Problem 1. Prove that a language L is decidable if and only if there is an enumerator that prints the strings of L in proper (canonical) order.

Problem 2. Formulate the following problem as a language and then prove that it is decidable:

Given a Turing Machine M and an input string w determine whether M moves its head to the left during the computation on input string w.

Problem 3. Formulate the following problems as a language and then prove that it is undecidable:

Given a Turing machine M a string w and a symbol x, determine whether M writes symbol x on the tape during the computation on input string w.

Hint: use a similar reduction as in the state-entry problem which we described in class.

Problem 4. Formulate the following problem as a language and then prove that it is undecidable:

Given a Turing machine M determine whether $L(M) = \{\text{Have, A, Great, Summer}\}$.

Hint: use a similar reduction as in the Empty, Regular, and Size-2 language problems which we described in class.