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Chapter 1

Introduction

The goal of this text is to teach mathematical and computer science con-
cepts through a series of stories designed for students in grades 7-10.

The storyline is similar to the Vikramaditya stories, also called the Ve-
tala tales, in Indian folklore. These stories are believed to have taken place
in the 11th century BCE[| Collectively, there are 21 stories, one taking place
each night. Each story begins with a series of questions, and the protagonist
has to successfully answer those questions to set himself free.

Our stories start on October 31st, Halloween. They take place in a
hamlet called Royt, a small college town somewhere in Upstate New York.
Royt was a prosperous town a hundred years ago, but these days the town
has many dilapidated buildings and a rather imposing cemetery. Ajur and
his parents live in this hamlet. Ajur has a pet dog named Jura, who ac-
companies Ajur wherever he goes. In the cemetery lives Rishnak, a ghost,
who was a tyrant but now has good intentions.

1.1 Characters

Ajur - A young boy who is interested in mathematics but easily gets bored.
Jura - Ajur’s pet dog.

Kinaja - An angel who helps Ajur overcome challenges posed by Rishnak.
Rishnak - A ghost with a mathematical bent of mind from whom Ajur
wants to escape by solving various mathematical challenges.

"https://en.wikipedia.org/wiki/List_of_Vetala_Tales
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Figure 1.1: A graph with four vertices and six edges

1.2 Notation

Graphs , also known as networks , occur naturally in many different appli-
cations. They are abstractions of a relation between any two objects, i.e., a
binary relation. Objects can, for example, be people, cities, countries, or
webpages. These objects are represented by vertices, usually drawn as
dots or circles on a page. Relations may exist between any two different
objects. These relations are represented as lines connecting the two vertices
and are called edges .

We will illustrate with three examples. In our first example [Figure ,
there are four vertices representing objects, labeled with the numbers 0, 1,
2, and 3 respectively. There are six relations (or edges); these relations are
{0,1}, {0,2}, {0,3}, {1,2}, {1,3}, and {2,3}. These relations are symmetric,
meaning if there is a relation between vertex 0 and vertex 1, then there
is also a relation between vertex 1 and vertex 0. Such graphs are called
undirected graphs.
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William

Chris

Ajur

Figure 1.2: A friendship graph with five vertices and five edges

In our next example [Figure , we have five vertices representing five
people, namely Bob, William, James, Chris, and Ajur. The edges in the
graph represent friendship. Chris is friends with William, James, and Ajur.
Bob is friends with William and James. These friendship relations are
depicted as a graph with five vertices and five edges.
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NY

ME

NH U RI

Figure 1.3: A graph representing seven Northeastern states in the United
States, with seven vertices and 10 edges

In our third example [Figure , we have seven Northeastern states in
the United States, namely New York (NY), Connecticut (CT), Vermont
(VT), Maine (ME), Massachusetts (MA), Rhode Island (RI), and New
Hampshire (NH). The relationship represented in this graph is the shar-
ing of a border with another state. Therefore, NY borders CT, VT, and
MA. CT additionally borders RI and MA. VT additionally borders MA
and NH. ME only borders NH. MA additionally borders RI and NH. These
state-border relations are depicted as a graph with seven vertices and 10
edges.

One other term to introduce here. If there is an edge between two
vertices (e.g., between NY and VT in Figure , we say that these two
vertices are adjacent. More specifically, NY is adjacent to VT. And VT is
adjacent to NY.



Chapter 2

A Trip to the Cemetery

It was Halloween, a cold and dreary fall afternoon. Ajur was interested in
visiting the famous cemetery in Royt as any teenager with an adventurous
spirit would be wont to do. His pet dog Jura, a Labrador, was eager to
follow. As Ajur examined the old headstones, he lost track of time, and it
grew dark. He felt tired, so he and Jura sat under a tree and fell asleep.

Deep in sleep, they were awakened by a loud noise. The noise was
from Rishnak, a ghost who lived in the cemetery. Rishnak had died many
years ago; he used to teach mathematics and graph theory to talented high
school students all throughout the area. When Rishnak spotted Ajur in the
cemetery, he thought to himself, “Here is an unusual teenager.” Perhaps
he could test whether this youngster was proficient in mathematics. And
if he was indeed proficient, Rishnak could reward him with his magical
powers. When Rishnak appeared in front of Ajur, Jura jumped up and
started barking. Ajur sat up with a start.

Rishnak was afraid he would intimidate Ajur by being brusque. Jura’s
barking became louder and louder, so Rishnak started talking in a soft
voice. He gently asked what grade Ajur was in. Ajur replied that he was
in the 8th grade. Rishnak asked what subjects Ajur liked most in school,
to which Ajur proudly said, “mathematics.” Rishnak smiled. He told the
boy that he had been cursed to live as a ghost, and his curse could only be
lifted if he could reward a youngster who could answer all of his questions.

Ajur was intrigued by Rishnak’s plight. Standing up now, Ajur was
excited for the possibility of rewards and the opportunity to help lift the
curse on Rishnak, a poor ghost. Ajur also thought he would be able to tell
his friends about his adventure.

11



Chapter 3

Degrees

Rishnak asked Ajur whether he knew about graphs and trees in mathemat-
ics. Ajur jumped up and down and proclaimed that he knew all about graph
theory. He continued that graphs are often used to represent relations of a
set of objects. Smiling broadly, he stated that the famous mathematician,
Euler, was the father of graph theory. He was eager to show off his knowl-
edge and described the famous Konigsberg bridge problem. Konigsberg
(now Kaliningrad in modern day Russia) was on the banks of the Pregel
River. There were seven bridges crossing this river, connecting the two sides
of the river with two islands as shown in [Figure E] Rishnak emphasized
that modeling this real word problem as a mathematical problem is an im-
portant component of understanding and producing a solution. Using a
stick, Ajur drew a graph of this in the dirt.

He continued, stating that the problem was to start from the vertex
labeled 0 and to walk across all bridges once and only once, finally returning
to start vertex 0. Ajur could not contain his enthusiasm and asked Rishnak
how to do it. Rishnak gently reminded Ajur that he was the one asking the
questions and that Ajur had to respond with the correct responses. Ajur
nodded his head.

Rishnak told Ajur, “I am going to ask you a series of questions, then I'll
observe whether I have any chance of having my curse lifted.”

Rishnak then asked Ajur, “In a class of 33 students, what is the maxi-
mum and minimum number of friends a student can have? And since friend
is a mutual relation, this means that if A is a friend of B, then B is a friend

'Bogdan Giugea - Public domain (PD), based on the image

12
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Figure 3.1: Original Konigsberg Bridge and a representation by a graph

of A. In other words, a student cannot be a friend to herself!”

Ajur replied nonchalantly that the maximum number of friends is 32
and the minimum number is zero.

Rishnak then asked Ajur, “Will there be a student in the class with 32
friends and a student with zero friends?”

Ajur smiled to himself, seeing right away that Rishnak was a clever
ghost. Ajur replied, “How is that possible? If a student has 32 friends,
she is friends with everyone else, so everyone else would have at least one
friend. So there cannot be a student with zero friends.”

Ajur paused and thought for a few seconds, then said, “Similarly, if
there is a student with zero friends, there are only 32 students remaining,
so another student can have at most 31 friends.”

Rishnak was pleased to have found someone who seemed to have the
ability to help him. His questioning continued. “Can all 33 students have a
distinct number of friends? In other words, can each student have a distinct
number of friends that differs from every other student?”

Ajur responded immediately by saying this was not possible because
with 33 distinct students, the distinct number of friends each student in
the class could have would be {0,1,2,---,32}. He smiled and said, “And
there are 33 numbers in this set, but alas, it contains both a students with 32
friends and a student with zero friends, which is not possible.”
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Rishnak asked Ajur, “Can there be just two students with the same
number of friends, with the other students all having a distinct numbers of
friends? And in this case, all of the students have at least one friend.”

Ajur frowned. This was not as easy a problem. There was no longer
a student with zero friends. Ajur said, “Give me a moment to reason
this out.” He knew that the maximum number could only be 32 and the
minimum had to be one, otherwise there would not be 32 distinct numbers.
But there are 33 students.

“Aha,” said Ajur, “by the pigeonhole principle , which states that if
there are more pigeons than boxes, then one box must contain at least two
pigeons, there has to be two students with the same number of friends.”

Rishnak said nothing, then asked, “Are you sure that’s it?”

Ajur quickly said, “No, wait, there’s more.” He reasoned about what
the numbers could be for each student. He matched 32 with one, i.e., the
student with one friend has to be a friend of a student with 32 friends.
Then he matched 31 with two, meaning the student with two friends has
to be a friend of a student with 32 friends and a student with 31 friends.
Continuing this argument, he matched 30 with three, 29 with four, ---,
18 with 15, and finally 17 with 16. He said, “We have an even number
of students accounted for, but an odd number of total students. So that
means there are two students with the same number of friends.”

Rishnak moved on to the next question. “If I asked five students in a
class of six students how many friends each of them have and they all gave
distinct numbers greater than zero, how many friends does the student who
was not asked have?”

Ajur thought about this. “Okay, if all five students had distinct numbers
greater than zero, they had to be {1,2,3,4,5}. Let’s call the students
A(pu), B(art), C(arla), D(uma), and E(rnie), with five, four, three, two,
and one friend, respectively.” As he spoke, Ajur drew a new diagram in the
dirt. “Let F(ermat) be the sixth student. A is friends with B, C, D, E, and
F. B is friends with C, D, and F. B is already friends with A. And E has
only one friend, namely A. Now C is friends with F. C is already friends
with A and B. And D and E have their friends quota counted already. So
it is easy to see from the graph that F has exactly three friends, namely A,
B, and C.”

Ajur smiled and waved his hand majestically at the graph he drew [Fig-

ure [3.2].
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Figure 3.2: A graph with six students, with five students having 5, 4, 3, 2,
and 1 friend

Rishnak was impressed, but wanted to test Ajur even further. He asked
whether there can be an odd number of students with a grand total of an
odd number of friends. Ajur said that this was impossible as the sum of all
numbers of friends across all students has to be even. He said, “Look at it
this way. If A is a friend of B, then this friendship is counted twice since B
is also a friend of A. Hence the sum of all friends is even. We know that
students with an even number of friends will contribute an even number of
friendships (twice as many). And this in turn implies that the number of
students with an odd number of friends also has to be even since doubling
an odd number always gives you an even number.”

Rishnak smiled, then said, “Good. Next, can you draw a graph of a
class with five students having one, one, two, two, and two friends?”

Ajur knelt and whipped up the graph in the dirt [Figure .

Rishnak asked, “Can you draw a different graph with the same number
of friend relationships, meaning the same degree sequence ?”E|

Ajur took no time to respond and drew another graph [Figure . Jura
had long ago fallen asleep but now stirred. He barked, trying to tell Ajur
that he wanted him to play. Rishnak was happy to hear the answers Ajur
gave. He saw a ray of hope that his curse could maybe finally be lifted.

2Hakimi has given a method of constructing a graph with a given degree sequence
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®

Figure 3.3: A graph with five students having 1, 1, 2, 2, and 2 friends

E D B A C

Figure 3.4: Another graph with five students having 1, 1, 2, 2, and 2 friends

Question for the first day

Rishnak stood tall in front of Ajur. “Okay, here is the question for the
first night. It has two parts. Answer correctly and we’ll continue again
tomorrow. First, can you provide a degree sequence E| that is the degree
sequence of exactly one graph? And ignore the labels on the vertices. They
do not matter.”

Ajur started to answer, but Rishnak raised his hand, silencing him.
“Wait, here is part two of the question. Is there also a degree sequence
with exactly one graph that realizes it that has at least one edge?”

Ajur frowned. “Let me think.”

Before you turn the page, try to come up with answers of your own!

3A degree sequence is a collection of the degrees of all the vertices.
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Figure 3.5: A unique graph with degree sequence {1,1,1,1,1,1,1,1}

Answer for the first day

Ajur said, “For the first question, that’s easy. A degree sequence of all zeros
can have only one graphical realization.”

Rishnak nodded. “And to the second question? A degree sequence with
exactly one graph that realizes it that has at least one edge?”

Ajur thought for a moment, then responded, “Yes, for a sequence of
even length, a degree sequence of all ones would always be realized by a
unique graph.” He used his stick to draw an example graph with a degree
sequence of eight ones [Figure .

Rishnak told Ajur to come back the next night. Ajur stood agape as
Rishnak disappeared into a cold mist.



Chapter 4

Trees and Rooted Trees

Rishnak found Ajur and his dog Jura walking along a row of graves. Ajur
was reading the inscriptions on the tombstones. Each headstone had the
names of a family (parents, wives, husbands) and the dates of birth and of
death. Ajur did not know so many relatives could be buried in such a small
area. He then thought of how different cultures honor their departed ones!T]
As Ajur’s mind wandered through these family trees, he remembered the
definitions of a tree and a rooted tree. He was talking to Jura, saying that a
rooted tree in graph theory looks like a normal tree with one distinguished
vertex. A rooted tree in real life has its root at the bottom, whereas a
rooted tree in graph theory is drawn with a root at its top. Both convey
the same information. [Figure {4.1][Figure

“Here are two drawings of the same information.” Ajur sketched in
the dirt as Jura watched, his tail wagging fiercely. Ajur explained that each
vertex in a rooted tree has just one parent vertex, except for the root vertex,
which has no parent. A rooted tree can also be thought of as a graph. There
are some restrictions, but they will become clearer as the story proceeds.

Rishnak caught up with Ajur and Jura as he had been following them
quietly. Rishnak asked Ajur, “How many edges does a rooted tree with
seven vertices have?”

Ajur reasoned that since each vertex other than the root has exactly
one parent vertex and there are no other edges, the number of edges will
be six.

'He remembered seeing the movie Coco in 2017 about how people in Mexico re-
member their departed ones. He had also heard how Hindus in India go to the city of
Varanasi (Banaras) to perform rituals to thank and honor their deceased forefathers.

18
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Figure 4.2: The same tree drawn with its root at the top

19
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Y

2 3

Figure 4.3: A tree with six vertices and five leaf vertices; the vertex labeled
1 is the root vertex

Rishnak then asked how many edges a rooted tree with 1000 vertices
has.

Without blinking, Ajur shot back with his answer. “Exactly 999.”

Impressed, but not unduly impressed, Rishnak asked how many edges
there are in a rooted tree with n vertices.

Nonchalantly, Ajur replied, “It is n — 1 by the same argument. I mean
each of the n — 1 vertices has just one edge connected to its parent. For
each vertex other than the root vertex, there is a parent vertex and zero
or more child vertices. The descendants of a vertex are all of its children,
grandchildren, great grandchildren, and so on. Analogously, for each vertex,
the ancestors of that vertex are its parent, grandparent, great grandparent,
and so on.”

Ajur looked up at the trees around him. “A vertex with no child vertices
is known as a leaf vertex .”

Rishnak asked Ajur, “What is the largest number of leaf vertices a tree
with six vertices can have?”

Ajur immediately responded that the number is five. He drew a rooted
tree in the dirt [Figure [£.3].

Rishnak asked, “What is the smallest number of leaf vertices a tree with
six vertices can have?”

Ajur knew this answer too. He drew another rooted tree [Figure .

Rishnak said, “We get a lot of lightning and thunderstorms here, espe-
cially during the summer months. Lightning affects tall objects in an open
area, especially objects that conduct electricityﬂ Lightning conductors are
usually at the top of buildings and have less resistance than the building.
Therefore lightning passes through the conductor.”

2Benjamin Franklin had demonstrated the electrical nature of lightning.
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Figure 4.4: A tree with six vertices and one leaf vertex labeled 6; the vertex
labeled 1 is the root vertex

2 3

Figure 4.5: A resistance tree with three vertices and two leaf vertices as
ground

In a dazzling light display, Rishnak drew a rooted tree with three vertices
[Figure . Rishnak said that each edge has a resistance of 1 ohm, and
vertices labeled 2 and 3 are grounded. “So Ajur, what is the effective
resistance of this resistance tree?”

Ajur remembered his physics and realized the two resistances were in
parallel. He said, “The effective resistance is % ohms.”

Rishnak asked, “And how do you know that?”

Ajur said, “Well, intuitively, there are two paths the current can take to
reach ground and so the resistance splits evenly between the two paths.”

Rishnak waved his hands through the air and drew another graph that
dazzled in front of Ajur’s eyes [Figure 4.6]. “What is the effective resistance
for the following rooted tree?”

Ajur said that he had previously computed the effective resistances for
the two “subtrees” rooted at the vertices labeled 2 and 3 to be % From
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1
2/ \3
/\ /\
4 ) 6 7

Figure 4.6: A resistance tree with seven vertices and four leaf vertices as
ground

the root, there are two parallel paths with equal resistance of 1 4 % (there
is a series connection from root vertex 1 to the vertices labeled 2 and 3).
Therefore, the effective resistance is half that, or % ohms.

Ajur continued, “There is a pattern here. For the resistance tree with
15 vertices, so adding one more level or increasing the height of this tree,
the effective resistance will be %.”

Rishnak then asked what happens if the tree is of infinite height, a really
tall lightning conductor!

Ajur was perplexed. But he reasoned that this could be formulated as
a recurrence relation. “Okay,” he said, “let R be the effective resistance
of this infinite tree . The root has two children, each of which will have
a resistance of R ohms. The root vertex is connected to the child vertex
with a resistance of 1 ohm. Here’s the equation.” He sketched the following
equation in the dirt:

R+1
R=""=

Simplifying this, he concluded that the effective resistance was 1 ohm. “A
tree of infinite height, with its very low resistance, is like a really tall and
effective lightning conductor.”ﬂ

3Ajur was right, but because of the large number of joints, this solution may not be
a practical one!
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Rishnak stated that there was another way of getting the same result.
Smiling, he said, “From an earlier example, you can generalize the resistance
to be 2};;17 where h is the height of the rooted tree. The height here is the
longest of path lengths from the root vertex to all of its leaf vertices. What
can that equation be simplified to?”

Ajur thought for a moment, then said, “It can be further simplified
to1— &

Rishnak smiled again. “And as h goes to infinity, the 2% term goes to
zero and hence the resistance is simply 1.”

Ajur stood in awe. He learned the important lesson that there are often
multiple ways of finding a solution, and each approach may provide a new
insight.

Ajur asked Rishnak, “Can you construct a tree with infinite height (so
with an edge resistance of 1 ohm) so that the effective resistance is %, %, }l,
or more generally any fraction less than or equal to 17”

Rishnak frowned. “I'm the one asking the questions.”ﬁ

Rishnak cleared his throat and continued. “A tree is like a rooted tree
but with no root vertex. A tree can be drawn in any manner. The degree of
a vertex is the number of edges incident on that vertex. The leaf or pendant
vertex has a degree of 1. So in this tree [Figure , both vertices labeled 1
and 6 are leaf or pendant vertices, while all other vertices have degree 2.”

Rishnak told Ajur that one important property of a tree is that there
are no cycles in it. Ajur could easily understand this from a genealogy
perspective—a person cannot be an ancestor as well as a descendant of
himself or herself. Ajur thought further and said, “There is only one path
between any two vertices in a tree.”

Of course Ajur assumed that the edges were undirected, which Rishnak
knew. Rishnak asked, “How did you infer that there is a unique path
between two vertices in a tree?”

Ajur promptly replied that if there are two paths between any two ver-
tices, there will be a cycle, which cannot exist in a tree. Since there is a
unique path between two vertices, one can compute the distance between
two vertices as the number of edges in that path.

Ajur provided clarifications with some examples. As one example, in
this first tree that I drew [Figure [1.3], the distance between the vertex

40f course Rishnak knew the answer and suggests that you answer this by thinking
of every vertex with more than two child vertices.
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labeled 1 and any other vertex is 1. And the distance between the vertex
labeled 2 and the vertex labeled 6 is 2.”

Rishnak nodded as Ajur continued. “In this other tree [Figure , the
distance between the vertex labeled 1 and the vertex labeled 6 is 5, while
the distance between the vertex labeled 2 and the vertex labeled 5 is 3, and
the distance between the vertex labeled—"

“Okay, I got it,” boomed Rishnak.

Question for the second day

Rishnak stood tall. “Ajur, here is the question for the second night. Can
you construct an infinite tree with an effective resistance of %?”
Before you turn the page, try to come up with an answer of your own!
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Answer for the second day

Ajur repeated the question to himself, wondering how to solve it. “An
infinite tree with an effective resistance of g?”

Rishnak said, “Well?”

Ajur said, “A way to think about this is to consider an infinite tree in
which each vertex has six children and each edge is of resistance 3 ohms.
We can add a series of three 1 ohm edges to get to 3 ohms.”

Rishnak said, “Are you sure that will work?”

Ajur said, “Yes, with this tree, we will get this recurrence equation.”
He quickly sketched out the recurrence in the dirt:

R+3
6

Here, each child vertex will have a resistance of R ohms (by symmetry, as

. o . . . . . 5R _ 3 . .
they look like the original tree). Simplifying this, we get =* = =, which if
we solve for R gets us to a resistance of R = % ohms.”

Rishnak was very pleased. Jura barked and they called it a night.

R:



Chapter 5

Subgraphs

Rishnak wandered the cemetery, looking for Ajur. As he searched, he saw
a headstone with the name Schossow. Rishnak recognized the name from
the “Instant Insanity” puzzleE], and just as Rishnak was thinking it would
be an interesting topic to discuss with Ajur, Jura the dog, eager to explore,
nudged Ajur awake from a nap.

Before long, Ajur and Jura were strolling along the path when Rishnak
startled Ajur (as ghosts tend to do).

Rishnak asked Ajur what he knew about subgraphs. Ajur said that
he was familiar with subsets. “And since a graph has both a vertex set
and an edge set, I think I can deduce what a subgraph is. Given some
graph G = (V| F) with vertex set V' and edge set F, then take any subset X
of V' and consider all edges in E for which both end vertices are in X.”

Ajur picked up a stick and drew a graph in the dirt [Figure [5.1].

He said, “From this first graph, I could define a separate vertex sub-
set V' = {1,2,3,5} to form another graph, say G’ = (V', E’), which is a
subgraph of the first.”

