds to the particular range
of numbers of modified objects.

The measurements in Table III show that object sensitivity significantly im-
proves analysis precision. For MOD analysis based on ObjSens2, on average
54% of the statements modify at most three objects. In contrast, for MOD anal-
ysis based on And this percentage is 18%. It is also significant to note that for
And nearly 80% of the statements modify at least 10 objects. This indicates
substantial imprecision, that can be reduced significantly by using ObjSens2.

The results from MOD analysis based on ObjSens1 are not shown because
they are essentially the same, with the exception of sablecc for which ObjSens2
is slightly more precise than ObjSens1. Most modifications in object-oriented
programs occur through implicit parameter this and ObjSens1 benefits from
object sensitivity because it separates this for different object contexts.

The experiments demonstrate that distinguishing context per invocation site
does not substantially improve MOD analysis precision over And. For MOD
analysis based on CallSite, on average 23% of the statements modify at most
three objects. This is substantially worse than 54% for ObjSens2, and slightly
better than 18% for And. In addition, for CallSite more than 70% of the state-
ments modify at least 10 objects which indicates substantial imprecision.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

34 • A. Milanova et al.

Table III. Number of Modified Objects for Program Statements. Each Column Shows the
Percentage of Statements Whose Number of Modified Objects is in the Corresponding Range

And CallSite ObjSens2
Program 1–3 4–9 ≥10 1–3 4–9 ≥10 1–3 4–9 ≥10
proxy 19% 6% 75% 25% 7% 68% 75% 14% 11%
compress 23% 4% 73% 27% 5% 67% 67% 9% 24%
db 20% 4% 76% 24% 4% 72% 48% 25% 27%
jb 15% 5% 80% 20% 5% 75% 67% 20% 13%
echo 25% 6% 69% 30% 5% 65% 63% 11% 26%
raytrace 23% 5% 72% 28% 6% 66% 66% 9% 25%
mtrt 23% 5% 72% 28% 6% 66% 66% 9% 25%
jtar 18% 8% 74% 24% 7% 69% 61% 15% 24%
jlex 17% 4% 79% 20% 4% 76% 56% 34% 10%
javacup 14% 3% 83% 21% 4% 75% 53% 38% 9%
rabbit 18% 5% 77% 23% 6% 71% 47% 13% 40%
jack 17% 3% 80% 20% 3% 77% 53% 8% 39%
jflex 19% 4% 77% 23% 5% 72% 54% 34% 12%
jess 15% 5% 80% 25% 3% 72% 60% 9% 31%
mpegaudio 23% 4% 73% 28% 4% 68% 65% 9% 26%
jjtree 8% 2% 90% 10% 2% 88% 32% 26% 42%
sablecc 20% 3% 77% 32% 4% 64% 52% 15% 33%
javac 14% 4% 82% 18% 6% 76% 37% 5% 58%
creature 18% 3% 79% 27% 3% 70% 54% 13% 33%
mindterm 20% 8% 73% 25% 7% 68% 55% 16% 29%
soot 16% 4% 80% 25% 8% 67% 43% 15% 42%
muffin 16% 4% 80% 24% 4% 72% 45% 7% 48%
javacc 10% 1% 89% 11% 1% 88% 29% 49% 22%

Average 18% 4% 78% 23% 5% 72% 54% 18% 28%

Examination of several examples extracted from our benchmarks clearly
reveal that the precision of the CallSite-based MOD analysis is compro-
mised by inherent object-oriented features such as encapsulation and in-
heritance. For example, benchmark jb defines a class Namedhash which
extends java.util.Hashtable and overrides Hashtable.put. It uses the fol-
lowing call sequence: Namedhash.put contains a call site c2: super.put(...)
and Hashtable.put contains a call site c1: this.rehash(...). Method
Hashtable.rehash allocates a new array of hash entries and assigns the ar-
ray to a field of the receiver (i.e., it contains an instance field write state-
ment this.table=...). Since c1 is the only call site in the program that
invokes rehash, the CallSite-based MOD analysis computes a single set
MMod(Hashtable.rehash, c1) for rehash. Hashtable.put is typically invoked on
every instance of class Hashtable (and also on every instance of its subclasses);
therefore, the set MMod(Hashtable.rehash, c1) contains every direct or indirect
instance of Hashtable. The CallSite-based MOD analysis propagates this set to
every call site that invokes Hashtable.put, including c2; subsequently, it prop-
agates the set to every call to Namedhash.put. Therefore, the CallSite-based
MOD analysis determines that each call statement to Namedhash.put modifies
at least 10 objects due to the instance field write in rehash, while in fact it modi-
fies exactly one object (namely, the receiver object at the call to Namedhash.put).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 35

In contrast, the object-sensitive MOD analysis computes MMod sets for rehash,
Hashtable.put and Namedhash.put for each possible receiver object; it precisely
determines that each call to Namedhash.put modifies exactly one object (i.e., the
receiver at that call) due to the instance field write statement this.table=...
in rehash.

