Fall 2011, Test 1, Introduction to Algorithms

Name: Section: Email id:

3rd October, 2011

Answer all Six questions. You have 90 minutes to complete the exam. You can use a calculator - You are allowed to use your text booka and notes..

1. Recursion and Analysis

(a) Write an algorithm (C++ like program) to find the largest integer less than equal to n^{1/3} of a given input positive integer, n,. (You are not allowed to use built in mathematical libraries.. You are allowed to use any of the standard (+,-*,/) arithmetical operators) For example if n = 3, the output should be 1, if n = 16, the output should be 2 and if n = 69, the output should be 4. What is the running time of your algorithm in O notation. [5 points]

i=1;
while
$$(i*i*i <= n)$$

 $i=i+1;$
return i=1; Complexity $O(n^{\frac{1}{3}})$

Binary search is also acceptable.

(b) You are given an unsorted integer array A of size n. Your output will be 1 if every element in the even position of A is smaller than every element in the odd position of A and 0 otherwise. (i.e., each element A[0], A[2], A[4],.... is smaller than each element A[1],A[3],A[5],...) Write a linear time algorithm (pseudo code will suffice) to do this. (A nonlinear algorithm will get you only one point). [5 points]

2. Big Oh Notations

T(1) = 1

(a) For the expressions on the left hand side, are the Asymptotic Notations (in Big Oh or Ω) correct - State either True or False. [5 points]

i.
$$n\log(n) = O(n\sqrt{n})$$
 True

ii. $\sqrt{(n)} = O(\log(n))$ False

iii. $\log(n) + \sqrt{n} = O(n)$ True

iv. $\frac{1}{n} = \Omega(\log(n))$ False

v. $3n^2 + \sqrt{n} = \Omega(n\log(n))$ True

(b) What will be printed by the following program when n=2 and n=3. Write a recurrence relation (not solve) for the number of times print statements are executed..

```
void csci2300(int n)
{
    if (n==1) cout << ''Happy'' << endl;
    else
    {
        csci2300(n-1);
        cout << ''Semester'' << endl;
        csci2300(n-1);
    }
    return;
}

7(n) = 27(n-1) + 1 3</pre>
```

n: 3
Happy
Semester
Happy
Semester
Happy
Semester
Happy
Happy

3. Divide and Conquer and Design of Algorithm

Suppose you are choosing between the following two algorithms:

- Algorithm A solves problems of size n by dividing them into 6 subproblems of half the size, recursively solving each subproblem, and then combining the solutions in linear time.
- Algorithm B solves problems of size n by dividing them into twelve subproblems of size n/3, recursively solving each subproblem, and then comining the solutions in $O(n^2)$ time.
- (a) What are the running times of each the algorithms in big Oh notation? (Please write a recurrence relations and solve (using any method, including master theorem) [6 Points]
- (b) Which would you choose and Why? [4 Points]

a.
$$T(n) = 6T(\frac{n}{2}) + O(n)$$

$$a = 6 \qquad \frac{a}{ba} = \frac{6}{a} > 1$$

$$b = 2 \qquad ba \qquad \frac{6}{a} > 1$$

$$O(n) = \frac{\log_2 b}{2} = O(n)$$

$$O(n^2) = O(n^2)$$

$$a = 12 \qquad \frac{a}{b^2} > 1$$

$$b = 3 \qquad \frac{12}{a^2} > 1$$

$$b = 3 \qquad \frac{12}{a^2} > 1$$

$$O(n) \qquad O(n)$$

(b) Prefer 2rd Algorithm as it is faster.

4. Algorithms with Numbers

(b) what is the value of 2¹²⁸ mod 17 (Hint: Use Fermat's little Theorem and 17 is a prime number). [4 points]

$$2^{16} \mod 17 = 1$$
 (FLT)
$$2^{128} \mod 17 = (4)^{8} \mod 7$$

$$(2^{16})^{8} \mod 7$$

$$= 1^{8} = 1$$

5. Recursive Ternary Trees

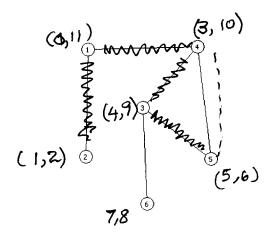
A full ternary tree is a tree that has 0 or 3 children (left, middle and right) (This is **a Full** Ternary). Let T_n denote the number of full ternary trees with n vertices. Naturally $T_1=1$. By definition $T_2=0$. $T_3=0$, $T_5=0$; $T_6=0$

- (a) Draw ternary trees with 4 and 7 vertices, determine the exact values of T_4 , T_7 [6 points].
- (b) For general n, derive a recurrence relation for T_n [4 points] (Hint: There are i nodes in the left subtree, j nodes in the middle subtree)

 $T_{1}=1$ $T_{7}=3$ $T_{7}=3$ $T(n) = \sum_{j=1}^{n-1} T(i) T(j) T(n-i-j)$ T(i) = 0 for all $i = \frac{3k+2, 3k+3}{3, 2, 3, 5, 6, 8, 9}$ i = 3k+2 or 3k $k = 0, \cdots$

6. Graphs and Graph Algorithms

(a) Give the pre and post numbering of vertices (i.e., the number you assign when you first visit a vertex and the number you assign when you leave a vertex) of a Depth First Traversal of a graph G (shown below) starting at vertex 1 [6 points].



(b) Construct a graph G, with 5 nodes such that the pre and post numbers for 4 of the nodes are successive (i.e. for nodes n=2 to 5, post(n) = pre(n)+1) [4 points].

(0,9) 2 1/3 (3,4) (1,8)6 4 (5,16