He drew a second graph [Figure .

Rishnak laughed and said that the subgraph Ajur drew was called an
induced subgraph . He said, “It is called that because all of the edges are
included in the vertex subset. You do have the flexibility of choosing only a
subset of these edges, but there is one condition: for each edge in the chosen

!This is also known as Katzenjammer, (Great) Tantalizer, Face-4, Cube-4, Bognar
Balls, Taktikolor, Frantic, Diabolical, Damblocks, and Symington’s Puzzle. A patent
was awarded to Schossow in 1990.

26
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6\4/5\1
\ \/
3/2

Figure 5.1: Example graph with six vertices and seven edges

5\1
\
3/2

Figure 5.2: Induced subgraph of the graph shown in Figurel|5.1} with vertices
inset V' ={1,2,3,5} and all edges between these vertices present from the
original graph

subset of edges, the end vertices must be in the chosen vertex subset. Let
me show you.”

Rishnak drew a graph in the air in a dazzling light display [Figure .
“Here is a subgraph of your original graph. And note that a subgraph with
no vertices and no edges is also an induced subgraph (and subgraph) of any
graph.”

Ajur nodded his head and yawned. Rishnak scowled and said, “Time to
learn something new, Ajur, then see if you can still answer my questions.”

Ajur straightened as Rishnak continued. “A walk from a vertex i to a
vertex j is an alternating sequence of vertices and edges. Every edge in
that walk is incident between vertices preceding and succeeding that edge.
For example, in that graph that you drew”—he pointed down to the dirt
[Figure[5.1]—“a walk from vertex 6 to vertex 1 could be 6—(6,4)—4—(4, 3)—
3—(3,2)—2—(2,1) — 1. The edges are represented as a vertex pair. And if
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/

2

o

Figure 5.3: A subgraph of Figure |5.1

those edges have names as labels, we could use that label instead. Another
walk from vertex 6 to vertex 1 could be 6 —(6,4) —4—(4,5)—5—(5,1)—1."

Ajur listened intently, then asked, “Can a walk use the same edge more
than once?”

Rishnak said, “No. The only other condition that a walk has (besides
an edge being incident on a preceding and a succeeding vertex) is that all
edges must be distinct. The vertices in a walk can be repeated, though.
Have a look at this graph.” In a flash of light, Rishnak drew another graph
[Figure [5.4]. “A walk from vertex 1 to vertex 8 could be 1 — (1,2) — 2 —
(2,4)—4—(4,6)—6—(6,8)—8—(8,2) —2—(2,3) —3—(3,4) —4— (4,5) —
5—(5,6)—6—(6,7)—7—(7,8) — 8.

Ajur tried to pay attention but was naturally getting bored. He inter-
jected, “In your walk, you have visited all the edges in the graph, much like
the Konigsberg Bridge Problem.”ﬂ

Rishnak smiled and nodded. “And if the starting and ending vertices
in a walk are the same, it is known as a closed walk. If all of the edges in
a closed walk are distinct, then it is known as a cycle.”

Ajur remembered the idea of a cycle from yesterday’s discussion of trees.

Rishnak asked Ajur to list two cycles from the graph that sparkled in
front of him [Figure [5.4].

Ajur had no trouble at all in listing two cycles as 1 — (1,2) —2—(2,8) —
8—(81)—1land 2—(2,4) —4—(4,6) —6—(6,8) —8 —(8,2) — 2. Rishnak
taught Ajur that often the edges are omitted when describing a walk, so
the cycles could be written simply as (1,2,8,1) and (2,4,6,8,2). And even
simpler, we can state that a walk is a cycle and omit the repetitive last
vertex, so we have cycles (1,2,8) and (2,4,6,38).

2As mentioned earlier in Chapter 3 [Figure .
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Figure 5.4: Example graph with eight vertices and 12 edges

Rishnak beamed as he went on. “Of course a cycle and a walk are ex-
amples of subgraphs with some added conditions. These added conditions
make the study of subgraphs very interesting. If in a cycle, all the vertices
of the original graph are present, then that cycle is known as a Hamilto-
nian Cycle . For example, in this graph”—he again referred to the graph
that shone in front of him [Figure [p.4]—*“the cycle (1,2,3,4,5,6,7,8,1) is
a Hamiltonian Cycle of this other graph”—he whisked his hands through
the air to produce another graph [Figure —“And if all the edges in a
walk are distinct then it is known as a path.”

Ajur tried to keep up. “Okay, so in that first graph”—he pointed to the
graph [Figure 5.4]—“an example path is 1 — (1,2) — 2 — (2, 3) — 3 or simply
(1,2,3). Let me draw this path.” He drew the path in the dirt [Figure [5.6].

Rishnak nodded, then continued, “If there is a path between every pair
of vertices in a subgraph, then the subgraph is said to be connected. If a
subgraph contains no cycles and is connected, the subgraph is a tree. And
if such a tree contains all of the vertices then it is known as a spanning tree
since it spans all vertices. Watch closely, here’s a spanning tree.”

Rishnak transformed the original graph [Figure into a new one with
fewer edges [Figure [5.7].

Rishnak continued, “A subgraph in which the degree of every vertex is 1
is said to be a matching. An example of a subgraph that is a matching for
this original graph”—he again showed the original graph [Figure —“is
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3

/

2

e

1

Figure 5.6: A subgraph of Figure [5.4] which forms a tree

this other graph that contains pairs of vertices.” Rishnak moved his hands
and the graph reduced to one with only three edges [Figure .

“If the subgraph contains all vertices and the degree of every vertex is 1,
then it is called a perfect matching . Here’s an example of a subgraph that
is a perfect matching.” A new graph appeared, this time with all of the
original vertices but only four edges [Figure .

Rishnak asked Ajur how many perfect matchings there were in the orig-
inal graph [Figure [5.4].

Ajur thought for a bit, his brain catching up with everything Rishnak
was showing him. He saw that vertices 1, 3, 5, and 7 have degree 2. There-
fore, one of those incident on 1, 3, 5, and 7 would have to be selected.
“There are exactly two perfect matchings.”
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7

Figure 5.8: A subgraph of Figure [5.4) which forms a matching

Rishnak had more to teach Ajur. He said, “A graph is connected if
there is a path between every pair of vertices in that graph. Otherwise the
graph is disconnected . Watch closely as here are two graphs, the first being
a connected graph [Figure 7 the second a graph that is not connected

[Figure |5.11].”
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Figure 5.9: A subgraph of Figure [5.4] which forms a perfect matching
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Figure 5.10: A connected graph
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Figure 5.11: A graph that is not connected
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Figure 5.12: Can you list the cycles in this graph?

Question for the third day

Rishnak said, “At last we come to the question for the third day. Can

you list the cycles in this graph? And state the length of each cycle?” He

splayed his hands and a new graph appeared in front of him [Figure
Before you turn the page, try to come up with an answer of your own!
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Answer for the third day

Ajur scratched his head and studied the graph that Rishnak showed him.
At length, he said, “I think I see six cycles in the graph.” He proceeded to
list them.

e Two cycles of length 3: (1,2,6),(2,3,4)

e One cycle of length 4: (2,4,5,6)

e Two cycles of length 5: (2,3,4,5,6),(1,2,4,5,6)
e One cycle of length 6: (1,2,3,4,5,6)

Rishnak was again pleased as this was the correct answer. He smiled
and noticed that Ajur was getting restless, and so was Jura, so they called
it a night.



Chapter 6

Eulerian Paths and Cycles

Ajur was still tired after listening to so many definitions and examples the
day before. He complained to Jura that their recent conversation with
Rishnak was too similar to a boring math class. He said, “I prefer to solve
problems that are fun.”

Rishnak was near and overheard Ajur. Sighing, Rishnak did agree that
the previous day’s exchanges were dry. His ghost friends were right—he was
making the beautiful subject of graph theory dull and monotonous. So for
the next session, Rishnak decided to reach Ajur a more interesting problem,
the existence of an FEulerian walk.

Recall that a connected graph is a graph in which there is a path between
every possible pair of vertices. Given this, an Fulerian walk in a connected
graph is a walk that includes every edge exactly once. This is also known as
an Fulerian path and this path can visit vertices more than once if need be.
If the starting vertex and the ending vertex are the same then the walk is
called a closed Fulerian walk or an Fulerian cycle. The problem is named
in honor of Leonhard Euler, the first person to describe this (in the 1700s!).

The question of whether or not a given connected graph has an Eulerian
walk (or a closed Eulerian walk) is among the oldest problems in graph
theory. “Ajur will love this problem,” thought Rishnak as he searched for
Ajur in the cemetery.

It did not take long for Rishnak to catch up with Ajur and Jura as they
walked along a desolate path in a far corner of the cemetery.

Rishnak flashed his hands to produce a new graph [Figure [6.1], then
asked Ajur, “In this graph, is there a walk starting from vertex 2 and
ending at vertex 4 that travels through all of the edges exactly once?”

35
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Figure 6.1: Example graph with four vertices and five edges
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Figure 6.2: Eulerian walk (2,3,4,1,2,4) from vertex 2 to vertex 4 of the
graph shown in Figure [6.1

1 3

Ajur studied the graph, frowning.

Rishnak continued, “If you find one, know that it is called an Eulerian
walk. This is just like asking if you can trace all the edges once and only
once without lifting your pen—or your stick.”

Ajur noticed that there was a cycle. “I see the cycle (2,3,4,1) and after
this cycle, we're back at vertex 2 with just one edge left, the edge (2,4).
Can we visit a vertex more than once?”

Rishnak nodded.

Jumping up, Ajur grabbed a stick and drew a graph in the dirt [Fig-
ure , using arrows to show how he traversed the edges with vertex 2 as
the starting point. “There’s an Eulerian walk by combining the cycle and
that last remaining edge. The path is 2 — (2,3) =3 —(3,4) —4 — (4,1) —
1—(1,2) —2—(2,4) —4 or just (2,3,4,1,2,4) with edges omitted.”

Rishnak nodded again. “This is an Eulerian walk. If we were able to
start and end on the same vertex, it would be a closed Eulerian walk.”

Ajur smiled. “I see. So there is no closed Eulerian walk in this graph
because that would necessarily imply that every vertex had even degree!”

Rishnak also smiled. “That’s correct, Ajur.”

In a flash of light, Rishnak showed Ajur another graph [Figure and
said, “Here’s a more challenging problem for you. In this graph, is there a
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Figure 6.3: Example graph with nine vertices and 13 edges

walk from vertex 1 that ends at vertex 9 and traverses every edge exactly
once? In other words, is there an Eulerian walk from vertex 1 to vertex 97”

Ajur stood perplexed. He tried to reason out an approach he could take,
saying out loud, “Not all of the vertices have an even degree, so that means
there is no closed Eulerian walk.” He studied the graph further. “But seven
of the nine vertices do have an even degree. Vertices 1 and 9 both have an
odd degree of 1, so they would definitely be the start and end vertices.”

Rishnak was pleased.

Ajur continued, “Let me look for cycles. I see cycles (2,3,7), (7,6,5,4),
and (3,4, 8), none of which have any edge in common. Aha, I think I got
it. I can combine the cycles.”

Ajur excitedly drew a graph in the dirt [Figure , again using arrows
to show the path to follow. “The Eulerian walk is then 1 — (1,2) — 2 —
(2,3)—3—(3,4)—4—(4,8)—8—(8,3)—3—(3,7)—7—(7,6) —6—(6,5) —
5—(5,4)—4—(4,7)—-7—(7,2)—2—(2,8) —8—(8,9) — 9 or we can just
say (1,2,3,4,8,3,7,6,5,4,7,2,8,9).”

Ajur added again that there was no closed Eulerian walk in the graph
because not all of the vertices had an even degree. But an Eulerian walk
can start from a vertex with an odd degree and then end at a vertex with
an odd degree.

Rishnak said, “Exactly right. There are exactly two such vertices with
odd degrees, and all other vertices must have even degrees. All other vertices



CHAPTER 6. EULERIAN PATHS AND CYCLES 38

i
TN L
A4
Z

Figure 6.4: Eulerian walk (1,2,3,4,8,3,7,6,5,4,7,2,8,9) from vertex 1 to
vertex 9 of the graph shown in Figure [6.3

become intermediate vertices in the Eulerian walk, meaning that for every
edge coming into the vertex there is a corresponding edge leaving that
vertex.”

Rishnak asked Ajur how he would modify the original graph [Figure
to have a closed Eulerian walk.

Ajur reasoned this out quickly. He said, “There are exactly two vertices
with odd degrees, namely vertices 1 and 9. If we were to add an edge
between these two vertices, then every vertex would have an even degree
and a closed Eulerian walk would be possible.”

He drew the graph in the dirt [Figure . “The closed Eulerian walk
would be (1,2,3,4,8,3,7,6,5,4,7,2,8,9,1).”

Rishnak smiled. “Let’s go back to this first graph.” With a flash of
his hands, the graph formed in front of him [Figure . “How would you
modify this graph to have a closed Eulerian walk?”

Ajur now had a problem. The two vertices with odd degrees—vertices 2
and 4—already had an edge between them. He said, “I don’t think we can
do it.”

Rishnak said, “Have you ever heard of a multigraph?”

Ajur shook his head.

Rishnak continued, “In a multigraph, there can be more than one edge
between any pair of vertices.”
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Figure 6.5: The graph from Figure with additional edge (1,9) enabling
closed Eulerian walk (1,2,3,4,8,3,7,6,5,4,7,2,8,9,1)
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Figure 6.6: The graph from Figure |6.1| with additional edge (2,4) added to
form a multigraph with closed Eulerian walk (2,3,4,1,2,4,2)

Ajur pondered this for a moment, then said, “Oh, I can add another
edge between vertex 2 and vertex 4 to get a closed Eulerian walk”—he
hurriedly drew a new graph [Figure —“it’s (2,3,4,1,2,4,2).”

Rishnak asked Ajur whether he knew about directed graphs.

Ajur nodded and said, “In a directed graph, an edge (x,y) only goes
from vertex x to vertex y. I mean it doesn’t also go back from vertex y to
vertex z.” He drew an example graph to show this [Figure .

Rishnak said, “Right. And instead of talking about the degree of a
vertex, we then have an in-degree and an out-degree of a vertex. The number
of edges coming into a vertex is the in-degree of that vertex, while the
number of edges going out of a vertex is the out-degree.”

Rishnak drew a new graph in a dazzling display of light [Figure ,
then said, “In this directed graph, vertex 1 has an in-degree of 2 and an
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Figure 6.7: Example directed graph with four vertices and five directed
edges

out-degree of 1. Vertex 3 has an in-degree and an out-degree 1, same with
vertex 4. And a directed graph is said to be strongly connected if there is a
directed path from every vertex to every other vertex. This example graph
is indeed strongly connected.”

Ajur marveled at the graph in front of him. He said, “And an Eulerian
walk can only exist in a strongly connected directed graph, right?”

Rishnak said, “Precisely.”

Anticipating Rishnak’s next question, Ajur said that there was no closed
Eulerian walk in this directed graph because there was no way to traverse
each edge exactly once and also start and end on the same vertex.

Rishnak said, “Is there an Eulerian walk from vertex 2 to vertex 17”7

Ajur thought about this, remembering he could try tracing a path with-
out having to raise his pen (or stick) at any point. He reasoned in a manner
similar to what he did before. Ajur said, “I see the cycle (2,3,1,2), so if I
start at vertex 2, I can write the Eulerian walk as (2,3,1,2,4,1).”

Rishnak smiled, then said, “How could we have a closed Eulerian walk?”

Ajur said, “We can’t in this graph. To have a closed Eulerian walk, we
need a collection of cycles that do not share any edges.”

Rishnak said, “Correct. That is called an edge-disjoint cycle, a cycle in
which no edge is common. In such a case, the in-degree of each vertex must
be the same as its out-degree.”

Ajur nodded and said, “I see! This is similar to the condition for an
undirected graph in which a closed Eulerian walk can only exist if the degree
of each vertex is even.”
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Rishnak nodded. “Keep going.”

Ajur said, “For an Eulerian walk in a directed graph, it has to start
from a vertex with an out-degree that is one greater than its in-degree.
And it must end at a vertex with an in-degree that is one greater than its
out-degree.”

Rishnak said, “Exactly. And for all other vertices, the in-degree must
equal the out-degree.”

It was getting late, but Rishnak wanted to share more about how one
could use Eulerian walks—and he wanted to keep Ajur interested. “Con-
sider the following problem. Let’s say you want to construct a string of
zeros and ones such that all four of the possible two-bit strings occur as
a substring. Note that there are exactly four two-bit strings consisting of
zeros and ones, namely 00, 01, 10, and 11. As an example, the string 00110
contains all four of these two-bit substrings.”

Ajur nodded, following Rishnak so far anyways.

Rishnak continued, “Suppose instead, we wanted to build a circular
string that contained all possible two-bit sub-strings. Such a string is known
as a De Bruijn sequence. And this problem is actually closely related to
constructing a closed Eulerian walk. Have a look at this directed graph”—
he flashed a new graph [Figure in front of Ajur—*“If we construct an
Eulerian walk on this directed graph, we would get such a string.”

Ajur frowned. “How would that work?”

Rishnak said, “For this directed graph, there are two vertices with la-
bels 0 and 1. Each directed edge also has a label, which is added to the
generated string when the edge is traversed. And the endpoint of that
directed edge is the vertex with the same label.”

Ajur understood. “I see. But why is there a directed edge with label 0
from vertex 0 to itself that—"

Rishnak chimed in, “That is called a self loop.”

Ajur continued, “A self loop, okay. If we start at vertex 0, then the idea
behind this self loop is to append the edge label 0 to the generated string.
And we end up still at vertex 0. Similarly, there is an edge with label 1
from vertex 1 to itself. And there is an edge with label 1 from vertex 0 to
endpoint vertex 1, and vice versa.”

Rishnak nodded and said, “Yes. Notice that each vertex has an in-
degree of 2 and an out-degree of 2. Therefore, we know that this directed
graph has a closed Eulerian walk from vertex 0 back to vertex 0—and that
walk is 0110. Remember that each character comes from an edge label.”
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Figure 6.8: An Eulerian walk on this directed graph will yield a De Bruijn
sequence, which contains all sub-strings of length 2 over binary alpha-

bet {0, 1}

Ajur smiled and said, “And from this, we get all four substrings of
length 2, namely 01, 11, 10, and 00, with that last one generated by taking
the last character and the first character since it is a closed walk.”

Rishnak then asked Ajur to construct a De Bruijn sequence that con-
tained all substrings of length 3.

Ajur thought about this and rephrased the question. “Do you mean to
obtain a string of zeros and ones such that all eight three-bit strings occur
as a substring?”

Rishnak nodded and said, “Right, what would the eight three-bit strings
be?”

Ajur knew the answer to be 000, 001, 010, 011, 100, 101, 110, and 111
by counting in binary (base 2). Ajur continued, “Okay, I want to construct
a graph from which an Eulerian walk would naturally yield such a sequence,
right?”

Rishnak nodded.

Ajur worked out the graph in the dirt using his stick, looking for a
pattern to follow. He started with four vertices labeled 00, 01, 10, and 11.
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Figure 6.9: A closed Eulerian walk on this directed graph will yield a
De Bruijn sequence that contains all substrings of length 3 over binary
alphabet {0,1}

He drew a directed edge from vertex 00 to itself with label 0 because if
you get a 0, you can append 0 to the vertex label 00, then drop the first
character. There is also an edge with label 1 from vertex 00 to vertex 01.

“Ahal” exclaimed Ajur. “You said that every vertex must have an out-
degree of 2 and an in-degree of 2.” Ajur drew the rest of the directed graph
[Figure with swift strokes of his stick. “Starting from vertex 00, an
Eulerian walk could generate 0 —1 —0—1—1—1—0— 0 from the edge
labels. This walk is also a closed Eulerian walk since we start and end with
the same vertex.”

Rishnak tilted his head and said, “And?”

Ajur continued, “And from the walk, we end up with all of the strings
of length 3 over alphabet {0, 1} as substrings of the Eulerian walk.”

Rishnak said, “Good.”
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Rishnak stretched his arms out wide. He asked, “Are you sharp enough
for something else brand new?”

Ajur smiled and said, “Yes.”

Rishnak said that another application of the Eulerian walk is in the
creation of mazes or labyrinths (as known in Greece) or bhul bulaiyah (as
known in India). He said, “It is quite easy to enter a maze, but it is difficult
to get out of one. In so many stories of old, there are reports of people dying
in mazes because they were unable to find their way out. One was the angel
Kinaja, who was then a human trapped in a maze. She had figured out
how to get out but was too exhausted to walk—and so she died.”

Ajur felt a wave of sadness.

Rishnak quickly said, “Do not despair, for Kinaja told me that those
who studied graph theory and understood Eulerian walks could find their
way out of any maze.”

Ajur said that he, too, knew about mazes, having seen a video of a
psychology lab experiment with mice running through an elaborate maze.
He had also been in a maze as a young boy when his parents took him to
a corn field maze.

Eager to show off his knowledge of mazes and poetry, Ajur quoted
Robert Frost’s famous poem The Road not Taken, which could also be
related to traversing a maze—Ajur recited:

Two roads diverged in a wood, and [—
I took the one less traveled by,
And that has made all the difference.

Ajur took a bow.

But Rishnak was getting impatient, as ghosts tend to do, and he wanted
to stay focused on the maze and on graphs. Rishnak waved his hands and
a glimmering picture of a maze appeared [Figure .

Rishnak said, “You can construct a graph from this maze by placing a
vertex at each place where there is an open space to move or where you
have a choice to make, meaning multiple paths you could follow.”

Ajur gazed at the maze in front of him.

Rishnak continued, “Join vertices together with an edge if there is a
corridor connecting them and there are no vertices already between them.
In a maze without any loops, this will result in a tree since no cycles will
be present.”
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Figure 6.10: A simple maze with a start and a goal, with intermediate steps
(vertices) marked for clarity

Start — 1 — 2
5 7
4 — 3 — 6
|
Goal

Figure 6.11: A graph (tree actually) corresponding to the maze shown in

Figure [6.10]

Ajur understood. He drew a graph [Figure in the dirt that matched
the maze Rishnak showed him. “But how does a Eulerian walk make any
sense here?”