In object-oriented programs, instance fields are often written by a sequence
of intraclass method invocations through the receiver (i.e., through implicit pa-
rameter this). Thus, context-insensitive MOD analysis is likely to incur sub-
stantial imprecision, since it merges the information about indirect modifica-
tions over all possible receivers. Call string context-sensitive analysis is also
likely to incur substantial imprecision unless the length of the call string is suf-
ficiently large. In the above Hashtable example, the analysis needs a call string
of length at least 3 in order to determine precisely that each call to method
Namedhash.put modifies exactly one object due to the instance field write in
rehash. However, a call string length greater than one is usually considered
impractically expensive for large programs.

The above empirical results show that object-sensitive analysis is a promis-
ing candidate for producing useful side-effect information. It is able to capture
side-effects that arise due to fundamental object-oriented features such as en-
capsulation and inheritance. In contrast, the context-insensitive analysis and
the call string context-sensitive analysis appear to be ill-suited for side-effect
analysis of object-oriented languages. The precise information computed by the
object-sensitive analysis is important for (1) implementing advanced optimiza-
tions in aggressive optimizing compilers, and (2) improving the precision of
software productivity tools, with the corresponding reduction in human time
and effort spent on software understanding, restructuring, and testing.

8.2.2 Virtual Call Resolution and Call Graph Construction. One applica-
tion of points-to analysis is to determine the potential target methods at virtual
call sites. This information can be used to construct the program call graph
(which is a prerequisite for all interprocedural analyses) and to identify virtual
call sites that can be resolved to a single target method. We performed mea-
surements to evaluate the improvement of CallSite, ObjSens1 and ObjSens2
over And for virtual call resolution and call graph construction. (Andersen’s
analysis itself already produces relatively precise call graph results [Rountev
et al. 2001].)

To determine the improvement in the number of resolved calls, we considered
call sites that could not be resolved to a single target method by CHA. Let V be
the set of all CHA-unresolved call sites that occur in methods identified as exe-
cutable by both ObjSens2 and CallSite. We computed the number of sites from
V that were resolved to a single target method according to And, CallSite,
ObjSens1, and ObjSens2. The improvement in the number of resolved call
sites for CallSite, ObjSens1 and ObjSens2 over And is shown in columns (a) in
Table IV. On average, CallSite resolves 15% more call sites than And, ObjSens1
resolves 20%, and ObjSens2 resolves 21% more call sites. The increased preci-
sion allows better removal of redundant run-time virtual dispatch and enables
additional method inlining.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

36 • A. Milanova et al.

Table IV. Improvements Over Context-Insensitive Analysis. (a) Increase in the Number
of Resolved Call Sites. (b) Improvement in the Number of Removed Target Methods

CallSite ObjSens1 ObjSens2
(a) (b) (a) (b) (a) (b)

Program Resolved Removed Resolved Removed Resolved Removed
proxy 10% 2% 12% 3% 12% 3%
compress 10% 8% 19% 13% 19% 13%
db 9% 8% 17% 14% 17% 14%
jb 42% 5% 45% 5% 45% 5%
echo 6% 9% 10% 13% 10% 13%
raytrace 10% 9% 18% 15% 18% 15%
mtrt 10% 9% 18% 15% 18% 15%
jtar 31% 6% 39% 7% 39% 7%
jlex 32% 5% 40% 5% 40% 5%
javacup 23% 5% 26% 5% 26% 5%
rabbit 19% 8% 31% 11% 31% 11%
jack 3% 7% 5% 12% 5% 12%
jflex 21% 3% 23% 3% 23% 3%
jess 7% 8% 17% 14% 17% 14%
mpegaudio 12% 12% 20% 17% 20% 17%
jjtree 48% 6% 48% 6% 48% 6%
sablecc 21% 183% 10% 1% 24% 183%
javac 3% 8% 6% 10% 7% 10%
creature 8% 3% 21% 5% 21% 5%
mindterm 2% 6% 9% 9% 9% 9%
soot 4% 1% 5% 1% 5% 1%
muffin 1% 5% 3% 6% 3% 7%
javacc 14% 4% 15% 4% 15% 4%

Average 15% 14% 20% 8% 21% 16%

We also computed the total number of removed target methods over all
sites in V according to And, CallSite, ObjSens1, and ObjSens2. The improve-
ment in the total number of removed target methods for CallSite, ObjSens1,
and ObjSens2 over And is shown in columns (b) in Table IV. On average,
CallSite removes 14% more target methods than And, ObjSens1 removes 8%,
and ObjSens2 removes 16% more target methods. This improved precision is
beneficial for reducing the cost and improving the precision of subsequent in-
terprocedural analyses.

The three context-sensitive analyses are able to improve precision over the
context-insensitive analysis. The object-sensitive analysis produces more pre-
cise results than the call string context-sensitive analysis because it handles
object-oriented features more precisely. Consider the example in Figure 4.
If statement s5 : C c2 = new C(y) is added at line 14, CallSite will be un-
able to resolve the virtual call at line 7. In the presence of encapsulation
and inheritance, instance fields are often written through a sequence of in-
vocations. A call string analysis will typically need an impractically long call
string in order to separate writes to fields of instances of different classes or
writes to fields of different instances of the same class. The object-sensitive
analysis is able to separate such field writes precisely, which improves the

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 37

precision of client analyses such as call graph construction and virtual call
resolution.

The precision experiments confirm that substantial benefits from object sen-
sitivity are due to parameter replication. Replicating return variables in addi-
tion to parameters does not appear to increase analysis cost, and sometimes can
result in significant improvements in cost and precision. Therefore, ObjSens2 is
a better candidate than ObjSens1 for use in optimizing compilers and software
tools.

9. RELATED WORK

Flow-insensitive context-sensitive alias analysis for Java has been developed
by Ruf [2000] in the context of a specialized algorithm for synchronization re-
moval. Ruf ’s analysis uses method summaries to model context sensitivity and,
unlike our analysis, requires bottom-up traversal of the call graph (i.e., a called
method is analyzed before or together with its callers). Our analysis is based
on Andersen’s analysis, which has cubic time worst case complexity [Andersen
1994]; in contrast, Ruf ’s algorithm is based on the almost-linear Steensgaard’s
points-to analysis for C [Steensgaard 1996]. Other context-sensitive points-to
analyses for Java are presented in Grove et al. [1997] and Chatterjee et al.
[1999]. The algorithm in Chatterjee et al. [1999] uses method summaries to
model context sensitivity, while reference [Grove et al. 1997] uses the call string
approach. These analyses are more precise and significantly more costly than
ours. Flow-insensitive context-insensitive points-to analyses for Java are de-
scribed in Razafimahefa [1999], Streckenbach and Snelting [2000], Liang et al.
[2001], Rountev et al. [2001], Lhoták and Hendren [2003], and Berndl et al.
[2003]. Other work that is based on Andersen’s analysis is the points-to anal-
ysis described in Whaley and Lam [2002], which is context-insensitive and in-
traprocedurally flow-sensitive. Dimensions of precision for reference analysis
of object-oriented languages are discussed in Ryder [2003].

Class analysis for object-oriented languages computes a set of classes for
each program variable; this set approximates the classes of all run-time values
for this variable. Typical clients of this information are call graph construction
and virtual call resolution. Various practical context-insensitive class analy-
ses are presented in Palsberg and Schwartzbach [1991], Diwan et al. [1996],
Bacon and Sweeney [1996], DeFouw et al. [1998], Tip and Palsberg [2000], and
Sundaresan et al. [2000]. Different mechanisms for context sensitivity have
been studied in the context of class analysis [Oxhoj et al. 1992; Agesen 1994,
1995; Plevyak and Chien 1994; Grove et al. 1997]; these methods typically
use some combination of the parameter types to abstract context. The work in
Oxhoj et al. [1992] and Agesen [1994, 1995] presents class analyses for
Smalltalk and Self. Similarly to our analysis, these analyses use information
about the receiver object in order to create and select contextual method ver-
sions. Unlike our analysis, they use additional information (e.g., the method
invocation site). The idea of object sensitivity is to use only the receiver object
as context; we believe that for the purposes of flow-insensitive points-to anal-
ysis for Java, using invocation sites or other information may be redundant

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

38 • A. Milanova et al.

in most cases. The nonparameterized object-sensitive analysis from Section 3
can be expressed in the general framework for context-sensitive class analysis
presented in Grove et al. [1997]; however, it is neither identified nor studied
in Grove et al. [1997].