Rishnak smiled, happy to see Ajur’s desire to learn. Rishnak said, “You
can make this graph Eulerian by traversing each edge twice. Each time you
traverse an edge, you leave a bread crumb to mark it. Once you reach a
dead end, you turn back. And if an edge has two bread crumbs, that means
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Figure 6.12: A maze with a start and a goal, with the corresponding graph
representation drawn inside the maze

you do not traverse that edge any more.”

Rishnak’s smile broadened as he continued, “This was precisely the
strategy Kinaja described to me for how to get out of a maze. In the
beginning, all of the paths are free of bread crumbs. Whenever one takes
a path (if there is one available to take that has no bread crumbs), you
mark the edge with a bread crumb. And if there are no paths available
without any bread crumbs, you take the path in which there is only one
bread crumb present, placing bread crumbs as you go. Eventually you will
reach the end goal as there is an Eulerian walk present in the underlying
graph of the maze.”

Ajur said, “Let me see if I understand.” He drew another maze in the
dirt, then drew the graph inside the maze [Figure . “Like this?”

Rishnak beamed. “Precisely.”
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Question for the fourth day

Rishnak said, “The time has come for me to ask you the question for the
fourth day.”

Ajur straightened, ready for his question.

Rishnak said, “It has two parts. Going back to this earlier graph”—
he flashed the De Bruijn sequence graph for substrings of length 3 from
carlier [Figure [6.9]—“first can you write a string (different than the one we
already came up with) that contains all substrings of length 3 over binary
alphabet {0,1}7”

Ajur nodded. “And?”

Rishnak said, “Second, can you construct a directed graph that will
yield a De Bruijn sequence that contains all substrings of length 4 over the
same alphabet?”

Before you turn the page, try to come up with an answer of your own!
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Figure 6.13: A graph to generate a De Bruijn sequence of length 4

Answer for the fourth day

For length 3, Ajur used the directed graph in front of him [Figure and
wrote a closed Eulerian walk as 0 —0 —0—-1—-0—1—1— 1. “This one
contains all substrings of length 3. Going left to right, they are 000, 001,
010, 101, 011, 111, 110, and 100.”

Rishnak smiled and said, “Keep going.”

For length 4, Ajur cleared a wide patch in the dirt and drew a new
graph [Figure . Once he was done, he checked to be sure that the
graph was Eulerian by verifying that the in-degree and out-degree of each
vertex was 2.

“Here is the graph and from this graph”—he traced with his stick—“the
sequence is0-0-0-0-1-0-1-0-0-1-1-0—-1—-1—-1-1
and it contains all the substrings of length 4, which are 0000, 0001, 0010,
0101, 1010, 0100, 1001, 0011, 0110, 1101, 1011, 0111, 1111, 1110, 1100,
and 1000.”

Rishnak was happy with Ajur’s answers. He said, “Well done.”

Ajur smiled to himself. He was impressed by the power of the Eulerian
walk and wanted a walk to be named after him someday, too! The sun was
setting and it was time for Ajur and Jura to go home.
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Hamiltonian Paths and Cycles

Ajur walked with Jura, thinking what he could do to inspire a problem to
be named after him. Rishnak found Ajur to be an interesting individual
to discuss puzzles based on graph theory with. After the discussion of
the Eulerian walk, Rishnak decided to introduce a closely related graph-
theoretic construction, the concepts of Hamiltonian paths and Hamiltonian
cycles.

Rishnak appeared in front of Ajur and immediately began defining the
notion of a Hamiltonian path. “In what’s called a Hamiltonian path, each
of the vertices of the given graph are visited exactly once. The length of
such a path is the number of edges in that path. So, Ajur, what is the
length of a Hamiltonian path in a graph with n vertices?”

Ajur said, “That’s easy. A Hamiltonian path in a graph of n vertices
will have a path length of n — 1.7

Rishank said, “Right. And a Hamiltonian cycle is a Hamiltonian path
that forms a cycle. Therefore, the length of a Hamiltonian cycle in a graph
with n vertices is n. Let’s start with this graph.” Rishnak presented a
graph [Figure in the air in front of Ajur. “Tell me, Ajur, is there a
Hamiltonian cycle in this graph[] and if so, what edges form the cycle?”

Ajur thought about Rishnak’s question for a few seconds, then picked up
a stick and drew the graph and the Hamiltonian cycle in the dirt [Figure.

Rishnak told Ajur that his solution was correct but not unique. “There
are more solutions than just that one] And do you know why a Hamiltonian

IThis graph is a cube graph of length 3.
2Can you find a few more Hamiltonian cycles that are different from the one described
by Ajur?

49
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Figure 7.2: Cube graph of Figure with a Hamiltonian cycle marked in
thick edges

cycle is called a Hamiltonian cycle?”

Ajur frowned. “No, but I suppose you'll tell me?”

Rishnak laughed and said, “The mathematician Sir William Rowan
Hamilton wanted to find a cycle to visit all of the vertices of a dodec-
ahedron, which is a three-dimensional structure with 20 vertices and 30
edges. It’s also one of the five platonic solids.”
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Figure 7.3: The Petersen graph with 10 vertices and 15 edges
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Figure 7.4: The Petersen graph of Figure with a Hamiltonian path
marked in thick edges

Rishnak flashed his hands and a new graph [Figure appeared in
dazzling lights in front of Ajur. Rishnak said, “Is there a Hamiltonian cycle
in this graph, which by the way is a well-known graph called the Petersen
graph, named after mathematician Julius Petersen.”

Ajur studied this graph for a long time, but he was not able to find a
Hamiltonian cycle in the graph. He sighed and said, “I don’t see a cycle,
though I do see a Hamiltonian path.”

Ajur drew the graph and a Hamiltonian path in the dirt [Figure .
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Figure 7.5: A bipartite graph with six vertices and nine edges, comprising
vertex partition sets A = (1,3,5) and B = (2,4, 6)

He said, “And that’s not the only Hamiltonian path in this graph, is it?ﬂ
There are a few others.”

Rishnak smiled and assured Ajur that the Petersen graph indeed does
not have a Hamiltonian cycle. He said, “Remember the Eulerian cycle,
which traverses every edge exactly once? We can easily test whether a
graph has an Eulerian cycle by just testing to see whether the degree of
every vertex is even. Unfortunately, there is no easy way to test whether a
given graph has a Hamiltonian cycle.”

Rishnak continued, “Speaking of cycles, there is a special class of graphs
called bipartite graphs in which every cycle is of even length. Further, in
a bipartite graph, the vertex set is partitioned into two sets A and B such
that every edge has one end vertex in A and its other end vertex in B.”

Rishnak flashed his hands to form a new graph in the air before Ajur
[Figure [7.5].

Ajur immediately saw that all of the cycles had even lengths, in this
case 4 and 6. He said, “And every edge in the cycle must go from one
partition set to the other. These are the only possible edges. That’s why
the length of each cycle must be even, right?”

Rishnak nodded and asked Ajur what the two vertex partitions were for
this new graph. “All of the edges must go from one partition set to the
other.”

After a little thought, Ajur said, “One partition contains vertices 1, 3,
and 5, while the other partition contains vertices 2, 4, and 6.” He drew a

3Can you find the other Hamiltonian paths in the Petersen graph?
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2 4 6
Figure 7.6: The bipartite graph from Figure reorganized to emphasize
vertex partition sets A = (1,3,5) and B = (2,4, 6)
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Figure 7.7: A bipartite graph with five vertices and six edges

new version of the graph to illustrate what he meant [Figure .

Ajur said, “This graph also has a Hamiltonian cycle”—he frowned, deep
in thought—“Wait, every tree is a bipartite graph, too, since a tree contains
no cycles. And since a tree does not have any cycles, it has no Hamiltonian
cycles either.”

Rishnak smiled. “That is true, Ajur. But let’s get back to bipartite
graphs. Can you draw a graph that is not a tree that also does not have a
Hamiltonian cycle?”

Ajur wanted to show that understood these new concepts, but he strug-
gled to see how a bipartite graph fit in here. After a few failed attempts, he
said, “Aha, I see”—he quickly drew a new graph [Figure —“this graph
does not have a Hamiltonian cycle. If there was a Hamiltonian cycle, the
vertices in the cycle would have to alternate between the two vertex parti-
tions, but one vertex partition has only two vertices while the other vertex
partition has three vertices.”

Rishnak smiled broadly, appreciating Ajur’s logical thinking. He said,
“Okay, here’s another puzzle for you, Ajur. And I heard this one on the
radio program Car Talk, which is broadcast on public radioﬁ There are nine

4This next problem is attributed to Bruce Robinson, a professor of Civil and Envi-
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Figure 7.8: A 3 x 3 grid representing nine apartments with each apartment

modeled as a vertex and each edge denoting an adjacency relation between
apartments

jealous people who live in apartments of a building that we can represent
as a 3 X 3 grid. And we can draw this a graph with each vertex representing
one apartment.”

Rishnak flashed his hands to form a new graph [Figure . He con-
tinued, “The apartments are numbered 1 through 9, starting in the upper
left-hand corner. Each person is jealous of his adjacent neighbor, so we
use edges to represent jealous neighbors wanting to move above or below,
or to the right or the left. The question here is very simple. What is the
fewest number of total moves that can accomplish this and make everyone
happy?”

Ajur thought about Rishnak’s question. It must have something to do
with bipartite graphs. He said, “Since there are nine vertices, the two
partitions would not be of equal size. So it’s not possible to have everyone
move.”

Rishnak smiled and said, “Good, but state your argument more clearly
to make sure it is correct. What else can you add here?”

Ajur frowned, thinking for a minute how else he could show this to be
true. At length, he said, “The given graph has a Hamiltonian path but not
a Hamiltonian cycle. So instead of a 3 x 3 grid of apartments, if we had
a4 x 3 grid or a 3 x 4 grid, we would have a Hamiltonian cycle (and a
bipartite graph) so it would be easy for all of them to move to an adjacent
apartment.”

ronmental Engineering at the University of Tennessee.
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Table 7.1: A valid knight’s tour for a 5 x 5 chessboard starting with move 1
at the bottom left-hand corner

Rishnak again smiled and said, “Good, Ajur. Let’s look at another
problem, this one back to our friend Euler. He proposed the Knight’s tour
problem on a chessboard. You probably already know a chessboard is an 8 x
8 square grid. Place a knight in any square. From that square, the knight
has to repeatedly movd’| and successfully visit all of the squares exactly
once.”

Ajur raised his eyebrows in astonishment.

Rishnak continued, “You may think of this problem as finding a Hamil-
tonian path in a 64-vertex graph with two vertices adjacent if there is a
valid knight’s move from one vertex to the other. There is no easy way to
find a knight’s tourﬂ other than what’s called an exhaustive search, meaning
we systematically explore every possible set of moves until we find a valid
knight’s tour or explore and exhaust all possibilities.”

Ajur marveled at how one problem could be translated into another
problem, then solved in a new way.

Rishnak stretched his arms out wide and a jumbling of bright letters
appeared in front of Ajur [Table [7.2]. Rishnak said, “Can you find the
message that is encoded in this grid of letters?”

Rishnak continued, “There are poems from different cultures, including
India and China, that are actually similar to the Knight’s tour problem.
You can find the message by following a knight’s tour.”

Ajur was intrigued and resolved to read and understand these poems.
Rishnak added that one first needs to verify that a knight’s tour is possible

5To be a valid move, a knight may only move either two squares vertically up or
down, then one square horizontally left or right, or one square vertically up or down,
then two squares horizontally left or right. More colloquially, a knight moves in a 2 x 1
L shape.

6The solution presented in Table is a move-by-move knight’s tour for a 5 x 5
chessboard starting from the bottom left-hand corner.
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Table 7.2: Can you find the message encoded in this grid of letters?

for a 3 x 3 or 4 x 4 chessboard. “Be careful, though,” warned Rishnak, “for
checking whether a knight’s tour is possible may take a long time.”

Ajur asked, “How do you mean?”

Rishnak said, “There are many methods for checking whether a given
graph has a Hamiltonian cycle. Unfortunately these conditions are not
exhaustive, meaning they are not enough. Let me teach you a simple test
to know whether a graph has a Hamiltonian cycle or not.”

Ajur felt his heart race in excitement.

Rishnak continued, “A well-known theorem states that if the degree of
every vertex in a graph with n vertices is at least 7, then the graph must
have a Hamiltonian cycle. The proof consists of three parts:

1. We must show that the graph is connected.

2. The length of the longest path in any graph with n vertices is less
than or equal to n — 1.

3. We identify P as a longest path, from which we can find a Hamiltonian
cycle.”

Ajur thought about what Rishnak had said. Quite a lot to take in
and understand! Therefore, Ajur followed a systematic approach. He said,
“Okay first, the graph has to be connected. Otherwise, there would be at
least two connected components, one of which would have size at most %,
which violates the given degree condition.”

Rishnak nodded.

Ajur continued, “Next, in this connected graph, we need to find the
longest path. Let’s say we find it and it’s vy, v, ..., vg. Since this is the
longest path, all neighbors of start vertex v; and end vertex v, must be in
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Figure 7.9: Graphical description of the argument used by Ajur to show
that if the degree of every vertex in a graph with n vertices is at least 3,
then the graph must have a Hamiltonian cycle; here, solid lines represent
edges, whereas squiggly lines represent paths

this path. Otherwise, we could extend that path, which would mean the
path we started with was not the longest path—a contradiction.”

Rishnak nodded again.

Ajur thought about he to proceed from there, then said, “Let’s see,
at least 7 vertices in the path vy, vs,..., v are adjacent to v;. Let those
adjacent vertices of vy form set Sy = {v;,vj,...,v,}. The size of this set
is at least 5. For each of these vertices, let’s then consider their preceding
vertices in the path. Let that set be S;. The size of that set is also at
least &. Following this through, the vertices adjacent to vy, also have to be
a set of size at least §—and they are among vy, v, ..., vp—1.”

Ajur paused. “But if none of the vertices adjacent to vy are in set So,
then the vertices adjacent to vy would have size less than §”—Ajur frowned,
wondering how he could show this—*“and we know this because k —1— 7 <
2. Aha, I see it”—Ajur drew a picture in the dirt [Figure —“We would
have the situation shown here.”

Rishnak smiled and said, “Go on, what then?”

Ajur said, “Then this creates cycle vg, vy, ..., v1,Vi11 ...,V The claim
is that this is a Hamiltonian cycle. If not, there is at least one vertex in this
cycle that will be adjacent to some other vertex, but this will result in a path
that is longer than the path we originally started with—a contradiction!”

Ajur jumped up and down with joy. This was a tough problem to crack
and he was able to follow along. He loved the subtle and clever arguments
used in the proof.
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Figure 7.10: Does complete bipartite graph K4 have a Hamiltonian path?

Question for the fifth day

Rishnak waved his hands to form a new graph [Figure . He said, “Here
is a complete bipartite graph, which we can abbreviate as K54 since it has
two vertices in set A and four vertices in set B. More specifically, vertices A,
and A, are adjacent to vertices B3, By, Bs, and Bg, and there are no other
edges.”

Rishnak cleared his throat, then said, “Is there a Hamiltonian path
in K2’4?”

Before you turn the page, try to come up with an answer of your own!
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Answer for the fifth day

Ajur studied the graph in front of him. At length, he said, “In a Hamiltonian
path, vertices have to alternate between the vertices in the two different
partition sets. If we start with a vertex in the larger set B, then the
Hamiltonian path must alternate asin B— A— B - A— B — A— B, which
would require there to be three vertices in partition set A. Since there are
only two vertices in A, there cannot be a Hamiltonian path in Ky 4.”

Rishnak smiled. “Correct.”

Ajur wanted more questions to answer and puzzles to solve, but Jura,
who was patiently waiting nearby, was beginning to get restless, so Ajur
decided to call it a day.



Chapter 8

Graph and Subgraph
Isomorphism

Rishnak eagerly searched for Ajur because he wanted to share more new
concepts with him. It did not take long for Rishnak to find Ajur and Jura
walking along the bank of a (presumably haunted) pond in the cemetery.
Rishnak immediately started the session with a small variant on what they
had already been discussing.

Rishnak said, “A graph whose vertices are labeled is called a labeled
graph, while one without labels for vertices is called an wunlabeled graph.
Two labeled graphs are equivalent if they are identical, for example these
two graphs”—he flashed his hands to form a pair of labeled graphs in the
air in front of Ajur [Figure [Figure [8.2]—“are equivalent.”

Ajur studied the two graphs for a moment, then nodded.

Rishnak waved his hands again and a third graph appeared [Figure .
“This third graph is not equivalent to the other two graphs because there
is no longer an edge between vertices 1 and 2 or between vertices 3 and 4.
Or you could say that the vertex labels are different.”

Ajur said “I see the differences, but when are two graphs the same?”

Rishnak smiled and said, “Good question. Two graphs are called iso-
morphic—meaning structurally the same—if they are equivalent under a
vertex relabeling . For example, if in the third graph [Figure , vertex 2
is relabeled as vertex 3 and similarly vertex 3 is relabeled as vertex 2, then
the third graph becomes equivalent or isomorphic to the other two graphs.”

Ajur studied the third graph again and said, “Aha, I see.”

Rishnak continued, “We can also say that if a graph G is equivalent to a

60
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Figure 8.1: A labeled graph with five vertices and five edges

Figure 8.2: A second labeled graph with five vertices and five edges that is
equivalent to the graph shown in Figure |8.1

Figure 8.3: A third labeled graph with five vertices and five edges that is
not equivalent to the graphs shown in Figure [8.1] and Figure because
the vertex labels are differ from that of either of the two other graphs
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Figure 8.4: A bipartite graph with six vertices and nine edges

graph H, and H is equivalent to another graph M, then G is equivalent to
graph M. In other words, the relation of graphs being equivalent or isomor-
phic is transitive. And to test whether two graphs are isomorphic is actually
a very hard problem, though it is not as hard as finding a Hamiltonian cycle
in a graph.”

Ajur thought about this. If two graphs are isomorphic, they should have
the same number of vertices, the same number of edges, the same degree
sequences, the same length for the longest cycle, the same length for the
shortest cycle, and so on. He repeated these to Rishnak, then asked, “Can
we use some of these properties to show to graphs are isomorphic?”

Rishnak furled his brow and said, “Unfortunately not. These properties
of graphs are called graph invariants, but by no mean are these invariants
exhaustive. We do not know of a single easily computable invariant that
can be used to test whether or not two given graphs are isomorphic.”

Ajur frowned at this, frustrated that there were unsolved problems like
this.

Rishnak said, “It is much easier to detect that two graphs are not iso-
morphic. Can you draw two graphs with the same number of vertices and
the same number of edges that are not isomorphic?”

Ajur thought a bit then grabbed a stick and drew two graphs in the dirt
[Figure [Figure . He said, “Both these graphs have six vertices and
nine edges, but the first graph is bipartite—we know this because all cycles
are of even length—while the other graph is not bipartite because it has a
cycle of length 3. Therefore, these two graphs are not isomorphic.”

Rishnak smiled.
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Figure 8.5: A non-bipartite graph with six vertices and nine edges

Ajur thought for awhile, then said that partial solutions to the graph
isomorphism problem would be very useful if you wanted to test whether
a given graph is in a collection of graphs, a problem that comes up in
chemistry.

Rishnak was pleased that Ajur was thinking about some of the practical
applications of graph theory. Rishnak said, “There is an easier method to
test for isomorphism between two rooted trees. Let’s start with how we
can encode a labeled tree. We’'ll use an approach called a Priifer code.
The construction is iterative, and the Priifer code of a labeled tree with n
vertices is a code of length n — 2. Here’s the algorithm, but first, remember
that a leaf of a tree is a vertex that is connected to only one other vertex.

1. Let Priifer code P. be an empty string.

2. Find leaf vertex v with the smallest label, then identify vertex w that
connects vertex v to the rest of tree.

3. Remove v from the tree and append w to Priifer code P..

4. Repeat from step 2 until we are left with only two vertices.”

Ajur raised his eyebrows and said, “Wow, that’s a lot to take in.”

Rishnak laughed and said, “ITry it on this rooted tree.” He waved his
hands and a new graph [Figure appeared in front of Ajur.

Ajur took a deep breath and said, “Okay, the smallest leaf is vertex 4.
Its adjacent vertex is labeled 2, so we append 2 to Priifer code P, and
remove vertex 4. The next smallest leaf vertex is labeled 5 and is adjacent
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Figure 8.6: A rooted tree with seven vertices, of which four vertices are leaf
vertices

to vertex 2. Therefore, we append 2 to P, and remove vertex 5. Now
vertex 2 is the smallest leaf vertex and its adjacent vertex is vertex 1, so
we append 1 to P, and remove vertex 2. At this point, P, is 221, but we're
not done yet.”

Rishnak smiled and said, “Right, go on.”

Ajur said, “Wait, vertex 1 is now the smallest leaf vertex, but it was
originally the root of the tree. Is that okay?”

Rishnak said, “Yes, that’s part of the algorithm.”

Ajur shrugged and continued, “Okay, vertex 1 is next and its adjacent
vertex is vertex 3, so vertex 1 is removed and we append 3 to P.. The next
smallest leaf is then vertex 6 and its adjacent vertex is vertex 3, so we again
append 3 to P.. We stop when there are only two vertices left, so we are
done. The Priifer code for the tree is P, = 22133.”

Rishnak nodded and said, “Good, since the length of P. is 5, we can
immediately conclude that there are seven vertices in the tree. Further, we
can also conclude that vertices labeled 4, 5, 6, and 7 are the leaf vertices
since they do not appear in the given Priifer code.”

Ajur asked, “What about unlabeled trees? Can we find a Priifer code
for an unlabeled tree?”

Rishnak replied with a resounding yes and explained the steps to follow
for a rooted tree. He said, “For any tree, one needs to first choose an
appropriate root vertex, which we can call the center of the tree. Here’s
the basic algorithm to follow.