Conceptually, our MOD analysis is based on similar MOD analyses for
C [Shapiro and Horwitz 1997a; Hind and Pioli 2000; Ryder et al. 2001].
Razafimahefa [1999] presents algorithms for side-effect analysis for Java that
are based on context-insensitive information. The more precise of the algo-
rithms is based on context-insensitive points-to analysis for Java derived
from Steensgaard’s analysis for C [Steensgaard 1996]. Clausen [1997] inves-
tigates side-effect analysis for Java in the context of a Java bytecode optimizer.
Clausen’s side-effect analysis does not use points-to information (i.e., a modifi-
cation through field f is assumed to write all objects whose class contains field
f). This may result in less precise side-effect information.

Previous work by Pande et al. [1994] defines a def-use analysis for C programs
with single-level pointers. The analysis is based on a flow- and context-sensitive
pointer analysis, which allows the def-use analysis also to be context-sensitive.
The def-use analyses presented in Section 7 are based on a similar idea: they
take advantage of the context sensitivity of the points-to analysis. However, our
work targets a different language and is based on a different notion of context
sensitivity that is appropriate for object-oriented software.

Work on data-flow-based testing for object-oriented programs in-
cludes [Harrold and Rothermel 1994; Souter et al. 1999; Souter and Pollock
2003]. Harrold and Rothermel [1994] describe techniques for data-flow-based
testing of classes. Their work focuses on def-use pairs for instance variables
within a class and does not address interclass interactions, polymorphism, and
aliasing. Souter and Pollock [2003] develop contextual def-use associations,
a generalization of existing data-flow-based testing techniques (e.g., Harrold
and Rothermel [1994] and Souter et al. [1999]); their work addresses inter-
class interactions, polymorphism, and aliasing. The computation of def-use
pairs in Souter and Pollock [2003] is based on the points-to escape analysis
from Whaley and Rinard [1999]. Our work shows that the object-sensitive
points-to analysis can be used for the purposes of computing contextual def-
uses as a more practical alternative to the context- and flow-sensitive analysis
from Whaley and Rinard [1999].

10. CONCLUSIONS AND FUTURE WORK

We present a framework for parameterized object-sensitive points-to analysis,
as well as side-effect and def-use analyses based on it. The basic idea of our
approach is to distinguish among the different receiver objects of a method. We
show that object-sensitive analysis is capable of achieving significantly better
precision than context-insensitive analysis, while at the same time remaining
efficient and practical. Thus, object-sensitive analysis is a better candidate for
a relatively precise, practical, general-purpose points-to analysis for Java.

In our future work we plan to investigate other instantiations of our frame-
work, especially instantiations that involve more precise object naming schemes

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 39

with targeted context sensitivity. For example, it would be interesting to
consider more precise naming for subobjects of composite objects (i.e., when an
object is associated with a single enclosing object). Using the parameterization
framework, we plan to focus on instantiations that significantly improve the
precision with acceptable increase in analysis cost. This is especially important
for software productivity tools in which imprecision may result in wasted time
and effort for a tool user.

This work presents experimental comparison of object-sensitive analyses
with a context-sensitive analysis that distinguishes context by one enclosing
call site (i.e., an instance of the call string approach). It would be interesting to
perform theoretical and empirical comparisons between object sensitivity and
other instances of the functional approach to context sensitivity (e.g., Chatterjee
et al. [1999] and Ruf [2000]).

We plan to further investigate applications of points-to, side-effect, and def-
use analyses in the context of software productivity tools (e.g., tools for program
understanding and testing). The trade-off between cost and precision is an
important issue in such tools, and we intend to focus our work on this problem.

REFERENCES

AGESEN, O. 1994. Constraint-based type inference and parametric polymorphism. In Proceedings
of the Static Analysis Symposium. Lecture Notes in Computer Science, vol. 864. Springer-Verlag,
Los Alamitos, Calif., 78–100.

AGESEN, O. 1995. The Cartesian product algorithm: Simple and precise type inference of para-
metric polymorphism. In European Conference on Object-Oriented Programming. 2–26.

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, Mass.

AIKEN, A., FÄHNDRICH, M., FOSTER, J., AND SU, Z. 1998. A toolkit for constructing type- and
constraint-based program analyses. In International Workshop on Types in Compilation.

ANDERSEN, L. 1994. Program analysis and specialization for the C programming language. Ph.D.
dissertation, DIKU, University of Copenhagen.

BACON, D. AND SWEENEY, P. 1996. Fast static analysis of C++ virtual function calls. In Proceed-
ings of the Conference on Object-Oriented Programming Systems, Languages, and Applications.
324–341.

BERNDL, M., LHOTÁK, O., QIAN, F., HENDREN, L., AND UMANEE, N. 2003. Points-to analysis using
BDD’s. In Proceedings of the Conference on Programming Language Design and Implementation.
103–114.

CHATTERJEE, R., RYDER, B. G., AND LANDI, W. 1999. Relevant context inference. In Proceedings of
the Symposium on Principles of Programming Languages. 133–146.

CLAUSEN, L. 1997. A Java bytecode optimizer using side-effect analysis. Concurr.: Practice
Exp. 9, 11, 1031–1045.

DAS, M. 2000. Unification-based pointer analysis with directional assignments. In Proceedings
of the Conference on Programming Language Design and Implementation. 35–46.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimizations of object-oriented programs using
static class hierarchy analysis. In Proceedings of the European Conference on Object-Oriented
Programming. 77–101.

DEFOUW, G., GROVE, D., AND CHAMBERS, C. 1998. Fast interprocedural class analysis. In Proceedings
of the Symposium on Principles of Programming Languages. 222–236.

DIWAN, A., MOSS, J. B., AND MCKINLEY, K. 1996. Simple and effective analysis of statically-typed
object-oriented programs. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications. 292–305.

FITZGERALD, R., KNOBLOCK, T. B., RUF, E., STEENSGAARD, B., AND TARDITI, D. 2000. Marmot: An
optimizing compiler for Java. Software: Practice Exper. 30, 3 (Mar.), 199–232.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

40 • A. Milanova et al.

FU, C., RYDER, B. G., MILANOVA, A., AND WONNACOTT, D. 2004. Testing of Java web services for
robustness. In Proceedings of the International Symposium on Software Testing and Analysis.
23–34.

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification. Addison-Wesley,
Reading, Mass.

GROVE, D. AND CHAMBERS, C. 2001. A framework for call graph construction algorithms. ACM
Trans. Prog. Lang. Syst. 23, 6, 685–746.

GROVE, D., DEFOUW, G., DEAN, J., AND CHAMBERS, C. 1997. Call graph construction in object-oriented
languages. In Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. 108–124.

HARROLD, M. J. AND ROTHERMEL, G. 1994. Performing data flow testing on classes. In Proceedings
of the Symposium on the Foundations of Software Engineering. 154–163.

HARROLD, M. J. AND SOFFA, M. L. 1994. Efficient computation of interprocedural definition-use
chains. ACM Trans. Prog. Lang. Syst. 16, 2 (Mar.), 175–204.

HIND, M. AND PIOLI, A. 2000. Which pointer analysis should I use? In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis. 113–123.

IBM CORPORATION 1997. High Performance Compiler for Java. IBM Corporation. http://www.
alphaWorks.ibm.com/formula.

LHOTÁK, O. AND HENDREN, L. 2003. Scaling Java points-to analysis using Spark. In Proceedings
of the International Conference on Compiler Construction. Lecture Notes in Computer Science,
vol. 2622. Springer-Verlag, New York, 153–169.

LIANG, D., PENNINGS, M., AND HARROLD, M. J. 2001. Extending and evaluating flow-insensitive
and context-insensitive points-to analyses for Java. In Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering. 73–79.

MILANOVA, A. 2003. Precise and practical flow analysis of object-oriented software. Ph.D. disser-
tation, Rutgers University. (Available as Techical Report DCS-TR-539).

MILANOVA, A., ROUNTEV, A., AND RYDER, B. G. 2002. Parameterized object sensitivity for points-to
and side-effect analyses for Java. In Proceedings of the International Symposium on Software
Testing and Analysis. 1–11.