1. Assign each leaf vertex a label of 01.

2. Let = be a non-leaf vertex. For all of the children of x, sort these
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labels in order. Assign vertex x with a label that is a 0, followed by
the concatenation of the sorted labels of its children, followed by a 1.

3. Repeat step 2 until you label the root vertex.”

Rishnak knew this was a lot to follow. He said, “Have another look
at this tree [Figure . If this was an unlabeled graph, then leaf ver-
tices 4, 5, 6, and 7 would all be labeled 01. Then vertex 2 would be la-
beled 001011. Same with vertex 3. Finally, root vertex 1 would have the
label 00010110010111, which would serve as the Priifer code for this tree.”

Ajur tried his best to follow. After some time, he said, “I think I see.
Using these Priifer codes, we could compare them to see if they match, which
would show that the two rooted trees are the same—I mean, isomorphic.”

Rishnak smiled and said, “Precisely. And closely related to the problem
of graph isomorphism is a problem that has plenty of uses in real life, not
just in the ghoulish realm.”

Ajur chuckled at the bad joke.

Rishnak continued, “Instead of asking whether two graphs are struc-
turally the same and therefore isomorphic, given two graphs GG and H, the
subgraph isomorphism problem is to determine whether there is a subgraph
of G that is isomorphic to H.”

Ajur said, “A subgraph of G. I understand. This approach could be
used to test whether graph G with n vertices has a Hamiltonian cycle by
choosing graph H to be a cycle of length n and asking whether there is a
subgraph of G isomorphic to H.”

Rishnak nodded and said, “Yes, and that is the reason why the subgraph
isomorphism problem is hard. On the other hand, if both G and H are
labeled graphs, there are heuristics to test whether H occurs in G as a
subgraph. This type of labeled subgraph isomorphism problem has many
applications in medical imaging and chemical structure identification.”

Ajur marveled at how connected and useful graphs and subgraphs were.

Question for the sixth day

Rishnak said, “Okay, Ajur, the time has come. Here is the question for the
sixth day. Can you draw a tree with a Priifer code of 2327”
Before you turn the page, try to come up with an answer of your own!
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Figure 8.7: Tree with 5 vertices with a Priifer code of 232

Answer for the sixth day

Ajur nodded and said, “Yes, first of all, I know that this will be a tree with
five vertices because the Priifer code has a length of 3.”

Without hesitating, Ajur drew a tree in the dirt [Figure . He said,
“This is the tree.”

Rishnak was happy with Ajur’s answer, and Ajur was eager to go home,
with Jura at his side, to think about all of the applications graphs and
subgraphs might have in the world.



Chapter 9

Planar Graphs

Ajur was so enamored by Hamiltonian cycles, he was eager to meet Rishnak
and learn more about them, but Rishnak wanted to introduce a different
concept: drawing graphs.

Ajur said, “I already know how to draw graphs.”

Rishnak said, “Wait, Ajur, there’s much more to it. Listen. A planar
drawing of a graph is one in which no edges cross each other (except at
their endpoint vertices). By definition, a planar graph is a graph for which
there exists at least one planar drawing. And if a graph does not have any
possible planar drawings, we call it a non-planar graph.”

In a dazzling flash of light, Rishnak waved his hands and two graphs
appeared [Figure [Figure . He said, “For example, here are two
drawings of complete graph K, the 4 in this case meaning we have four

Figure 9.1: A drawing of complete graph K} in which two edges cross

67
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Figure 9.3: Bipartite graph K3 with five vertices and six edges in which
four edges cross

vertices. Notice that the second graph [Figure has no edges that cross,
so we call K a planar graph. In other words, it displays nicely on a two-
dimensional plane.”

Rishnak asked, “So, Ajur, can you draw this graph”—he waved his
hands and a new graph appeared [Figure —“as a planar graph, that is,
with no edges that cross?”

Ajur studied the graph and found the task to be a bit challenging. Then,
he thought of moving vertex 2 down below vertex 4, thinking that would
help separate the crossed edges. He picked up a stick and drew a graph in
the dirt [Figure , smiling as he realized he had solved the problem.

Impressed, Rishnak waved his hands and another new graph appeared
[Figure . He asked Ajur whether this new graph had a planar represen-
tation or not.

Ajur worked at this problem for some time, struggling to find a planar
drawing.

At length, he said, “I can only come up with this graph”—he pointed
to the graph he had drawn [Figure —“but there’s one edge crossing |
can’t get rid of.”
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Figure 9.4: A planar drawing of bipartite graph K53 with five vertices and
six edges

1 2 3
4 5 6
Figure 9.5: Bipartite graph K33 with six vertices and nine edges in which
seven of the edges cross

1

L

Figure 9.6: A drawing of bipartite graph K3 5 in which just two edges edges
CTOSS
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Rishnak told Ajur that bipartite graph K33 does not have a planar
representation. He said, “There is a well-known related puzzle credited to
Sam Loyd, an American recreational mathematician and puzzler. Let’s say
there are three houses, which we can represent as vertices 1, 2, and 3 of K3 3,
drawn on paper. Below them are three vertices 4, 5, and 6 representing gas,
water, and electricity suppliers. The aim of the puzzle is to draw lines to
get each utility into every house, but—"

Ajur chimed in, “But without crossing any of the lines.” Ajur laughed
at the puzzle, thinking that he should read up on Loyd’s puzzle books the
next time he visited his local library.

Rishnak cleared his throat, not entirely happy that Ajur cut him off.
He said, “If two graphs G and H are isomorphic and if G is planar, can you
say that H is also planar?”

Ajur said, “Yes, if H is isomorphic to GG, then each vertex of H cor-
responds to some vertex of G. By just relabeling the vertices of G in its
planar drawing, we can obtain a planar drawing of H.”

Rishnak nodded and asked, “What can we say about trees?”

Ajur thought for a moment, then said, “That’s easy. All trees have a
planar representationE] because there are no cycles.”

Rishnak said, “Right, trees are indeed easy to embed in a plane as there
are no cycles. There are some interesting space-filling planar representations
of trees, for example this one”—he waved his hands and an intricate planar
drawing appeared in front of Ajur [Figure[9.7].

Ajur marveled at the drawing.

Rishnak continued, “One way to get a planar drawing of a graph is to
first embed the longest cycle in a plane, then try to place the rest of the
vertices so that no edges cross one another. The longest cycle will divide
the plane into two regions, an inner region (inside the cycle) and an outer
region (outside the cycle).”

Ajur said, “So the edges have to go either inside or outside the longest
cycle.”

Rishnak said, “Precisely. By trying out various possibilities, backtrack-
ing as necessary, you can eventually get a planar representation of a graph—
if one exists. Of course, this process is easier said than done.”

Ajur asked, “Is there any easier way?”

LAjur liked monkeys and monkeys liked trees. It follows by transitivity that Ajur
liked trees.
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Figure 9.7: A planar drawing of a tree, which is self-similar
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Rishnak said, “There is in fact an efficient method of placing the edges,
without any backtracking, but the details are rather complicated.”

After a few minutes of silence in which Ajur thought about how this
might work, Rishnak said, “Remember Euler?”

Ajur nodded.

Rishnak waved his hands and a new graph appeared [Figure . He
said, “Euler discovered a remarkable relationship between planar graphs
and three-dimensional solids. This planar graph represents a tetrahedron—
a pyramid.”

Ajur asked, “How is that a pyramid? It’s two-dimensional.”

Rishnak chuckled and said, “If you imagine stretching vertex a3 out
toward you, you end up with a three-dimensional solid with four sides,
hence the name tetrahedron.”

Ajur studied the graph and said, “Oh, I see now.”

Rishnak continued, “Think of each region in a planar representation as
the face of such a three-dimensional solid. Then Euler’s formula relating
the number of edges e, the number of vertices n, and the number of faces f
of a planar graph is simply this.” Rishnak waved his hands and Euler’s
equation appeared as follows:

f—e+n=2 (9.1)

Rishnak said, “Let me explain this a bit. Each region corresponds to a
cycle in the graph that surrounds that region. It also defines the external
region, which is sometimes also called the infinite region. We know there
are n — 1 edges in a tree, so if we can find that tree in the given graph,
then the rest of the e — (n — 1) edges will form part of a cycle. This gets
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Figure 9.8: Planar graph representing a tetrahedron

tricky and we will have to explore this at some point in the future.ﬂ Each of
these cycles correspond to an internal region—in other words, an internal
face—and one external face. From this, Euler’s equation follows.”

As Rishnak spoke, he drew the following equations in the air:

internal faces = e— (n —1)
external faces = 1
total faces = internal faces + external faces
= e—n+2 (9.2)

Ajur studied the equations and understood, at least for a tetrahedron.
He said, “Okay, I've constructed Platonic solids with Zometoo]ﬂ Does this
equation work for all of these?”

Rishnak smiled and said, “Ah yes, the Platonic solids, named after
Plato, the ancient Greek philosopher. And yes, Euler’s equation applies to
the five Platonic solids. In other words, the graph theory behind Euler’s
formula can be used to relate vertices, edges, and faces of the Platonic
solids.”

Rishnak waved his hands and next to the graph corresponding to the
tetrahedron [Figure [9.8], four more graphs appeared [Figure [Fig-
ure [Figure 0.11] [Figure [9.12]. He said, “Ajur, can you write down

2Rishnak and Ajur end up discussing this in Chapter 11 when they talk about span-
ning trees in a connected graph and how to choose one.
3Zometool is a commercial construction kit for making general polyhedra.
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the number of vertices n, the number of edges e, and the number of faces f
for each of these?”

Ajur looked at each graph in turn, then systematically wrote the values
in the dirt to create his table [Table [9.1].

Rishnak smiled and said, “Good. All Platonic solids have a planar rep-
resentation, as you can see in these graphs. The reason this works is that
every solid fits within a sphere in such a way that no point or vertex passes
through what would be the North pole. From this, one may stereographi-
cally project the graph onto the plane.”

H Solid ‘n‘e‘f“
Tetrahedron 4 16| 4
Cube 8 112 | 6
Octohedron 6 |12 ] 8
Dodecahedron | 20 | 30 | 12
Icosahedron | 12 | 30 | 20

Table 9.1: Parameters of Euler’s equation for the Platonic solids

Rishnak said, “Notice that each edge appears in exactly two faces. If
each face is a triangle—therefore a cycle of length 3—the graph is called
a maximal planar graph. From this, we can deduce e = %, or f = %
Substituting this for f in Euler’s equation ”—Rishnak waved his hands
and equations floated in the air in front of Ajur—“we can solve for e.”

2e

I _ 2

3 e—n-+

e
_Z 2

3 n

£ - no2

3

e = 3n—6 (9.3)

Rishnak paused after showing this equation (9.3), giving Ajur time
to think about it, then said, “By using this equation, we can show that
complete graph K5”—he flashed his hands and a new graph appeared
[Figure [9.13]—*“is non-planar. This graph has five vertices and 10 edges,
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Figure 9.9: Planar graph representing a octahedron

son =5 and e = 10. But from the equation, if it were planar, then the
number of edges would have to be at most 9.”

Ajur raised his eyebrows and said, “Aha, I see how that works. Nice!”

Rishnak asked Ajur, “Can you use Euler’s equation to show that com-
plete bipartite graph K33 [Figure with its six vertices is non-planar?”

Ajur was alert and knew that a bipartite graph only has even cycle
lengths. He said, “To have the maximum number of edges, each face has
to have a cycle length of 4. Therefore, 2e = 4f or f = 5.”

Ajur scribbled down equations in the dirt and said, “Substituting for f
in Euler’s equation f = e —n + 2 , we get —5 = n — 2, which we can
write as e = 2n — 4.7

Rishnak smiled as Ajur went on, “Substituting n = 6, we get e = 8.
That’s the maximum number of edges possible, but K33 has nine edges,
which is more than eight. Therefore, we have proven that K33 is non-
planar!”
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Figure 9.11: Planar graph representing a dodecahedron
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Figure 9.12: Planar graph representing a icosahedron

76



CHAPTER 9. PLANAR GRAPHS 7

) 4

Figure 9.13: Complete graph Kj with five vertices and 10 edges

Rishnak’s smile broadened. He said, “Good, Ajur. And here’s one more
interesting fact. It turns out that any planar graph has not only a planar
representation that we can draw, but also a representation in which each
edge can be drawn as a straight line. Something to think about after we
depart for the night.”

Ajur thought for a moment, then said, “And every subgraph of a planar
graph must also be a planar graph, right?”

Rishnak said, “Yes, Ajur. Also, the operation of dividing an edge by
introducing a new vertex of degree 2 will not change whether it is planar or
non-planar. We could also do this twice to essentially add a new edge and
not change whether the graph is planar or non-planar.”

Ajur frowned and said, “I don’t understand.”

Rishnak said, “Have a look at this graph”—he waved his hands and a
new graph appeared [Figure —“from the original tetrahedron graph
[Figure , we can divide an edge by adding a vertex or, in this case, we
can add two vertices with a new edge between them. In the end, we still
have a planar graph.”

Ajur studied the graph in front of him until he understood.
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1 5 6 3

Figure 9.14: A division of original edge (1,3) by adding two new vertices
(5 and 6) to the planar graph shown in Figure

Question for the seventh day

Rishnak stretched his arms out and said, “We have covered a lot today.
You should be ready to answer the question for the seventh day. Can you
show that in a planar graph, there exists at least one vertex of degree 57”

Before you turn the page, try to come up with an answer of your own!
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Answer for the seventh day

Ajur thought about this. He remembered Euler’s equation (9.1)) and said,
“Each edge occurs in exactly two faces. And the smallest face could be a
cycle of length 3. Therefore, substituting f = %, we get % =e—n-+2,
which results in £ =n — 2 or just e = 3n — 6, so the 7

Ajur frowned, wondering where to go with this line of thinking. At
length, he said, “This tells us that 3n — 6 is the maximum number of edges
a planar graph can have, so if all vertices have degree 6 or more, then e > 3n,
contradicting that the graph is planar.”

Rishnak was happy with Ajur’s answer. Jura appeared to be getting
restless, so Rishnak decided that they had had enough for that session.

They parted for the night.

*Ajur essentially derived Euler’s equation (9.3)) once again



Chapter 10

Graph Coloring

Rishnak was impressed with Ajur’s logical reasoning ability and went search-
ing for him. It did not take long for Rishnak to find him—ghosts can move
rather quickly. He found Ajur and Jura sitting on a stone bench. Without
hesitation, Rishnak asked Ajur if he liked coloring.

Ajur enthusiastically responded that he did indeed like to color and
enjoyed its calming effect.

Rishnak was pleased with this response and introduced the next topic.
He said, “Let’s talk today about graph coloring. A proper wvertex coloring
of a graph is a coloring of vertices such that no adjacent vertices—I mean
vertices connected by an edge—have the same color.”

Rishnak flashed his hands and a graph appeared in front of Ajur, but
this graph gleamed with different colors [Figure [10.1]. He said, “This is an
example of a proper vertex coloring of a graph using four colors.”

Ajur marveled at the graph in front of him.

Rishnak continued, “An interesting problem is to determine the smallest
number of colors to properly vertex color a graph. Can you do better than
four colors for this graph, Ajur?”

Ajur jumped up from the stone bench and grabbed a stick. He said,
“Yes, I already see one with three colors.” He drew a new graph in the dirt,
using fallen leaves to show the three different colors [Figure [10.2].

Rishnak asked, “How do you know three is the minimum number of
colors that you need for that graph?”

Ajur thought for a moment, then said, “Three colors are needed because
vertices 1, 2, and 4 are mutually adjacent, so those vertices need three
distinct colors.”

30
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1 5 6

Figure 10.1: A proper coloring of the vertices of a graph using four colors

Q-

Figure 10.2: A proper coloring of the vertices of the graph shown in Fig-
ure [10.1] using only three colors

Rishnak smiled and asked Ajur to properly color complete bipartite
graph Ks 3.

Ajur jumped at the opportunity and quickly drew graph K3 3 in the dirt,
then used orange and yellow leaves to color the graph [Figure [10.3].

Rishnak said, “Good. How did you come to that answer so quickly?”

Ajur said, “In a bipartite graph, vertices are partitioned into two sets A
and B. Since the edges always go from a vertex in A to a vertex in B, all
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4 5 6

Figure 10.3: Two coloring of complete bipartite graph K3 3 with six vertices
and nine edges

Figure 10.4: Two coloring of a tree

of the vertices in A can be colored with one color, say orange, while all of
the vertices in B can be colored with another color, say yellow.”

Rishnak said, “Right, and since you are using leaves, let’s talk about
trees. Since all trees are also bipartite graphs, trees can always be colored
with just two colors.” Rishnak waved his hands and a brightly colored red
and pink graph appeared in front of Ajur [Figure .

Ajur grew more curious and asked, “Can you also color edges? And if
S0, is there a concept of adjacent edges?”

Rishnak always believed that asking the right questions is important
because it is a signal that one’s understanding is deepening. He responded,
“Yes, two edges are adjacent if they are incident to the same vertex. Con-
sider this graph”—he waved his hands and a new graph appeared [Fig-
ure —“Edge e; is adjacent to edge e, since both are incident at ver-
tex 1. Edge e; is also adjacent to edges es, e4, and e; because all of these
edges are incident at vertex 2.”

Ajur exclaimed, “Then the maximum degree of this graph, which is four,
tells us that we need four colors for the edge covering.”
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Figure 10.5: Four edge coloring of a graph
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Figure 10.6: Three edge coloring of a cycle of length 5

Rishnak smiled and said, “Your observation regarding the maximum
degree of a graph is good, but the maximum degree of graph, call it A,
does not imply that the graph has a A-coloring. Think of this graph”—
Rishnak waved his hands and a new graph appeared [Figure f“and
notice that it is a cycle of length 5 with a maximum degree of A = 2, but
it needs three colors to color its edges.”

Ajur frowned and said, “Oh right, I see. I was hoping there was a simple
mathematical explanation here.”

Rishnak said, “There is. A graph with maximum degree A can be edge
colored with either A or A + 1 colors.”
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Figure 10.7: Four edge coloring of the Petersen graph, a regular graph of
degree 3, and therefore a Snark

Ajur’s frown turned into a smile.

Rishnak also smiled, then said, “A regular graph with degree 3—meaning
a graph with all of its vertices having a degree of 3, also known as a trivalent
graph—that needs four edge colors for a proper edge coloring is known as
a Snark.”

Ajur laughed. He had heard of Snarks from a poem titled The Hunting
of the Snarks by his dad’s favorite author, Lewis Carroll.

Rishnak smiled and said, “Strange name, yes, but graph theorists often
have a whimsical sense of humor, and since four-edge-colorable trivalent
graphs are awfully elusive, they named these graphs Snarks.”

Ajur thought for a moment, curious to find one for himself. He asked,
“Is the Petersen graph a Snark?”

Surprised that Ajur remembered, Rishnak replied that the Petersen
graph indeed needs four colors to properly color the edges of that graph.
He waved his hands and the graph appeared in front of Ajur [Figure [10.7].

Rishnak said, “We can also convert an edge coloring problem to a vertex
coloring problem. From a given graph G for which you want to color the
edges, we can construct a new graph H in which edges of G become vertices
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e2 ed
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Figure 10.8: Four vertex coloring of a graph that corresponds to the four
edge coloring of the graph shown in Figure [10.5

of H, and two vertices of H are adjacent if the corresponding edges in G
are incident on the same vertex of G.”

Rishnak flashed his hands and said, “Here, let me show you. The edge
coloring of this graph”—he waved his hands and a previous graph appeared
[Figure —“can be converted into a vertex coloring in this graph”—
Rishnak waved his hands again and a new graph appeared [Figure .

Ajur studied the two graphs. He said, “I see, but the edges in the new
graph H don’t exactly correspond to the vertices of GG. Instead, there’s an
edge in H for each adjacent pair of edges in G.”

Rishnak nodded, happy to see Ajur understood.

Rishnak said, “Here’s a new problem for you, Ajur, somewhat related
to the edge coloring problem. In a group of six people, say Alexis, Bailey,
Charles, Danny, Elaine, and Francis, each pair of individuals could be either
a friend or an enemy. For example, Charles might be friends with Alexis,
Bailey, and Charles, but enemies with the other three. Can you prove that
in a group of six people, there will be at least three people who are mutual
friends with one another or mutual enemies with one another?”

Ajur thought about this, then said, “I could try to model this problem
as a complete graph with six vertices, coloring the 15 edges either red or
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2

Figure 10.9: A graph with four regions or faces, with each region or face
colored a different color

blue. We could use red to denote enemies and blue to denote friends. No
matter how we color the edges, there will always be a red triangle of three
vertices or a blue triangle of three vertices, right?”

Rishnak nodded. He was impressed with Ajur’s ability to translate the
given problem into a graph-theoretic problem even if he could not solve it
completelyﬂ

Ajur asked, “What other graph coloring problems are there?”

Rishnak said, “A quite useful one is the map coloring problem. The idea
is to color the regions (or faces of a planar graph since maps are usually
drawn on a plane) such that no two adjacent regions (or faces) are colored
the same. Here is an example of a map coloring of a graph with six vertices
and nine edges.”

Rishnak waved his hands an a new graph appeared, its four faces colored
in [Figure[10.9]. He said, “The four faces are (1,2,4,6), (1,3,5,4), (2,3,5,6)
and (4, 5,6). Each of these regions share a border or edge with other regions.
Therefore, all of these four regions are mutually adjacent. Often the outside
region is also colored. And in this graph, the outside region could be colored
yellow just like the center region. We know this because the outside region
does not share a border with region (4,5,6).”

You can try to work out the full solution.
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Figure 10.10: USA Map with face (i.e., state) adjacencies preserved, colored
using only four colors

Ajur said, “So we still need only four colors.”

Rishnak nodded. He said, “One of the most famous theorems about
map coloring is that every planar graph can be map colored with four
colors. That is, we need only four colors to color every region such that no
two adjacent regions have the same color. Here, have a look at this example
map of the USA, colored using only four colors.”

Rishnak waved his hands and a new image appeared in front of Ajur
[Figure . Ajur frowned and said, “That doesn’t look at all like the
USA.”