OXHOJ, N., PALSBERG, J., AND SCHWARTZBACH, M. 1992. Making type inference practical. In Proceed-
ings of the European Conference on Object-Oriented Programming. 329–349.

PALSBERG, J. AND SCHWARTZBACH, M. 1991. Object-oriented type inference. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications. 146–161.

PANDE, H., LANDI, W., AND RYDER, B. G. 1994. Interprocedural def-use associations for C systems
with single level pointers. IEEE Transactions on Software Engineering 20, 5 (May), 385–403.

PLEVYAK, J. AND CHIEN, A. 1994. Precise concrete type inference for object-oriented languages. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations. 324–340.

RAZAFIMAHEFA, C. 1999. A study of side-effect analyses for Java. M.S. thesis, McGill University.
REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via graph

reachability. In Proceedings of the Symposium on Principles of Programming Languages. 49–61.
ROUNTEV, A., MILANOVA, A., AND RYDER, B. G. 2001. Points-to analysis for Java based on anno-

tated constraints. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications. 43–55.

RUF, E. 2000. Effective synchronization removal for Java. In Proceedings of the Conference on
Programming Language Design and Implementation. 208–218.

RYDER, B. G. 2003. Dimensions of precision in reference analysis of object-oriented program-
ming languages. In Proceedings of the International Conference on Compiler Construction.
Lecture Notes in Computer Science, vol. 2622. Springer-Verlag, New York, 126–137 (invited
paper).

RYDER, B. G., LANDI, W., STOCKS, P., ZHANG, S., AND ALTUCHER, R. 2001. A schema for interprocedural
modification side-effect analysis with pointer aliasing. ACM Trans. Prog. Lang. Syst. 23, 2 (Mar.),
105–186.

SHAPIRO, M. AND HORWITZ, S. 1997a. The effects of the precision of pointer analysis. In Proceedings
of the Static Analysis Symposium. Lecture Notes in Computer Science, vol. 1302. Springer-Verlag,
New York, 16–34.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

Parameterized Object Sensitivity for Points-to Analysis for Java • 41

SHAPIRO, M. AND HORWITZ, S. 1997b. Fast and accurate flow-insensitive points-to analysis. In
Proceedings of the Symposium on Principles of Programming Languages. 1–14.

SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In Pro-
gram Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Eds. Prentice Hall,
Englewood Cliffs, N.J., 189–234.

SOUTER, A. AND POLLOCK, L. 2003. The construction of contextual def-use associations for object-
oriented systems. IEEE Trans. Softw. Eng. 29, 11 (Nov.), 1005–1018.

SOUTER, A., POLLOCK, L., AND HISLEY, D. 1999. Inter-class def-use analysis with partial class rep-
resentations. In Proceedings of the Workshop on Program Analysis for Software Tools and Engi-
neering. 47–56.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. In Proceedings of the Symposium
on Principles of Programming Languages. 32–41.

STRECKENBACH, M. AND SNELTING, G. 2000. Points-to for Java: A general framework and an empir-
ical comparison. Tech. rep., U. Passau. Sept.

SUNDARESAN, V., HENDREN, L., RAZAFIMAHEFA, C., VALLEE-RAI, R., LAM, P., GAGNON, E., AND GODIN, C.
2000. Practical virtual method call resolution for Java. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications. 264–280.

TIP, F., LAFFRA, C., SWEENEY, P., AND STREETER, D. 1999. Practical experience with an application
extractor for Java. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications. 292–305.

TIP, F. AND PALSBERG, J. 2000. Scalable propagation-based call graph construction algorithms. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations. 281–293.

VALLÉE-RAI, R., GAGNON, E., HENDREN, L., LAM, P., POMINVILLE, P., AND SUNDARESAN, V. 2000. Opti-
mizing Java bytecode using the Soot framework: Is it feasible? In Proceedings of the International
Conference on Compiler Construction. Lecture Notes in Computer Science, vol. 1781. Springer-
Verlag, New York, 18–34.

WHALEY, J. AND LAM, M. 2002. An efficient inclusion-based points-to analysis for strictly-typed
languages. In Proceedings of the Static Analysis Symposium. 180–195.

WHALEY, J. AND RINARD, M. 1999. Compositional pointer and escape analysis for Java programs.
In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications. 187–206.

Received July 2003; revised July 2004; accepted August 2004

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 1, January 2005.