Rishnak laughed and said, “The regions or faces in this map are indeed
the states of the USA, but right, it is not like the normal map of the USA
that we see in an atlas. The states are not shaped the same or drawn
to scale, but this map of the USA preserves the adjacency relationships
between each state. Can you identify the state of Maine?”
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Ajur thought for a while, trying to remember how the actual USA map
looked. He said, “I think Maine borders only one other state, New Hamp-
shire. So, the small yellow triangular region in the northeast corner must
be the state of Maine.”

Rishnak nodded and said, “How about the state that borders the most
other states? This is actually a tie between two states.”

Ajur raised his eyebrows and said, “Wow, that’s a tough one. They
must be states in the Midwest.”

Rishnak said, “Yes, Tennessee and Missouri both border eight other
states. They actually border one another, toof] Here’s another map, this
one of India.”

Rishnak flashed his hands and a map of India with state names shown
appeared [Figure [10.11]. Rishnak said, “Could the two states of Andhra
Pradesh and Kerala be colored using the same color?”

Ajur said, “Yes, they could definitely be colored using the same color
because they do not share a border.”

Rishnak asked, “What about Goa and Kerala?”

Ajur replied instantaneously with a resounding, “Yes, they also do not
share a border. We can just convert the map coloring problem into a vertex
coloring problem, similar to converting the edge coloring problem to a vertex
coloring problem, right?”

Rishnak said, “How might you do that?”

Ajur explained that each region or face of the original map would become
a vertex of the new graph, and two vertices in the new graph would have an
edge to show they are adjacent if the corresponding regions in the original
graph shared a border. He said, “For example, in the map of the USA, all
of the states would become vertices of the new graph, with an edge added
for each corresponding pair of states that share a border with one another.
So the vertex corresponding to Maine would be adjacent only to the vertex
corresponding to New Hampshire. Similarly, the vertex corresponding to
Washington would be adjacent to vertices corresponding to Oregon and
Idaho.”

Rishnak nodded. He was very pleased with the way Ajur was able to
quickly absorb the material.

2Can you find these two states in Figure [10.10]]
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Figure 10.11: An old map of India with states and borders shown
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Figure 10.12: Can you vertex color this graph with as few colors as possible?

Question for the eighth day

Rishnak said, “It is time, Ajur, for the question for the eighth day. Can
you color the vertices of this graph”—he flashed his hands to show a new
graph [Figure —“With as few colors as possible.”

Before you turn the page, try to come up with an answer of your own!
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Figure 10.13: Vertex coloring of the graph shown in Figure [10.12] with a
minimum number of colors, namely 3

Answer for the eighth day

Ajur had no problem coloring this graph as follows Figure [10.13

Rishnak nodded and did not want to push further, so he called it a day.
Ajur and Jura walked home, Ajur smiling over everything he had learned
that day.



Chapter 11

Spanning Trees

Rishnak found Ajur and Jura walking along a stretch of road with trees
on either side. Recalling his previous talks with Ajur about trees, Rishnak
chose a specific kind of tree that is found within a graph for his next session
with Ajur.

Rishnak said, “A graph G is connected if there is a path between every
pair of vertices in G. So, in connected graph G = (V, E), a spanning tree
is tree T'(V, Ey) that covers all vertices in V' and is a subgraph of G that
satisfies two conditions:

1. Subgraph T is a tree, meaning it contains no cycles and is connected.
2. Vertex set V of T is the same as that of G.”

Rishnak flashed his hands and formed two graphs in the air in front of
Ajur [Figure [Figure [11.2]. He said, “Here is an example of a graph
with a corresponding spanning tree.”

Ajur studied both graphs, recognizing that the second graph was a sub-
graph of the first.

Rishnak asked Ajur if he could construct another spanning tree for the
original graph [Figure [I11.1].

Ajur was eager to show off and drew a subgraph in the dirt with a stick
[Figure [11.3].

Rishnak asked, “How many distinct spanning trees are there?”

Ajur thought about this for a moment. He said, “Do you mean how
many labeled non-isomorphic trees there are?”

Rishnak said, “Yes, exactly the question?”

92
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Figure 11.1: Example graph with six vertices and seven edges

Figure 11.2: A subgraph of the graph shown in Figure that forms a
spanning tree of the original graph
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Figure 11.3: Another spanning tree of the graph shown in Figure [11.1
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Ajur said, “There are two cycles in this graph, namely (2, 3,4, 5) and (1, 2, 5),
and they share common edge (2,5). The cycles are of length 4 and length 3,
so there are four possible spanning trees to choose from out of the first cy-
cle and three possible spanning trees to choose from out of the other cycle.
Multiply these together and we have 12 possibilities, but one of them ends
up being cycle (1,2,3,4,5) if edge (2,5) is omitted. Therefore, we have 11
spanning trees, each of which must also contain edge (4, 6). Here they are.”
Ajur painstakingly wrote out all 11 spanning trees in the dirt as follows:

1. {(4,6),(4,5),(5,2),(2,3),(5,1)}
2. {(4,6),(4,5),(5,2),(2,3),(2,1)}
3. {(4,6),(4,5),(4,3),(5,2),(5.1)}
4. {(4,6),(4,5),(4,3),(5,2),(2,1)}
5. {(4,6),(4,3),(2,3),(5,2),(5,1)}
6. {(4,6),(4,3),(2,3),(5,2),(2,1)}
7. {(4,6),(4,5),(4,3),(2,3),(5,1)}
8. {(4,6),(4,5),(4,3),(2,3),(2,1)}
9. {(4,6),(4,5),(2,3),(5,1),(1,2)}
10. {(4,6),(4,5),(4,3),(5,1),(1,2)}
11. {(4,6),(4,3),(3,2),(2,1),(1,5) }

Rishnak nodded and started to speak, but Ajur asked, “What about
the maximum number of labeled spanning trees in a graph with n vertices?
For a complete graph, it must be the maximum number of edges in a graph
with n vertices.”

Rishnak said, “Correct. Complete graphs have the largest possible num-
ber of spanning trees. We can find the number of spanning trees in a com-
plete graph using Priifer codes, which we talked about a few days agoE]

Ajur remembered Priifer codes and said, “For a tree with n vertices, we
need a Priifer code of length n — 2. Each of the n — 2 characters in the code

1See their discussion in Chapter 9
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Figure 11.4: Original graph from Figure [11.1| with respect to the spanning
tree shown in Figure|l1.2; here, spanning tree edges are shown as thick blue

lines while non-spanning tree edges are shown in red, the latter forming
fundamental cycles (1,2,5) and (3,4,5,1,2)

could be any of the n vertices. Therefore, the number of labeled spanning
trees in a complete graph with n vertices has to be n(»=2”

Rishnak smiled, then said, “In general, since there are n — 1 edges in a
spanning tree, each of the remaining e — n + 1 edges, when added to the
spanning tree will necessarily create a cycle. Therefore, we will have e—n+1
cycles in the given graph. These cycles are called fundamental cycles and, as
I have just described, each fundamental cycle has exactly one non-spanning
tree edge.ﬂ Let me show you.”

Rishnak waved his hands and the original graph appeared with its edges
glimmering in red and blue [Figure . Rishnak said, “The blue edges
are spanning tree edges, whereas the red edges are non-spanning tree edges
that each form a fundamental cycle.”

Ajur wanted to better understand how to find a spanning tree for a
given graph, so he asked Rishnak about this.

Rishnak smiled and said, “First, the graph has to be connected. If that’s
the case, then it can be done using the following steps:

1. Start from any vertex. Add that vertex to empty set S.

2. From the vertices in .S, find a vertex v that is not in .S that is adjacent
to one of the vertices w in S. Add that edge (v, w) to spanning tree 7.

3. Repeat Step 2 until all vertices are in S.”

2Euler’s equation 1) back in Chapter 10 uses this fact.
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Rishnak formed the original graph again in the air in front of Ajur
[Figure [11.1]. He said, “Let me illustrate this. First, add vertex 1 to the
set. It has adjacent vertices 2 and 5. Let’s say we choose vertex 5 and
add it to S. Edge (1,5) is then the first edge of our spanning tree. From
vertices in S, we pick a vertex that is adjacent but not already in S. Choices
here are vertices 2 or 4. Let’s say we choose vertex 2 and therefore include
edge (1,2) in the spanning tree.”

Ajur said, “We could have also included edge (5,2) instead of (1,2) in
the spanning tree, right?”

Rishnak said, “Yes, the choice is arbitrary. Now, at this point, we
have S = (1,2,5). So we find a vertex not in S that is adjacent to any of
these three vertices. There are two vertices to choose from, namely vertices 3
and 4. Let’s say we choose vertex 4 and therefore include edge (4,5) in the
spanning tree.”

Ajur chimed in, “Now vertices (1,2,4,5) are in set S. From these ver-
tices, we find a vertex that is adjacent but not in S, so we’re looking at
vertices 3 and 6. If we choose vertex 3, then we include edge (4,3) in
the spanning tree. Repeating this one more time, we choose vertex 6 and
include edge (4, 6) in the spanning tree. And now we’re done!”

Rishnak nodded and said, “Right, now set S contains all of the ver-
tices, and we have spanning tree T with edges (1,5), (1,2), (5,4), (4,3),
and (4,6).”—Rishnak waved his hands and the spanning tree from earlier
appeared [Figure [11.2]—“This is the same spanning tree we came up with
earlier.”

Ajur nodded eagerly. He said, “Aha, and if we had made different
choices along the way, we would have ended up with a different spanning
tree, like this one.”—Ajur quickly drew another spanning tree in the dirt
[Figure [11.3].

Rishnak smiled, happy to see that Ajur understood. He said, “Here
is another interesting problem related to spanning trees. As background,
a graph is called a weighted graph if there are numeric weights or costs
associated with each edge. The weight could represent the distance in miles
or the cost of travel, and so on.”

Rishnak flashed his hands and the original graph [Figure appeared,
this time with numeric values next to each edge [Figure. He said, “Here
is an example weighted graph. See each weighted edge?”

Ajur said, “Yes, but how does this change our spanning tree problem?”
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Figure 11.5: The graph shown in Figure [11.1| with edge weights associated
with each edge

Rishnak saw Ajur’s impatience. He said, “We want to find a minimum
spanning tree in which the sum of all edge weights in the spanning tree is
the smallest possible.”

Ajur said, “Aha, we can enumerate all spanning trees and for each such
spanning tree, compute the sum of the edge weights, then choose the span-
ning tree with the smallest sum.”

Rishnak smiled and said, “That will work, though that is what we call
a brute force method. It can be a good strategy for many problems, but
we can often find more efficient methods. In this case, we would like to
find a faster method that makes certain choices such that we do not have
to consider all possible spanning trees.”

Ajur frowned and said, “I see. If the graph was much larger, we’d have
a lot of work to do if we used a brute force approach.”

Rishnak said, “Exactly. Do not despair, though. We can modify Step 2
of the procedure that I already described to better select each edge. Here
is the modified approach:

1. Start from any vertex. Add that vertex to empty set S.

2. From the vertices in .9, find a vertex v that is not in .S that is adjacent
to one of the vertices w in S—but make sure that edge (v,w) has
the smallest possible edge weight at that decision point. Add that
edge (v,w) to minimum spanning tree 7.

3. Repeat Step 2 until all vertices are in S.”
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Figure 11.6: A minimum spanning tree with a total weight of 15 for the
weighted graph given in Figure [11.5

Ajur decided to work through an example by using the graph that Rish-
nak had formed in front of him [Figure [11.5]. He first drew the vertices
of the graph in the dirt. Next, he chose vertex 1 and added it to set S.
From the two possible edges incident at vertex 1, he chose vertex 2 and
added it to S since the edge weight for edge (1,2) was smaller than that of
edge (1,5).

Ajur said, “Aha, I see! Now that vertices 1 and 2 are in S, of the edges
leaving S, edge (2,5) has the smallest edge weight. Therefore, edge (2,5)
is added to the minimum spanning tree and vertex 5 is added to S. Then,
from vertices in S, namely 1, 2 and 5, edge (5,4) has the smallest edge
weight. And this continues until we visit each vertex, which we know by
adding each vertex in turn to set S.”—Ajur drew each edge in the dirt as
he followed the algorithm through to its end [Figure —“Set S contains
all of the vertices, so here’s the minimum spanning tree!”

Rishnak laughed as Ajur could barely control his enthusiasm. Ajur
exclaimed, “We could also use this algorithm to minimally connect a given
set of points in a plane. Vertices would correspond to the points. And the
distances between each of these points could simply be the length of the
straight lines joining them.”

Ajur showed his work in Figure [11.7]

Another ghost named Urpur had been eavesdropping on Rishnak and
Ajur. Urpur wanted to show that he was smarter than both Rishnak and
Ajur, so he interrupted and said, “I have an even smarter approach. There
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Figure 11.7: A minimum spanning tree representation with a total weight
of 12 for a set of four points in the plane; here, edges not part of the
minimum spanning tree are shown as dashed lines
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Figure 11.8: A minimum Steiner tree for the set of four points or vertices
shown in Figure [L1.7; here, Steiner points are vertices 5 and 6
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is a spanning tree called the Steiner treeE| wherein one is allowed to add
Steiner points or vertices that were not present in the original problem.
With a clever addition of Steiner points, I can find a spanning tree that is
better than the one Ajur found.”

Urpur clapped his hands and a new graph appeared [Figure . Urpur
said, “You see?”

Rishnak was impressed with Urpur’s solution, but sensing that Ajur was
feeling jealous of Urpur, Rishnak said, “Not bad, Urpur. I am sure Ajur
would have also come to this solution if I had asked him.”

Ajur nodded in agreement.

Question for the ninth day

Rishnak said, “It is time now for Ajur to try and answer the question for
the ninth day. It has multiple parts.”

Ajur’s eyes opened wide in excitement.

Rishnak continued, “Consider a complete graph with with eight vertices
and 28 edges. Of these edges, 14 of them have a weight of 1, while the other
14 edges all have a weight of 10. First, how must you assign the weights so
as to achieve the smallest possible minimum weight spanning tree? Second,
how must you assign the weights so as to achieve the opposite, the largest
possible minimum weight spanning tree?”

Before you turn the page, try to come up with an answer of your own!

3Named after the Swiss mathematician Jakob Steiner
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Answer for the ninth day

Ajur started with the first part. He said, “If there is a cycle that visits all of
the vertices—so a cycle of length 8—and each edge weight in the cycle is 1,
then the minimum spanning tree has a weight of 7. We can’t go smaller
than that.”

Rishnak smiled and said, “Correct. And for the second part?”

Before Ajur could answer, Urpur said, “The second part is the real
question. And the answer is—”

Ajur jumped up and said, “The answer is 25. The largest minimum
spanning tree will have a total weight of 25.”

Rishnak said, “And how do you know that?”

Ajur said, “All of the edges incident at a vertex must be of weight 10
or else we would select an edge of length 1 instead. Since there are eight
vertices, the degree of each vertex must be 7, so two of the graph’s vertices
can entirely have incident edges of weight 10. That uses up the 14 edge
weights of 10, and gives us a minimum spanning tree with a total weight
of 10+104+1+1+ 141+ 1, which is 25.”

Rishnak smiled.

Urpur said, “That’s what I was going to say!”

Rishnak laughed and decided to call it a night.

Jura barked. He was happy now to get Ajur’s attention and jumping
with joy, left with Ajur.



Chapter 12

Shortest Paths

Ajur had found a map of the cemetery. He used it to try to find the best
way to go to the water fountain. Then he remembered his recent discussions
with Rishnak and excitedly told Jura that by using graph theory methods,
they would be able to find a path and maybe even the shortest path to the
water fountain.

Rishnak overheard Ajur and realized that a good discussion of paths
and shortest paths would be an ideal topic to pursue next.

Rishnak said, “Consider a graph[l]in which you wish to find the shortest
path from a specified source vertex to a specified destination vertex. Let’s
look at this familiar graph.”—Rishnak waved his hands and an undirected
graph appeared in front of Ajur [Figure —“What’s the shortest path
from vertex 1 to vertex 67”

Ajur jumped up with excitement and said he could easily draw the
shortest path from source vertex 1 to destination vertex 6. He grabbed a
stick and drew the graph in the dirt, then he showed the shortest path by
thickening edges (1,5), (5,4), and (4,6) [Figure [12.2].

Pleased with Ajur’s enthusiasm, Rishnak wanted to make sure that Ajur
understood a general method for finding the shortest path from a source
vertex to a destination vertex in any graph.

Rishnak said, “Remember how to find a spanning tree for a given
graph?”

Ajur said, “Sure, yes.”

IFor spanning trees, we consider only undirected graphs; however, for shortest paths
we can consider both undirected and directed graphs.

102
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Figure 12.1: Example undirected graph for which we want to find the short-
est path from vertex 1 to vertex 6
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Figure 12.2: The graph from Figure with the shortest Path (of length 3)
shown from vertex 1 to vertex 6 using thick lines

Rishnak said, “Good. We can come up with a similar algorithm for
finding the shortest path from a source vertex to a destination vertex, but
first, we need to define distance dist of a vertex y as the number of vertices
we must visit to get from the source vertex to vertex y. We also define
parent p of a vertex as the parent vertexﬂ that led us to vertex y. Given
these definitions, here is the algorithm:

1. Set dist for the source vertex to 0 (since the distance from the source
vertex to itself is zero). Also set p as being undefined.

2. Set both dist and p for all other vertices as being undefined.

2You can also think of this as the previous vertex.
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3. We start from the source vertex, so add that vertex to a queueE|

4. Remove the vertex from the front of the queue, calling this vertex w.
Find all vertices with undefined dist values that are adjacent to w
and put them in set A. Set dist for all of these vertices to be one
more than the dist value for w; also set p to be vertex w. Finally,
add all vertices from set A to the queue.

5. Repeat Step 4 until the destination vertex has its dist value changed,
meaning our algorithm has reached the destination vertex. We can
then trace the shortest path back to the source vertex by following
the p vertices until we reach the source vertex.”

Ajur knew this was a lot to try to understand. He used the example
graph still in front of him [Figure [12.1], tracing the algorithm from source
vertex 1. He said, “Okay, so we start by letting the distance dist of vertex 1
be 0, then we add vertex 1 to the queue. We remove vertex 1 from the queue.
It has adjacent vertices 2 and 5, so the dist values of these vertices are both
set to 2. And vertices 2 and 5 are added to the queue, say with vertex 2
at the end of the queue. Also, the parent p vertices of vertices 2 and 5 are
both set to vertex 1.”

Rishnak said, “Correct. Keep going.”

Ajur went on, “Next, we remove vertex 5 from the queue. The only
adjacent vertex with an undefined dist value is vertex 4, so we add it to
the end of the queue. And we set the dist of vertex 4 to be 2 and the
parent p of vertex 4 to be vertex 5.”

Ajur thought for a moment, then said, “The first element of the queue
is now vertex 2, which we remove next. Next, we add the only adjacent
vertex—vertex 3—to the queue. For vertex 3, we set dist to 2 (because it
is one more than the (dist) value of vertex 2) and the parent p to vertex 2.
Finally, we remove vertex 4 from the queue and therefore reach vertex 6,
which we add to the queue. We set the dist of vertex 6 to be 3 and its parent
p to vertex 4. And since vertex 6 is the destination vertex, we're done. The
distance from vertex 1 to vertex 6 is 3, and we can work backwards to
determine the path since p(6) = 4, p(4) = 5, and p(5) = 1, which is the
source vertex.”

3In a queue, we can only add elements to the end and remove elements from the
front, just like waiting in line at a grocery store. We can also inspect elements in the
queue without changing their order.
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Figure 12.3: An example graph for which we wish to find the diameter

Ajur marveled at the systematic procedure that could be applied to
any graph. He also realized that this procedure could be used to find the
shortest path from a single source to all other vertices in a given graph.
As he thought about this further, he said, “And we could use this same
algorithm to find the shortest paths between every pair of vertices in a
graph.”

Rishnak smiled and said, “There is a graph parameter called the diam-
eter of a graph. The diameter is the longest path from among the shortest
paths between every pair of vertices. For the example graph we have been
using [Figure , the diameter is 3 since the shortest paths between every
pair of vertices are of lengths 1, 2, and 3.”

Ajur nodded.

Rishnak flashed his hands and the original graph morphed into a new
graph with two fewer edges [Figure [12.3]. He said, “Find the diameter of
this graph, Ajur.”

Ajur studied the graph and said, “Okay, this is the same graph but
without edges (1,5) and (2,5). I see that this graph is a tree since there are
no cycles in the graph. The longest path among all of the shortest paths is
from vertex 1 to vertex 5—no wait, there’s also a longest path from vertex 1
to vertex 6. Both of them are of length 4, so that’s the diameter of this
graph. And therefore, there can be more than one path representing the
diameter.”

Rishnak nodded and said, “Correct. In general, a simple path with n
vertices”—he waved his hands and a new graph appeared [Figure [12.4]—
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Figure 12.4: A graph with n vertices will always have a diameter of n — 1

2

/

Figure 12.5: A graph with n vertices with a diameter of n — 2
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Figure 12.6: A graph with n vertices with a diameter of 2

“will have a diameter of n — 1. And for a complete graphﬁ with n vertices,
the diameter is always 1, as the shortest path between every pair of vertices
is 1.7

Ajur again nodded.

Rishnak asked Ajur, “Can you construct graphs, all with n vertices, that
have diameters n —1,n —2,...,2, and 17”7

Ajur thought about this for a few moments. He said, “Yes, that’s not too
hard. We already have the graph with a diameter of n — 1. Here’s a graph
with a diameter of n —2”—he drew a graph in the dirt [Figure [12.5]—“and
another with diameter 2.”—he quickly drew another graph [Figure .

Ajur smiled broadly and said, “From these two graphs, you can infer
the rest!”

4Remember that in a complete graph, there is an edge between every pair of vertices.
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Figure 12.7: The Petersen graph from Figure [7.4] drawn in the shape of a
rooted tree with a diameter of 2 and a degree of 3

Rishnak said, “Here is another interesting problem. Can we construct
a regular undirected graph with given diameter k7”

Ajur shrugged his shoulders and said, “But how many vertices?”

Rishnak smiled as he continued, “Yes, Ajur, an answer here is a set of
graphs called Moore graphs. In addition to diameter k, we define degree d
for the graph, meaning that each vertex has degree d. Then we can calculate
the number of vertices in the graph using this formula.”

Rishnak flashed his hands and the following formula appeared in the air
in front of Ajur:

k-1
number of vertices = 1 + Z(d —1)

=1

Ajur frowned as he studied the formula.

Rishnak said, “Let me explain. We can understood this formula by
drawing a graph in the shape of a rooted tree of depth k& — 1”—Rishnak
waved his hands and a new graph appeared [Figure —“Which we have
already seen.ﬂ In this graph, the root vertex has d children and every other
vertex has d — 1 children. All of the leaf vertices break the tree properties
since they are connected in such a way that every vertex has degree d.”

Ajur studied this graph and said, “Aha, and this graph’s diameter is k.”

Rishnak smiled and said, “Precisely.”

5This is the Petersen graph from Figure
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Ajur thought for a few moments, wondering about weighted graphs. He
said, “Is there an algorithm to find shortest paths in weighted graphs?ﬂ

Rishnak said, “Yes, Ajur, good thinking.” Rishnak waved his hands and
a weighted graph appeared in the air [Figure .

Rishnak continued, “We can modify the shortest path algorithm from
earlier to work for weighted graphs. Remember from that algorithm that
we aim to find the shortest path from a source vertex to a destination
vertex. Then we redefine distance dist of a vertex y as the minimum sum
of the weights along the edges we used to get from the source vertex to
vertex y. We still have parent p of a vertex as the parent vertex that led
us to vertex y. Given these revised definitions, here is the algorithm:

1. Set dist for the source vertex to 0 (since the distance from the source
vertex to itself is zero). Also set p as being undefined. Further, set
explored to 1.

2. For all other vertices, set dist to oo, set explored to 0, and set p as
being undefined.

3. We start from the source vertex, so add that vertex to a queue.

4. Remove the vertex from the front of the queue, calling this vertex w.
Find all vertices with explored set to 0 that are adjacent to w and
put them in set A. For each vertex v € A, set its dist value to the
minimum of the dist value for v and the sum of the dist value for w
plus the weight of edge (w,v). If we use the sum here, then also set p
for vertex v to be w (since we found a shorter path).

5. Add the vertex with the smallest dist value from set A to the queue,
also setting its explored value to 1.

6. Repeat Steps 4 and 5 until the destination vertex has its dist value
changed, meaning our algorithm has reached the destination vertex.
We can then trace the shortest path back to the source vertex by
following the p vertices until we reach the source vertex.”

Ajur studied the graph in front of him, then drew it in the dirt. He
said, “Okay, let me try to use the algorithm on this graph. Initially, dist of

6Remember a weighted graph is a graph with weights or costs associated with each
edge.
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Figure 12.8: A weighted graph with six vertices and seven edges for which
we wish to find the shortest path from vertex 1 to vertex 6

vertex 1 is set to 0, and for the rest of the vertices, dist is set to co. Also,
explore of vertex 1 is 1 since we have explored that vertex and 0 for the
rest of the vertices. Scanning from vertex 1, dist of vertex 5 is 5 and dist
of vertex 2 is 2. So the p labels of vertices 2 and 5 are both set to refer
back to vertex 1.”

Rishnak said, “Good, Ajur, that is a good start, yes.”

Ajur continued, “Then we have to choose which vertex to explore next
by selecting the adjacent vertex with the smallest dist value. That would
be vertex 2, so we set explore for vertex 2 to 1. Next, we update dist of
vertex 5 to 4 (since the sum 2+ 2 is less than 5) and dist of vertex 3 to 10.
We also set their p values to both be vertex 2. We then select vertex 5 and
set its explore value to 1. From vertex 5, dist of vertex 4 is set to 6 and
its parent label is set to vertex 5.”—Ajur sighed as this was getting quite
tedious— “Okay, then we go to vertex 4 so we set its explore label to 1.
From vertex 4, dist of vertex 6 becomes 7 and its p value refers to vertex 4.
In this case, dist of vertex 3 does not change. So finally, we set explore of
vertex 6 to 1 and since it is the destination vertex, the algorithm stops.”

Ajur stepped back and looked again at the graph he had drawn [Fig-
ure [12.9]. He said, “We then know that the shortest path from vertex 1
to vertex 6 is of length 7. The path can be traced backward from ver-
tex 6 through the p values, so we have p(6) = 4, p(4) = 5, p(5) = 2,
and p(2) = 1, the source vertex.”

Rishnak smiled as Ajur appreciated the power of the algorithm, knowing
now that he could use this algorithm to compute the shortest route from
the cemetery entrance to the water fountain—or anywhere else!
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Figure 12.9: The weighted graph from Figure [12.8| with the shortest path
from vertex 1 to vertex 6 shown using thick lines

Question for the tenth day

Rishnak said, “It is now time for the question for the tenth day, Ajur.
There are two parts to this question. Using the graph you have just seen
[Figure , first, how can you change the weight of a single edge such
that the shortest path from vertex 1 to vertex 6 must go through vertex 37
Second, what is the minimum edge weight for the changed edge to still have
the shortest path go through vertex 37”

Before you turn the page, try to come up with answers of your own!
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Figure 12.10: The weighted graph from Figure [12.8| with the shortest path
from vertex 1 to vertex 6 shown using thick lines, this time going through
vertex 3 given the increased edge weight of edge (5,4)

Answer for the tenth day

Ajur thought about changing an edge incident on vertex 1 but quickly
found that the shortest path would then simply follow the other vertex
(i.e., vertex 2 or vertex 5). After a few moments of pondering, Ajur erased
the edge weight for edge (5,4) and replaced it with a new edge weight
of 1000.

Ajur said, “If the weight of edge (5,4) is increased to 1000, then the
shortest path is forced to go through vertex 3.” He drew the new shortest
path using thick lines to emphasize the path [Figure .

Rishnak said, “Good, and what could the minimum edge weight be for
edge (5,4) to still have the shortest path go through vertex 37"

Ajur said quickly, “Easy, the shortest path through vertex 3 has a length
of 18, so edge (5, 4) would need to have a weight of 14 for the second-shortest
path to be 19.”

Rishnak smiled and said, “Yes, Ajur, very good.”

Ajur wanted to learn more, but he was getting tired and wanted to find
the shortest path from where he stood to a bench on which he could lie down
and take a nap. So, along with Jura, Ajur walked off in that direction.



Chapter 13

Cliques, Independent Sets,
Vertex Covers

Rishnak was eager to discuss other interesting problems with Ajur and
spotted Ajur and Jura walking along the shore of a pond. Rishnak asked
Ajur about cliques in his school.

Ajur readily shared his pet peeve with Rishnak. He said, “Yes, students
in my school belong to cliques, essentially groups of friends, but they don’t
always let others join.”

Rishnak said, “A clique is also a graph-theoretic term. Here, a clique
is a subgraph of a graph that is complete, which remember means that
every pair of vertices is connected by an edge. Normally we only consider a
maximal complete subgraph to be a clique, which is often called a maximal
cligue. We will use that definition for clique, which means that if H is a
maximal complete subgraph of graph GG, then there is no complete subgraph
of G that also contains H as a subgraph.”

As Ajur thought about that, Rishnak flashed his hands and a graph
appeared in front of Ajur [Figure . Rishnak said, “Can you list the
cliques—maximal complete subgraphs—in this graph?”

Ajur was unsure of his answer, as he was struggling with all of the
definitions. He said, “If I understand correctly, there are three cliques:

1. The induced subgraph containing vertices 4 and 6.
2. The induced subgraph containing vertices 2, 3, 4, and 5.

3. The induced subgraph containing vertices 1, 2, and 5.

112
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6

Figure 13.1: A graph with six vertices and nine edges for which we wish to
identify the cliques, i.e., maximal complete subgraphs (there are three)

Figure 13.2: The graph shown in Figure [13.1] with four additional edges for
which we again wish to identify the cliques (there are two)

Rishnak smiled. He was happy that Ajur understood. He said, “Good,
now how about for this graph?” He waved his hands and four edges were
added to the original graph to form a new graph [Figure [13.2].

Ajur studied the graph for a few seconds, then answered, “I think there
are two cliques:

1. The induced subgraph containing vertices 3, 4, 5, and 6.
2. The induced subgraph containing vertices 1, 2, 3, 4, and 5.”

Rishnak said, “Exactly. Graphs are usually used as models for physical
or social processes. For example, when we consider cliques in a school, we
can model students as vertices and two students belong to the same group
as an edge between the associated vertices, which also note forms a binary
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relation. Imagine a graph of everyone in your school, with a vertex for each
student and an edge for each friendship. Finding cliques or, as in the field
of data science, finding clusters is an important task.”

Ajur thought about this for a few moments, trying to imagine a graph
that would include all of his classmates at school.

Rishnak said, “Let us move on to another related topic. An independent
set in a graph is a set of vertices that are mutually nonadjacent, which
means that we have a subset of vertices that does not include any adjacent
vertices. Can you see how an independent set is related to a clique?”

Ajur frowned, frustrated with the lesson so far. At length, Ajur said,
“No, I don’t understand.”

Rishnak also frowned, thinking, “Oh no, if Ajur does not understand
and then does not answer my question, I will remain trapped as a ghost
forever.”

Rishnak said, “Let me give you a hint. A complement of a graph G =
(V, E) is another graph H = (V, E}). Both have the same vertex set, but
if two vertices are adjacent in GG, they are not adjacent in H—and if two
vertices are not adjacent in GG, then they are adjacent in H. Can you draw
the complement of the original graph”—he waved his hands and the four
added edges disappeared to form the original graph [Figure —“in front
of you?”

Ajur looked at the graph. He grabbed a stick and, after scratching his
head a few times, drew a new graph in the dirt [Figure|13.3]. He said, “Here
is the complement of your graph.”

Rishnak said, “Yes, and how many edges will be in edge set Ej if the
original graph has n vertices and e edges?”

Ajur said, “The maximum number of edges a graph with n vertices can
have is %n(n — 1), so then the number of edges in the complement of the
graph is simply sn(n —1) —e.”

Rishnak said, “Go on.”

Ajur thought for a minute. What was he missing? How did all of these
concepts relate to one another?

Rishnak said, “Well, Ajur, do you see it?”

At last, Ajur said, “I do, yes, I see!l A clique in a graph G will be
an independent set in the complement of G. In your original graph”—he
pointed to the graph in the air in front of him [Figure —“the maximal
independent sets are vertex sets {2,3,4,5}, {1,2,5}, and {4,6}. These are
also the cliques!”
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Figure 13.3: The complement of the graph shown in Figure [13.1

| %\

3 4 5 6
Figure 13.4: A bipartite graph with six vertices and seven edges for which
we wish to find all of the maximal independent sets (there are three)

Rishnak smiled. He flashed his hands and a new graph appeared in the
air in front of Ajur [Figure . Rishnak said, “Here is a bipartite graph,
Ajur. Can you figure out what the maximal independent sets are in this
graph?”

Ajur studied the graph, then said, “The maximal independent sets are
vertex sets {1, 2}, {3,4,5,6}”—he hesitated, trying to find if there were any
others—“and {2,6}. I think that’s all.”

Rishnak nodded. He said, “Finding a maximal independent set is not
that hard, but finding a mazimum independent set is very hard, similar to
finding a maximum clique. And what I mean here is this. A maximum
independent set refers to the maximal independent set with the largest
size. For the graph you still see in front of you [Figure , the maximum
independent set is {3,4,5,6}. And for this other graph”—Rishnak waved
his hands and the previous graph appeared [Figure [13.3]—"the maximum
independent set is {2,3,4,5}.”

Ajur said, “Can we simplify the problem by just looking at a tree?”
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2 3
Figure 13.5: A tree for which the maximum independent set is vertex
set {4,5,6,7,1}, shown as circled vertices

Rishnak raised his eyebrows, pleased with Ajur’s question. He said,
“Yes, it is much easier to find the maximum independent set in a tree. Can
you come up with a procedure to do this?”

Ajur jumped up and thought for a few moments. Before long, he had a
solution in mind. He said, “First, the input is rooted tree T" and the output
is maximum independent set X. The algorithm is:

1. Let X =01
2. Add all leaf vertices of T to set X.

3. Delete all leaf vertices from 7', meaning we also delete all edges inci-
dent to each of these leaf vertices.

4. Next, delete all of the newly created leaf vertices, if any.
5. If tree T is not empty, go back to Step 2.
6. X is the maximum independent set of tree T.”

Before Rishnak could say a word, Ajur excitedly drew a tree in the dirt
[Figure and said, “In this tree, the maximum independent set is vertex
set {4,5,6,7,1}.”

Rishnak said, “A problem that is closely related to finding an indepen-
dent set is finding what is called a vertex cover. A vertex cover of a graph
is a minimal subset of vertices that are incident to (or cover) all edges of
the graph. In other words, if you delete all incident edges in a vertex cover,

Here, 0 is the symbol for an empty set, also written as {}.



CHAPTER 13. CLIQUES, INDEPENDENT SETS,
VERTEX COVERS 117

4 > 6 7

Figure 13.6: The tree from Figure for which the minimal vertex cover
is vertex set {2,3} (shown as circled vertices), as all edges are incident on
either vertex 2 or vertex 3

the remaining graph is always an empty graph, meaning a graph with no
edges whatsoever.”

Ajur nodded and said, “How is that useful?”

Rishnak said, “Intuitively, if we place police officers at all vertices of the
vertex cover, then they will be able to watch all of the edges, which may
represent roadways in a city or corridors in a building. And since we want
to employ as few police officers as possible, we want a minimal vertex cover,
which here means that no subset of it is also a vertex cover.”

Ajur said, “Vertex cover and independent set seem to be related. Are
they?”

Rishnak smiled and replied, “If X is a maximal independent set in a
graph with V' as its vertex set, then V' — X is a minimal vertex cover.
Similarly, if ¥ is a maximum independent set, then V' — Y is a minimum
vertex cover.”

Ajur smiled, seeing the elegance and simplicity. He also was impressed
at how all of these seemingly unrelated sets were actually related. Ajur was
lost in thought for awhile, then said, “Maximal independent set X contains
no edges, as per its definition. And this implies that vertex set V — X
covers all edges of the graph and that every edge is incident in some vertex
of V- X.

Rishnak said, “In days long ago, parks were constructed at the junctions
of roads in a village. Here is an old road map of Royt.” Rishnak flashed
his hands and a new graph appeared [Figure . He continued, “What
is the smallest number of parks that would need to be constructed in Royt
such that there is at least a park at either end of each roadway or edge?”
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Figure 13.7: An old village road map of Royt

Ajur was mesmerized by the almost ornate layout and symmetry of Royt.
He studied the graph and said, “I would construct five parks at vertices 1,
3,7, 8, and 11.”

Rishnak raised his eyebrows and said, “How did you come to that answer
so quickly?”

Ajur said simply that he tried to find a minimum vertex cover to solve
the problem.

Question for the eleventh day

Rishnak smiled. He said, “You are ready for the question for the eleventh
day, Ajur. Here it is. What is the size of the maximum independent set in
a complete binary tree of height 57”

Before you turn the page, try to come up with answers of your own!



CHAPTER 13. CLIQUES, INDEPENDENT SETS,
VERTEX COVERS 119

Answer for the eleventh day

Ajur thought about the question, repeating it in his head. He said, “Okay,
a complete binary tree of height 5 will have 32 leaf vertices. From those leaf
vertices, we go up the tree level by level, only counting vertices at alternating
levels. So, the size of the maximum independent set will be 324+8+2 = 42.”

Rishnak was impressed, but before he could say good night, Ajur said,
“And the minimum vertex cover size is 1 +4 4 16 = 21.”

Rishnak laughed.

It was getting dark and both of them called it a night.



Chapter 14

Bridges, Cut Vertices, Cut Sets

Remembering that he had not told Ajur about many concepts related to
graph connectivity for both undirected and directed graphs, Rishnak went
looking for Ajur. He found Ajur and Jura walking across a bridge that
spanned a small brook.

Rishnak said, “Today let us talk about graph connectivity.”

Ajur said, “Okay, but already did, and I remember that for a graph to
be connected, there has to be a path between every pair of vertices.”

Rishnak smiled and said that was correct. He continued, “A bridge is
an edge in a connected graph that, when removed from that graph, causes
the graph to become disconnected. Have a look at this graph”—Rishnak
flashed his hands and a graph appeared in the air [Figure [14.1]—“and you
will find that every edge is bridge.”

Ajur said, “I see. Every edge is a bridge because that graph is a tree.”

Rishnak flashed his hands again and a second graph appeared [Fig-

1

2/ \3
A NAN
4 ) 6 7

Figure 14.1: In a tree, every edge is a bridge
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6\4/5\1
\ \/
3/2

Figure 14.2: A graph in which only one edge is a bridge, i.e., removing
edge (4,6) would cause the graph to be disconnected

ure . He said, “And in this familiar graph, only one edge is a bridge.”

Rishnak said, “A bridge is an important edge in a graph. As you have
seen, if a bridge is removed—in other words, if that edge fails—then the
graph becomes disconnected. It is certainly possible for a graph to not con-
tain any bridges. For example, in a complete graph, there are no bridges.”

Ajur asked Rishnak whether there was a concept similar to a bridge for
vertices.

Rishnak said, “Yes, a cut verter is a vertex that, when removed from
a graphﬂ causes the graph to be disconnected. In the second graph [Fig-
ure , vertex 4 is a cut vertex.”

Ajur studied the graph and said, “I see.”

Rishnak continued, “And if you consider the map of the continental
United States with states represented as vertices and borders defined by
edges, New Hampshire is a cut vertex. If you remove New Hampshire
from the graph, it is no longer possible to go from Maine to the other
states. Similarly, in India, West Bengal is a cut vertex since its removal
from the graph would cause northeastern states such as Assam to be no
longer accessible from Kerala!”

Ajur thought for a moment, then said, “In a tree, all vertices other than
leaf vertices are cut vertices. And in a complete graph, there are no cut
vertices. So if a graph has a cut vertex, that graph is vulnerable and may
become disconnected if the cut vertex fails. Like a network with a single
point of failure.”

'Remember that removing a vertex means that all edges incident on that vertex are
also removed from the graph.
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Figure 14.3: The old village road map of Royt for which we wish to de-
termine how many vertices should be removed to cause the graph to be
disconnected and also how many edges should be removed to cause the
graph to be disconnected

Rishnak said, “Precisely. And further, a graph is k-connected if there is
a set of k vertices that, when removed from the graph, causes the graph to
become disconnected.”

Ajur realized that the concept of a graph being k-connected was a gen-
eralization of a graph having a cut vertex since in that case, k = 1.

Rishnak continued, “And similarly, a cut set is a set of edges that, when
removed from the graph, causes it to be disconnected. How many vertices
need to be removed from this graph”—Rishnak flashed his hands and a new
graph appeared [Figure —“for it to become disconnected? And what
is a cut set for this graph?”

Ajur studied the graph and said, “Removing vertices 1, 3, and 11 would
cause the graph to be disconnected since that would isolate vertex 2. And
similarly, a cut set is edges (2,1), (2,3), and (2,1).”
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Question for the twelfth day

Rishnak said, “Very good, Ajur. Let us see now what the question is for
the twelfth day. There are two parts to it. First, what is the largest number
of bridges that a connected graph with n vertices, can have? And second,
can you draw a graph with six vertices and exactly two bridges.?”

Before you turn the page, try to come up with answers of your own!
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Figure 14.4: A graph with six vertices and two bridges, i.e., edges (6,4)
and (4, 3)

Answer for the twelfth day

Ajur thought again about a tree, remembering that a tree is a minimally
connected graph. He said, “Since every edge in a tree is in a unique path,
all of the edges of a tree are bridges. Therefore, the maximum number of
bridges in a connected graph is n — 1 since this would be a tree of n vertices.
And if we instead had n or more edges, then we would have a cycle, which
means we would not be able to have the number of bridges be greater than
or equal to n.”

Rishnak nodded.

Ajur then grabbed a stick and drew a graph in the dirt [Figure .
He said, “This graph has exactly six vertices and two bridges.”

Rishnak smiled and said, “Good work, Ajur.”



Chapter 15

Strongly Connected Directed
Graphs

Rishnak wanted to continue his discussion with Ajur on the topic of directed
graphd] and caught up with Ajur and Jura.

Rishnak asked Ajur if he remembered what relations were.

Ajur said, “I think so, yes. A relation describes how two things interact
with one another, so a relation could be symmetric like a friendship—if
person A is a friend of person B, then person B is also a friend of person A.
This would be an undirected graph.”

Rishnak nodded and said, “Right, and a relation can also be asymmetric,
like a follower on social media—if person A follows the feed of person B, it
might not be the case that person B follows person A—and this would be a
directed graph. There are many relations that are asymmetric, for example
less than or precedence relations, as well as parent or winner relations. In
each case, we can model the asymmetric relation as a directed graph.”

Ajur nodded, understanding thus far.

Rishnak continued, “Similar to a path or a walk in an undirected graph,
we can also define a path or a walk in directed graph. Remember an undi-
rected graph is connected if there is a path between every pair of vertices.
A directed graph is said to be strongly connected if there is directed path
between every pair of vertices. Here”—Rishnak flashed his hands and a
graph appeared [Figure —“look at this graph.”

!Sometimes directed graphs are called digraphs
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1

Figure 15.1: Strongly connected directed graph for which there is a path
between every pair of vertices

_
#

_ — N
B — W

Figure 15.2: Strongly connected directed graph with a minimal number of
edges for which there is a path between every pair of vertices

Ajur said, “From any vertex, we can follow one or more directed edges
to get to any other vertex in the graph.”

Rishnak said, “Exactly. Can you construct a directed graph with four
vertices that is strongly connected with a minimal number of edges?”

Ajur thought for a moment, grabbed a stick, and drew a graph in the
dirt [Figure . He said, “Sure, this graph is strongly connected with
only four edges.”

Pleased, Rishnak said, “Precisely. A strongly connected directed graph
must have at least n edges, but we can have a directed graph that is not
strongly connected even with %n(n — 1) edges.”—Rishnak waved his hands
and a new graph appeared [Figure —“HOW many edges do we need to
add to this graph to make it strongly connected?”

Ajur thought for a minute, then said, “Just one edge. If we add an edge
from vertex 4 to vertex 1, then the directed graph would become strongly
connected since we could get from any vertex to any other vertex.”

Rishnak smiled. Probing further, he asked, “In this first graph [Fig-
ure , how many edges must we remove to make it not strongly con-
nected?”
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X

Figure 15.3: A directed graph that is not strongly connected

Ajur quickly said, “Again just one edge. If the edge from vertex 1 to
vertex 2 was removed, then the directed graph would no longer be strongly
connected since no vertex is reachable from vertex 1.”

Rishnak’s smile broadened. He said, “Good. This is an important
concept to master, since edge removal problems relate to edge failures in a
wide variety of problems that we can model using graphs.”

Rishnak paused for a moment, then said, “The transitive closure of
directed graph G = (V, E) is directed graph H = (V, E}) such that there
is a directed edge in H between two vertices u and v if there is a directed
path from vertex u to vertex v in G.”

Ajur could not contain his excitement as he said, “I see. And the transi-
tive closure of a strongly connected graph will always be a complete directed
graph. Let me draw the graph.”—Ajur hurriedly drew a new graph in the
dirt [Figure —“Here is the transitive closure of both of the graphs you
have shown me.”

Rishnak said, “And how do you reason that?”

Ajur said, “Two key points:

1. In the original directed graph, there is a directed path between every
pair of vertices. We know this because the graph is strongly connected.

2. In the transitive closure graph, there is an edge between every pair
of vertices since there is a path between every pair of vertices in the
original graph.”

Rishnak nodded.

Ajur continued, “For example, on a social media page, if I post a mes-
sage, it’s visible to my friends. And if my friends share that post, then that
post will become visible to all friends of that friend. That’s how transitive
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X

Figure 15.4: The transitive closure of the directed graphs shown in Fig-
ure [15.1] and Figure [15.2

Game Results
Country Name Played Won Lost Drawn
Scotland 3 3 0 0
England 3 1 1 1
Wales 3 1 1 1
Ireland 3 0 3 0

Table 15.1: Results of six football (soccer) matches

closure works. If someone posts a message, it quickly will be seen by almost
everyone!”

Rishnak smiled and said, “Yes, exactly. Here is a similar problem, this
one from one of my favorite books by Henry Ernest Dudeney’] Problem 452
states that we have four teams, Scotland, England, Wales, and Ireland. This
table of data”—Rishnak flashed his hands and the data appeared in front of
Ajur [Table [15.1]—“shows the results of their football matches, well soccer
[ mean. Can you model this problem using a directed graph?”

Ajur thought for a bit and was able to draw a directed graph correspond-
ing to this table [Figure [I5.5]. He said, “Scotland won all of its matches,
while Ireland lost all of its matches. And therefore, Wales and England
must have come to a draw.”

Rishnak said, “Scotland defeated England with a 3-0 record. The goals
for and against are shown in this table”—Rishnak waved his hands and a
new table of data appeared [Table —“Can you figure out all of the
scores of the rest of the five games?”

2The book is “536 Puzzles and Curious Problems.”
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|

Figure 15.5: A directed graph corresponding to the football (soccer)
matches shown in Table with S representing Scotland, E representing
England, W representing Wales, and 1 representing Ireland

wn — o

Goals
Country Name For Against
Scotland 7 1
England 2 3
Wales 3 3
Ireland 1 6

Table 15.2: Goals for and against for each team

Ajur frowned. He could figure out the scores for England immediately,
seeing that England defeated Ireland by a score of 2-0 and came to a 0-0
draw with Wales. He spent many long minutes trying various combinations
until he finally found a solution. He said, “Aha, Scotland defeated Wales
by a score of 2-1 and defeated Ireland by a score of 2-0. These matched
up with the goals for and against Scotland and England. So then Wales
defeated Ireland by a score of 2-1. Here, let me write down the results.” He
drew the scores of the six games in the dirt [Table [15.3].

Rishnak said, “Good, Ajur. And you should see if you can relate these
data to a directed graph. For now, here is one more new concept. A directed
graph is acyclic if there are no directed cycles in the graph. Such a graph
is called a directed acyclic graph or DAG for short. Can you draw one?”

Ajur drew a DAG in the dirt [Figure [15.6].

Rishnak said, “A DAG may contain what look like undirected cycles, but
it remains a DAG as long as there are no directed cycles.” Rishnak waved
his hands and the graph that Ajur drew appeared in the air. Rishnak
said, “I can add more directed edges”—Rishnak added three more edges
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Game Scores
Country Name Country Name Score
Scotland England 3-0
Scotland Wales 2-1
Scotland Ireland 2-0
England Wales 0-0
England Ireland 2-0
Wales [reland 2-1

Table 15.3: Scores of the six football (soccer) games

|
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Figure 15.6: A directed acyclic graph with four vertices and three edges

X

Figure 15.7: Another directed acyclic graph

[Figure [15.7]—“and still this graph is a DAG since it is still acyclic.”

Question for the thirteenth day

Rishnak said, “Let me now ask you the question for the thirteenth day.
Can you add one edge to make the directed graph you drew in the dirt

[Figure [15.6] strongly connected?”
Before you turn the page, try to come up with an answer of your own!
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Answer for the thirteenth day

Ajur responded immediately, “Sure, that’s easy. We can just add a di-
rected edge from vertex 4 to vertex 1 to make the directed graph strongly

connected.”
It was getting dark and Jura and Ajur wanted to finish their stroll.

Rishnak bade them good night.



Chapter 16

Matching and Assignment
Problems

Hearing footsteps behind them, Ajur and Jura turned and saw Rishnak
rushing to catch up with them.

Rishnak wasted no time and said, “The edges analogue of a maximal
independent set, which remember is a set of non-adjacent vertices, is called
a mazimal matching. A maximal matching is a set of edges that do not share
any common end vertices. Here is an example with maximal matching edges
shown in red.”

Rishnak flashed his hands and a new graph appeared in front of Ajur
[Figure , four of its edges glimmering in red.

e e
N7 \J/

Figure 16.1: A graph for which maximal matching edges are shown in red
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Figure 16.2: A graph with a perfect matching with edges of the perfect
matching shown in red

Rishnak continued, “This is a maximal matching. Every edge is incident
at one of the end vertices of the edges in the maximal set. Therefore,
vertices {1,2,4,6,7,8,9,10} form a vertex cover.”

Ajur said, “But that vertex cover is not the minimum vertex cover.”

Rishnak said, “You are sharp today, Ajur. Right, the minimum vertex
cover is {1,6,7,10}. If we find a maximal matching, we at least know the
upper bound on the size of the minimum vertex cover for that graph.”

Ajur nodded.

Rishnak said, “A perfect matching is a maximal matching in which all of
the vertices are the end vertices of the edges in the matching. For example,
the graph already in front of you [Figure does not have a perfect
matching, but this graph”—Rishnak waved his hands a new graph appeared
[Figure —“does have a perfect matching since all of the vertices in the
graph are end vertices of the edges in the perfect matching.”

Rishnak smiled as he went on. He said, “Here is an interesting prob-
lem related to matching that actually earned Professors Lloyd Shapley and
Alvin Roth the Nobel prize in Economics in 2012. First, in the 1960s,
Professors David Gale and Shapely introduced a problem called the sta-
ble marriage problem, which I will describe in a moment. Professor Roth
applied this to a variety of applications, earning them the Nobel.”

Ajur raised his eyebrows, eager to hear more.

Rishnak said, “The stable marriage problem may be stated as follows.
Given n males and n females and a list of preferences for each male and fe-
male as to whom they would like to marry, we want to find stable marriages
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Male Name First Second Third
Al Carla Ada Bea
Bob Ada Bea Carla
Caleb Ada Carla Bea

Table 16.1: Male preferences in the stable marriage problem

Female Name First Second Third
Ada Al Bob Caleb
Bea Caleb Al Bob
Carla Al Caleb Bob

Table 16.2: Female preferences in the stable marriage problem

for everyone in the entire group. A marriage is unstable if there is a pair
of individuals who are not married to one another but prefer one another
over their respective spouses. Otherwise, the marriage is stable.”

Ajur rolled his eyes and said, “Wow, what a weird problem.”

Rishnak continued, “Okay, let us consider the preferences for males in
this table”—he flashed his hands and showed a table of data [Table [16.1]—
“and for females in this table” —with a wave of his hand, Rishnak produced
a second table [Table [16.2].

Rishnak said, “Given these preferences, we can determine that the fol-
lowing marriages are stable: (Al, Carla), (Bob, Ada), and (Caleb, Bea).
We know this because there are no unstable pairs; however, marriages (Al,
Carla), (Bob, Bea), and (Caleb, Ada) are unstable marriages since Bob
prefers Ada over Bea and Ada prefers Bob over Caleb.”

Ajur said, “I see.”

Rishnak continued, “Gale and Shapley showed that there is always a
stable marriage pair for any set of preferences.”

Ajur raised his eyebrows again. He asked, “How?”

Rishnak said, “The algorithm they developed is rather elegant. Here it
is:

1. In the first round, each male proposes to the female he prefers the
most.
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2. Each female replies with a ‘maybe’ to the suitor she most prefers and
a ‘no’ to all other suitors. She is temporarily engaged to the male she
most prefers thus far.

3. In the subsequent round, each non-engaged male proposes to the most-
preferred female[] to whom he has not yet proposed, regardless of
whether this female is already engaged.

4. Each female replies ‘maybe’ if she is currently not engaged or if she
prefers this male over her current provisional partner. In this case,
she rejects her current provisional partner who then becomes non-
engaged. The provisional nature of engagements preserves the right of
an already engaged female to essentially trade up and, in the process,
jilt her until-then partner.

5. We repeat Steps 3 and 4 until everyone is engaged.”

Ajur frowned as this was a lot to understand. He decided to apply this
procedure to the data still in front of him [Table [Table[16.2]. He said,
“Okay, after the first round, Al is temporarily engaged to Carla and Bob is
temporarily engaged to Ada since both Bob and Caleb opt for Ada, but Ada
prefers Bob over Caleb. In the next round, Caleb proposes to Carla, who
is temporarily engaged to Al. Since Carla prefers Al over Caleb, Caleb’s
offer is rejected. Next, Caleb proposes to Bea, his last choice, and Bea
accepts Caleb since she does not have a suitor thus far. Then the algorithm
terminates with the stable marriage pairs of (Al, Carla), (Bob, Ada), and
(Caleb, Bea).”

Rishnak smiled and said, “Precisely.”

Ajur said, “This algorithm sounds like a messy game of musical chairs.”

Rishnak laughed and said, “Another application of the matching prob-
lem is the optimal assignment problem. Here, we need to assign jobs to a
group of workers, with the cost required for each worker to do each job as a
given. We wish to find an assignment of workers to jobs so as to minimize
the total cost.”

Ajur thought of one of his favorite types of graphs. He said, “We can
use a bipartite graph with workers in one partition and jobs in the other
partition.”

IEach male starts from his most preferred female and proceeds through to his least
preferred female.
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Salesman Tutor Chef
Al 17 40 45
Bob 23 60 35
Caleb 21 40 25

Table 16.3: Cost matrix in which rows represent workers and columns repre-
sent the jobs they can do; the numeric values show the cost for each worker
to do each job

Rishnak said, “Yes, an edge from worker i to job j has the cost of
worker ¢ doing job j. Let us assume that the number of workers is equal to
the number of jobs—this can be n.”

Rishnak flashed his hands and a new table of data appeared in front of
Ajur [Table . Rishnak said, “Here is a cost matrix showing how much
each job would cost for our three workers, Al, Bob, and Caleb.”

Ajur studied the data.

Rishnak said, “For the optimal assignment problem, we want to assign
jobs to minimize the total overall cost. Here is an algorithm we can use:

1. For each row of the matrix, circle the smallest element and subtract
that from every other element in the same row.

2. Also perform Step 1 for all of the columns.

3. Cover all zeros in the matrix using a minimum number of horizontal
and vertical lines. In other words, cross these zeros out, which might
also cover non-zero values.

4. If the minimum number of lines we draw in Step 3 is n, an optimal
assignment is possible and we are done. Otherwise, proceed to Step 5.

5. Determine the smallest entry not yet covered by any line. Subtract
this entry from each uncovered row, then add it to each covered col-
umn. Next, erase all of the lines and return to Step 3 to perform the
crossing out step again.”

Ajur again studied the data. He said, “Let me try this out. And n =3
for this problem.” He copied the table in the dirt and performed the first



CHAPTER 16. MATCHING AND ASSIGNMENT PROBLEMS 137

0 23 28
0 37 12
019 4

Table 16.4: The table for the optimal assignment problem after Step 1

0 4 24
0 18 8
00 O

Table 16.5: The table for the optimal assignment problem after Step 2

4 24
18 8

Table 16.6: The table for the optimal assignment problem after Step 3

step, subtracting the smallest element from every other element in the same
row [Table . Ajur quickly went on to Step 2, subtracting out the
smallest value in each column [Table [16.5].

Ajur said, “Okay, let me now cross out the zeros in as few horizontal
and vertical lines as possible.” He drew two lines [Table [16.6].

Ajur frowned and said, “Since there are two lines and n = 3, we go
from Step 4 to Step 5, taking the smallest entry from among the uncovered
entries—so that would be 4—and subtracting it from each uncovered row.”
Ajur scribbled in the dirt, updating the first two rows [Table .

He said, “Wait, now I need to also add it to each covered column”—he
did so [Table —“and erase all of the lines, then go back to Step 3.”

Ajur drew three vertical lines [Table [16.9]. He said, “Now we have
exactly three lines covering all of the zeros, so we are done. Ignoring the
lines, we can find the assignments to be Caleb as Chef, Al as Tutor, and
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4 0 20
4 14 4

Table 16.7: The table for the optimal assignment problem after the sub-
traction in Step 5

0 20
14 4

Table 16.8: The table for the optimal assignment problem after Step 5

Table 16.9: The table for the optimal assignment problem after Step 4 in
which the algorithm stops

Bob as Salesman. This gives us a total cost of 25 + 40 4 23 = 88.”

Rishnak said, “Good, Ajur.”

Ajur said, “But how is this problem related to the perfect matching
problem?”

Rishnak was patient and explained the relation between these two prob-
lems. He said, “The jobs and workers can be thought of as vertices of a
bipartite graph, with one set of vertices being the workers and the other
set being the jobs. If we assume that both sets of vertices have the same
size, we can construct a complete bipartite graph, meaning there is an edge
from every worker to every job. Remember that if a job j has cost w for
worker 7, then the corresponding edge (i, j) gets assigned a weight of w.”

Ajur followed Rishnak so far.
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Al Bob Caleb

Salesman Tutor Chef

Figure 16.3: Complete bipartite graph corresponding to Table [16.3] with
weights representing the costs and the minimum perfect matching edges
shown in red

Rishnak continued, “For example, the table still in front of you [Ta-
ble can be represented by this complete weighted bipartite graph.”
Rishnak flashed his hands and a new graph appeared [Figure .

Ajur studied the graph, seeing how it related to Table . He said,
“And the perfect matching problem applies to this graph then?”

Rishnak said, “Yes, to solve the optimal assignment problem, we can
simply find the minimum perfect matching in this bipartite graph represen-
tation.”

Ajur smiled, satisfied that all of these problems had interesting connec-
tions.
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Male Name First Second Third
M1 W1 W3 W2
M2 W3 W2 W1
M3 W3 W1 W2

Table 16.10: Male preferences

Female Name First Second Third
W1 M2 M1 M3
W2 M2 M3 M1
W3 M1 M2 M3

Table 16.11: Female preferences

Question for the fourteenth day

Seeing Ajur was tired, Rishnak said, “Here we are, Ajur, ready for the
questions for the fourteenth day.” Rishnak flashed his hands and two tables
appeared [Table [Table [16.11].

Rishnak said, “These two tables show the preferences for males and
females. Assume already that M2 and W1 are temporarily engaged. If M3
approached W1 with a proposal, what would W1 do? Next, flipping this
around, assume W1 is married to M2. Who would W2 approach then?”

Before you turn the page, try to come up with answers of your own!
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Answer for the fourteenth day

Ajur studied the data and walked through Rishnak’s questions in his head.
At length, he said, “IW1 will reject the proposal from M3 since W1 prefers M2
over M3. And if women are proposing, W2 will approach M2 first.”

Rishnak nodded.

Ajur was deep in thought, more interested in why and how these proce-
dures work.

Seeing Ajur’s puzzled look, Rishnak said, “Do not fret, Ajur. I myself
had not understood these things very well, but you will learn this all in
college.”

This seemed to be okay with Ajur. He nodded and left with Jura.



Chapter 17

Graph Operations

Rishnak found Ajur walking with Jura. Not wasting a moment, Rishnak
started the session. He said, “Today we will discuss various graph opera-
tions.”

Eager to learn, Ajur asked, “Are they similar to arithmetic operations
like addition, subtraction, and multiplication that operate on numbers? Or
set operations such as union, intersection, and complement?”

Rishnak said, “There are many binary operationd| and since graphs are
represented as sets, many of the operations are similar to set operations.
Each graph operation typically generates another graph. We can also see
how graphs evolve. Let us walk through a few of these operations.”

Rishnak described the following binary graph operations, flashing his
hands to form figures as he went on:

1. Graph union: Let graph G3 = (V3, E3) denote the union of two
graphs G; = (V4, Ey) and Gy = (V3, E3). Then V3 = ViUV, and E3 =
E; U Es. Naturally, graph G3 is not connected.

2. Graph complement: The complement of graph G = (V4, Fy) [Fig-
ure [17.1] is Graph H = (V3, Ey) [Figure [17.2] if Vo = Vi and Fy =
{ele ¢ B}

3. Vertex addition: Vertex addition applied to graph G = (V1, Ey) [Fig-

ure [17.1] produces graph Gy = (Va, Ey) [Figure [17.3], where V5 =
Viu{zlzr ¢ Vi} and By = E; U{(z,y)lzr € Vo and y € Y C V1 } ]

!Here, binary means operating on two operands.
2Barabassi-Albert used a version of this to generate graphs. In the Barabassi-Albert
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1 — 2

4 — 3

Figure 17.1: Example graph for which we wish to apply the union and
complement operations, as well as vertex addition

4. Cartesian product: The Cartesian product G10G5 is graph G5 such
that the vertex set of G3 is Cartesian product V(G;) x V(G3) and two
vertices (u,u’) and (v,v’) are adjacent in G if and only if either u = v
and v’ is adjacent to v' in G or v/ = v and wu is adjacent to v in G;.
[Figure [17.4] [Figure [17.5] [Figure [17.6|

5. Line graph: Given graph G, the line graph of G, denoted by L(G),
is a graph with each vertex of L(G) representing an edge of G and
two vertices in L(G) being adjacent if the corresponding edges share
a common end vertex. [Figure [Figure

Ajur listened intently at these graph operations, at times asking Rishnak
to repeat the definition.

After some time, Rishnak said, “The Petersen graph they we discussed
before is actually the complement of the line graph of complete graph K5.”

Ajur tried to keep up. He knew that graph K5 was a complete graph
with 10 edges. He also knew that the Petersen graph had 10 edges. Did they
match? Ajur calculated that the line graph of K5 was a regular graph of
degree 6 and therefore its complement would be a regular graph of degree 3,
so that much matched. But still, he had to verify Rishnak’s assertion in
full, so he decided to work on it later.

model, the new vertex adds an edge to an existing vertex with a probability related to
the degree of that vertex to generate graphs.
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4 3

Figure 17.2: Complement of the graph shown in Figure [17.1

\

4 — 3

Figure 17.3: Adding a vertex and edges from that vertex to some subset of
vertices in the graph shown in Figure [17.1

1 — 2

Figure 17.4: Example graph G, for which we wish to apply the Cartesian
product
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X —Y

Figure 17.5: Example graph G, for which we wish to apply the Cartesian
product

(3x) —— Bw)

Figure 17.6: The Cartesian product G3 of graphs G [Figure [17.4] and G,

[Figure [17.5]

el

Figure 17.7: Example graph for which we wish to apply the line graph
operation
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Figure 17.8: A line graph for the graph shown in Figure [I17.7]

2 3

Figure 17.9: Randomly generated graph using the Erdds—Rényi method
with n = 5 vertices, e = 5 edges, and edge probability 0.5
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Realizing that it was already getting late, Rishnak said, “Let me also
talk about graph construction. There is a method called the Erd6s-Rényi
mode]ﬁ for constructing graphs. In this method, for a graph with n vertices
and e edges, for every unordered pair of vertices, an edge is present with

the following probability:
e

sn(n—1)

Rishnak flashed his hands and a new graph appeared [Figure [17.9]. He
said, “This graph is generated using the Erdoés-Rényi model with n = 5
and e = 5, so our edge probability is % = 0.5.E|

Question for the fifteenth day

Rishnak said, “For the question for the fifteenth day, can you draw the
complement of the line graph of complete graph K5?”
Before you turn the page, try to come up with an answer of your own!

3Named after mathematicians Paul Erdés and Alfréd Rényi.

4When Rishnak wrote this down later, he generated the graph using Sage Math
(CoCALC) at https://cocalc.com/. You should try to generate a few graphs using
this method.


https://cocalc.com/
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(3,5)

(4,5) (2,3)

Figure 17.10: The graph representing the complement of the line graph of
complete graph Kj5; this graph is the Petersen graph

Answer for the fifteenth day

Ajur remembered from earlier that he reasoned out that there would be 10
vertices in the line graph since K5 has 10 edges. He said, “The complement
will also have 10 vertices and will be a regular graph of degree 3 because
the line graph will be a regular graph of degree 6.”

Ajur drew his answer in the dirt [Figure [17.10].

Ajur needed time to digest all of the new material from the day, so he
and Jura drifted away as Rishnak proceeded to meet his other ghost friends.



Chapter 18

Dominating Set

Rishnak was pleased to find Ajur and Jura, who were on their way to the
water fountain. Rishnak told them that placing a water fountain is an
interesting graph-theoretic problem.

Ajur shrugged his shoulders and said, “How so?”

Rishnak said, “Let me explain by starting with a new concept. A dom-
inating set of graph G = (V, F) is a subset of vertices, say D, such that
every vertex in V' — D—this means a vertex x € V and ¢ D—is adjacent
to some vertex in D.”

Ajur frowned, not yet understanding.

Realizing his definition was a bit dense, Rishnak waved his hands and a
graph appeared [Figure [18.1]. He said, “The vertices in dominating set D
are shown in orange.”

Ajur studied the graph.

Rishnak continued, “You might think that the dominating set and vertex
cover problems seem similar, but they are not the same. In a vertex cover,
every edge is incident on one of the vertices in the vertex cover, but in a
dominating set, not every vertex is involved. So in general, we want to find
the minimum dominating set.”

Ajur started to see the connection between placing a water fountain and
the dominating set /]

Rishnak flashed his hands an a familiar graph appeared [Figure .
He said, “Here is a street map of Royt. Where would you place water

Do you see the connection yet?
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1 5 6 3

Figure 18.1: A graph in which vertices in dominating set D are shown in
orange; each vertex that is not orange is adjacent to one of the orange
vertices

fountains with the condition that every junction or corner either has to
have a water fountain or has to be adjacent to a water fountain?”

Ajur studied the graph. He rolled the problem around in his, saying out
loud, “So we assume people will always walk at most one edge to reach a
water fountain.”

At length, Ajur drew the graph in the dirt and marked the vertices with
petals from an orange flower [Figure . He said, “This is the same as
finding the dominating set.”

Rishnak smiled. He said, “Excellent work. Now let me introduce the
concept of a total dominating set, which is a variation of the dominating
set problem. Total dominating set Dy of graph G = (V, FE) is a set of
vertices for which every vertex v € V is adjacent to some vertex in Drp.
The dominating set {2,6, 7} that you came up with for our map of Royt is
not a total dominating set because vertex 2 is not adjacent to any of vertices
in {2,6, 7}EI What do you think the total dominating set is for Royt?”

Ajur had to think hard about this, studying the graph in front of him.
Finally, he said, “I think vertices 3, 4, 7, 8, and 10 form a total dominating
set.”

Rishnak said, “Not bad, Ajur. We can remove vertex 7 from your answer

2A vertex is not considered to be adjacent to itself.
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Figure 18.2: A graph representing the streets of Royt for which we wish to
place a minimal number of water fountains such that every junction (vertex)
either has a water fountain or is adjacent to a water fountain

and we have a minimum total dominating set.” He flashed his hands and
some of the vertices of the graph of Royt changed colors [Figure [18.4].
Ajur nodded and said, “I see.”
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Figure 18.3: The graph from Figure [18.2] with water fountains placed at
vertices 2, 6, and 7, which form a dominating set

e
NV

Figure 18.4: The graph from Figure with total dominating set ver-
tices 3, 4, 8, and 10 shown in orange
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VANIVAN
N/ \/

Figure 18.5: For this graph, where can we place water fountains such that
each vertex either has a water fountain or is adjacent to a water fountain?

Question for the sixteenth day

Rishnak said, “And with that, let us move on to the question for the six-
teenth day. For this new graph”—Rishnak flashed his hands and a new
graph materialized in the air [Figure —“Can you identify the vertices
at which we can place water fountains such that every vertex either has a
water fountain or has one adjacent to it?”

Before you turn the page, try to come up with an answer of your own!
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VANIVAS
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Figure 18.6: The graph from Figure with water fountains, placed at
vertices 1 and 7, shown in orange

Answer for the sixteenth day

Ajur copied the graph in the dirt. Within seconds, he had no trouble in
placing water fountains at vertices 1 and 7 [Figure [18.6].

By this time, they had walked all the way to the water fountain. Ajur
and Jura went to drink from the water fountain, then headed home.



Chapter 19

Graceful Numbering

Rishnak found Ajur and Jura playing near the water fountain. Continu-
ing the conversation from the previous day, Rishnak reminded Ajur about
vertex coloring and edge coloring as types of graph labeling schemes with
constraints defined such that adjacent vertices and edges are not colored
the same.

Rishnak said, “There are other labeling schemes. One such scheme in
particular is called the graceful numbering of a graph. Given graph G =
(V, E') with n vertices and e edges, we assign distinct numbers to the ver-
tices from 0, 1,2, ..., e such that all edge labels are distinct from 1,2, ... e.
The edge label is the absolute value of the difference between the numbers
associated with the end vertices.”

Ajur scratched his head, so Rishnak waved his hands and a graph ap-
peared [Figure [19.1].

Rishnak said, “Here is an example of a star tree. It consists of a center
vertex connected to many leaves. Each edge weight is the absolute value of
the difference between the two endpoint vertex labels. Can you draw such
a graph that is a simple path of six vertices?”

Ajur picked up a stick and tried to draw such a graph in the dirt [Fig-
ure [19.2]. He smiled and said, “Yes, here is a gracefully numbered graph
for a path of length 5.”

Rishnak smiled and said, “Good, Ajur. And like a star tree, your snake
graph can also be generalized to an arbitrary number of vertices[T] Next,
try a binary tree with seven vertices.”

LCan you generalize each of these problems?
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2

Figure 19.1: A star tree that is gracefully numbered since each of the edges
has a distinct weight that is the absolute value of the difference between
the endpoint vertex labels

0 5 1 4 2 3

Figure 19.2: A gracefully numbered path (snake) in which each of the edges
has a distinct number that is the absolute value of the difference between
the labels of the endpoint vertices

Ajur drew a binary tree with seven vertices in the dirt, then slowly
labeled each vertex and each edge [Figure . He said, “Here is a graceful
numbering!”

Rishnak said, “It is not known whether all binary trees have a graceful
numbering. This is one of many open questions in graph theory. Attempts
have been made to find counterexamples—meaning trees that do not have
a graceful numbering—but these attempts have failed. And efforts to find
a proof to show that all binary trees have a graceful numbering have also
failed.”

Ajur wondered at this, then said, “Are there graphs for which we know
there is no graceful numbering?”

Rishnak said, “There are graphs that do not have a graceful numbering”—



CHAPTER 19. GRACEFUL NUMBERING 157
N
0 1
5 / \6 1 / \2
5 6 D €

Figure 19.3: A gracefully numbered binary tree with seven vertices

Figure 19.4: The C5 graph (cycle of length 5) for which we cannot come up
with a graceful numbering

he flashed his hands and a new graph appeared [Figure —“such as this
graph with a cycle of length 5.”

Rishnak continued, “Complete bipartite graph K, ,, can be gracefully
numbered (or colored) by numbering vertices in one partition 0,1,...,m—1
and numbering vertices in the other partition m, 2m, 3m, ..., m?. With this
numbering all of the edges get distinct numbers that meet the requirements
of a gracefully numbered graph. Here, Ajur, try this for m = 3.”

Ajur thought about this for a minute. He knew the K33 graph must
have six vertices, with three vertices in each partition, but how should they
be numbered? He tried a few possibilities in his head, then drew a bipartite
graph in the dirt and labeled its vertices and edges [Figure .

Rishnak smiled, pleased to see Ajur’s work. Rishnak said, “One last
new concept for you, Ajur. Closely related to graceful numbering, a Golomb
ruler is an imaginary ruler that has a set of marks at integer positions such
that no two pairs of marks are the same distance apart.”
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3 6 9

Figure 19.5: A gracefully numbered K33 graph

Ajur tried to understand this, repeating it to himself.

After a pause, Rishnak said, “The number of marks on a Golomb ruler
is its order, and the largest distance between two of its marks is its length.
So a Golomb ruler of order 3 has marks {0, 1,3} and can be used to measure
all lengths up to length 3. A Golomb ruler of order 4 has marks {0,1,4,6}
and can measure all lengths up to length 6.”

Ajur hurriedly said, “I get it.”

Rishnak said, “The Golomb ruler has applications in coding theory and,
it turns out, can be used to gracefully number complete graph Ky, which”—
Rishnak flashed his hands and a new graph appeared [Figure —“I
present to you here.”

Ajur studied the graph, understanding after some trial and error that
the vertices and edges corresponded to the Golomb ruler lengths.

Question for the seventeenth day

Seeing that Ajur understood, Rishnak said, “The questions for the seven-
teenth day comes from my favorite author, Henry Ernest Dudeney and is
Problem 453. It goes something like this. A young studious pupil finds
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Figure 19.6: Complete graph K, gracefully numbered using a Golomb ruler

an old yardstick—which you might not know, a yardstick is 36 inches long.
This yardstick is broken in that 3 inches have been chopped clean off, leav-
ing a yardstick that is only 33 inches in length, no longer a yard.”

Ajur laughed as Rishnak continued, “Some of the graduation marks are
also obliterated, leaving only eight such legible marks. Still, this studious
pupil is able to measure any length, in inches, from 1 inch to 33 inches.
How many ways can you place these eight marks on the broken yardstick?”

Ajur said, “That doesn’t sound too hard.”

Rishnak smiled and said, “Be careful with this one. It is more difficult
than it seems.”

Before you turn the page, try to come up with answers of your own!
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Answer for the seventeenth day

Ajur quickly saw that this problem was quite similar to the Golomb ruler
concept. Excited, Ajur started working on the problem, but an hour passed
as Ajur worked. This was more difficult than he had thought.

At last, Ajur said, “I have 11 solutions and here they are!” He had
sketched them in the dirt:

e 1,2, 3, 4,10, 16, 22, 28

e 1,2, 3,4, 10,17, 22, 28

e 1,2, 3,8, 14, 20, 24, 29

e 1,2, 3,10, 15, 22, 27, 31
e 1,2, 3,10, 16, 21, 25, 29
e 1,2, 3, 11, 17, 21, 26, 30
e 1,2, 3,14, 18, 23, 25, 29
e 1,2, 3,14, 18, 23, 26, 29
e 1,2, 3,16, 21, 22, 26, 30
e 1,2, 3,16, 21, 24, 27, 31
e 1,2, 4,11, 18, 25, 30, 31

Rishnak raised his eyebrows and said, “Good, Ajur. I was worried you
were stumped. There are more than 50 solutions, but let us call it a day.”

Rishnak noticed that Ajur had used a systematic “brute force” technique
to solve this problem. Therefore, Rishnak decided to talk about this and
more efficient search techniques the next day.

Ajur was tired but pleased to have learned a new type of ruler, one that
was connected to graceful numbering.



Chapter 20

Brute Force Searching

Trying to locate Ajur to talk to him about different search techniques,
Rishnak followed his own search method, an approach called depth first
search, much like a strategy used in solving mazes. The search led Rishnak
to Ajur, who was sitting under a tree.

Rishnak said, “There are many different search methods, and come to
think of it, search is a trillion-dollar business.”

Ajur laughed and said, “Yes, fast search results from a search engine is
a good business to be in.”

Rishnak said that most search engines use some kind of a table lookup.
He said, “The more interesting issues to consider here are how the tables
are stored and how each lookup is done. An index-based lookup and a
hash-based lookup are two common techniques. Hashing involves finding a
seemingly randomized location based on the given search keywords. And
binary search on a sorted list works if the size of the list is not prohibitively
large. All of these search techniques work well for unstructured data, but
a graph is structured, so we need a different type of search technique.”

Ajur did his best to keep up. As per usual, Rishnak was overflowing
with different ideas that he wanted to share.

Rishnak continued, “When searching a maze, you can use what is called
a depth first search. This strategy essentially divides the vertices into sets
of visited and non-visited vertices. When you visit a vertex, you can do any
operation associated with that vertex. Here are the steps:

1. Place the start vertex on top of a stackll|

LA stack is a list but we can only access the top element, much like a stack of plates.
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1

Figure 20.1: A depth first traversal—at start vertex 6

2. Remove the top vertex from the stack and mark the vertex as visited.

3. Create a list of that vertex’s adjacent vertices. Add each of these
adjacent vertices to the top of the stack as long as the vertex is marked
non-visited.

4. Repeat Steps 2 and 3 until the stack is empty.”

Ajur said, “I think I understand. So you go as far or as deep as you can
before tracing your steps backward.”

Rishnak said, “Precisely. Let me take you through the depth first search
algorithm with you for this graph.” He flashed his hands and a familiar
graph appeared [Figure [20.1].

Ajur followed each step as Rishnak visited subsequent vertices [Fig-
ure [Figure [Figure [Figure [Figure [20.6). Rishnak
also labeled each edge that he traversed in red.

Rishnak said, “At the end of this algorithm, we have what is called a
depth first traversal.”

Rishnak said, “There is another search technique called breadth first
search. It also classifies vertices as either visited or non-visited. The algo-
rithm is:

1. Place a start vertex at the front of a queue.

2. Remove the vertex from the front of the queue and mark it as visited.
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Figure 20.2: A depth first traversal—at Step 1

Figure 20.4: A depth first traversal—at Step 3
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Figure 20.6: A depth first traversal—at Step 5

3. Create a list of that vertex’s adjacent vertices. Add each vertex that
is not yet visited to the end of the queue.

4. Repeat Steps 2 and 3 until the queue is empty.”

Ajur noticed that by using a queue instead of a stack, the search would
visit vertices in a different order than that of depth first search.

Rishnak said, “Here is our graph again, and”—he waved his hands and
the original graph appeared [Figure —“I will number the vertices in
the order in which we visit them.”
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Figure 20.7: A breadth first traversal—at start vertex 6
1
’ (5
Figure 20.8: A breadth first traversal—at Step 1

Ajur watched as the graph changed from step to step [Figure [Fig-
ure [Figure [Figure [20.10].

Ajur smiled, wondering about how each different type of search could
be useful. He asked, “Do both search techniques always work?”

Rishnak said, “Yes, both depth first search and breadth first search can
be used for searching the state space of all solutions. If we can enumerate
all possible states—for the Hamiltonian cycle problem and the isomorphism
problem, all possible permutations constitute all possible states—then how
we visit all possible states could be done either using depth first search or
breadth first search.”

Ajur tried to understand. He asked, “We don’t need to figure out all
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Figure 20.9: A breadth first traversal—at Step 2

Figure 20.10: A breadth first traversal-—at Step 3
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permutations or combinations ahead of time, do we?”

Rishnak said, “No, there are different methods for generating permu-
tations and combinations. In general, we generate a permutation, test it
out, then go on to the next permutation. And there are efficient methods
for generating the next permutation. You will learn all of this during your
college years.”

Ajur understood. He said, “The generation of all permutations or com-
binations is a brute force approach, right? This is how I solved the problem
with the Golomb ruler yesterday.”

Rishnak laughed and said, “Yes, brute force approaches are typically
slow and tedious. There are often more efficient techniques for solving a
problem involving what is called backtracking, which is a far more efficient
means of searching the solution space.”

Ajur smiled and said, “And I'll learn this in college?”

Rishnak laughed again and nodded.

Ajur realized there was so much more to learn but he did not get dis-
couraged. Instead, he felt invigorated. He said, “Could we use backtracking
to solve a Sudoku puzzle?”

Rishnak smiled and said, “Yes, that is one way to solve such puzzles.
We can also think of solving a Sudoku puzzle as fully coloring all vertices
of a graph given a partial coloring of the vertices.”

Ajur thought about this and was going to ask another question, but
Rishnak was too quick.

Question for the eighteenth day

Rishnak said, “Here is our question for the eighteenth day, Ajur. Can you
draw a connected graph containing six vertices for which depth first search
and breadth first search both produce the same numbering or labeling of
vertices?”

Before you turn the page, try to come up with answers of your own!
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Figure 20.11: A graph for which breadth first search and depth first search,
starting from vertex 1, both produce the same vertex numbering

Answer for the eighteenth day

Ajur quickly drew a graph in the dirt [Figure and said, “Start at
vertex 1 in this graph and both depth first search and breadth first search
produce the same numbering of vertices.”

Rishnak smiled.

After this interesting and exciting discussion, Ajur and Jura happily
called it a day.



Chapter 21

Social Networks

The next day, Rishnak was talking with his ghost friends about his math-
ematical adventures with Ajur. Seeing Ajur and Jura approach, Rishnak
cut short his conversation and joined Ajur and Jura.

Rishnak started the session right away. He said, “Over the last century,
applications of graph theory abound in such fields as engineering, physics,
and anywhere there is a need for optimization. More recently, though, with
the prolific use of social network applications, including Facebook, Twitter,
and LinkedIn, sociologists and psychologists have also found graph theory
methods quite useful in their work”

Ajur nodded his head and said, “Sure, like how we are all so well-
connected. Groups of friends. I remember we talked about cliques awhile
ago.”

Rishnak said, “Exactly. Stanley Milgram, a famous psychologist, wanted
to show that people were well-connected. He devised an experiment in which
he selected a collection of people living in the Midwestern United States.
He asked them to send postcards to a single person P in Boston. And if
they did not know person P then they could send a postcard to a person
that knows someone who knows person P. The result of this experiment
showed that most of the letters reached person P in five or six steps. Does
that remind you of a graph theory concept, Ajur?”

Ajur frowned and thought for a few moments. Then it came to him and
he said, “Aha, yes, this experiment shows that the diameter of this network
of people is very small, just about five or six, as you said.”

Rishnak said, “Precisely. The diameter of this social network tells us the
longest of all of the shortest distances between any pair of vertices. Social
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networks have also been used in studying connections within a network of
actors and actresses. Actors and actresses form the vertices, and we add
edges between vertices if the corresponding actors or actresses have acted
in the same film. Have you ever heard of Kevin Bacon?”

Ajur said, “Kevin who?”

Rishnak rolled his eyes, then said, “There is an actor by the name of
Kevin Bacon who has acted with many other actors and actresses over
the years. Many would ask what their Kevin Bacon distance was! It is
essentially the length of the path from the person asking the question to
Kevin Bacon in the co-actor network. There is even a dedicated website
for finding these pathsE] And a play about this concept of siz degrees
of separation. Just like Milgram’s experiment, this Kevin Bacon network
shows that the diameter of the network is very small and there is a Kevin
Bacon vertex with a large degree.”

Ajur laughed at this, though was also intrigued by the resulting diameter
being very small in comparison to the vast number of vertices in the network
or graph.

Rishnak continued, “Social networks have also been identified in co-
author networks for authors of scientific and mathematical publications.
Remember Paul Erdés? He was a famous twentieth century mathematician
and a prolific contributor to the field of graph theory. He wrote so many
papers with so many different co-authors that the concept of an Erdos dis-
tance was defined. Here, authors are vertices and two vertices (or authors)
are connected by an edge if they have written a paper together. The Amer-
ican Mathematical Society has a website that calculates this Erdés distance
to other authors P’

Ajur said, “Is the diameter of that graph also very small?”

Rishnak nodded and said, “Usually the Erdds distance to other graph
theorists is a very small number because of the collaborative nature of the
work and of course an author like Paul Erdos wrote such a large number
of papers with a large number of co-authors.”  Ajur said, “So the vertex
corresponding to Erdds has a very large degree.”

Rishnak smiled and said, “Exactly.”

Ajur asked, “What other social networks are there?”

'Have a look at http://oracleofbacon.org/movielinks.php.
2See https://mathscinet.ams.org/mathscinet/collaborationDistance.html.
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Figure 21.1: Sample degree distribution of a social network

Rishnak frowned and said, “Well, while social networks have been used
to spread real news, they have also been abused to spread rumors and
disinformation called fake news. The news—both real and fake—about
individuals or political parties can be spread or shared very easily with
one’s friends and then one’s friends of friends until eventually it covers
more or all of the social network. Most fake news items are generated by
bots, an abbreviated term for a computer program. And advances in image
and audio manipulation make it nearly impossible to distinguish between
what is real and what is fake.”

Ajur thought about this for a few seconds, an uneasy feeling coming
over him.

Rishnak sighed and said, “Here’s something a bit more positive and
rather interesting. The degree distribution of social networks tend to follow
what is called a power law. In this chart”—Rishnak waved his hands and
a chart appeared [Figure —“We count the degrees of each vertex in a
social network. There are a few vertices with large degrees (on the left) and
a very large number of vertices with small degrees that form a long tail on
the right.”

Ajur thought further about this and said, “And the vertices with large
degrees have many adjacent vertices, so they're like the popular students
in school with many friends.”
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Rishnak nodded and said, “Yes, these individuals are sometimes referred
to as hubs.”

Thinking about Erdds again, Ajur remembered the Erdés—Rényi model
for generating random graphs. He asked, “Do the Erdés—Rényi graphs have
a uniform degree distribution—I mean all of the vertices have roughly the
same degrees?”

Rishnak smiled and said, “Let me try to explore that further with an
example using Facebook. A Facebook graph consists of users as vertices and
edges between two users if they are friends of one another—and remember,
in Facebook, friendship is a symmetric relationship. It has been found that
the average number of Facebook friends per user, which is therefore the
average degree of a vertex, is 300 and the median degree is 200.”

Ajur asked, “How big is the Facebook graph? It must be humongous.”

Rishnak said, “The Facebook graph has approximately two billion vertices—
many of these vertices could be fake users or groups. With a median degree
of 200, that means that one billion users have less than 200 friends.”

Ajur raised his eyebrows. He said, “Wow, that’s quite a long tail.”

Rishnak smiled, happy to see Ajur put the various pieces of the puzzle
together. He continued, “And Facebook restricts the maximum number
of friends one can have to 5000. According to sociologists, a person can
actually be close to at most 150 friends, which tells you something about
how close friendships are in Facebook.”

Ajur laughed.

Rishnak continued, “Also, the Facebook graph has an average separation
or diameter of only 3.74F] There is a well-known Facebook paradox that
states that, on average, most people have fewer friends than their friends
have. We can see this by studying this graph.” Rishnak flashed his hands
and a graph appeared [Figure 21.2].

Rishnak said, “In this graph, the average number of friends—in other
words, the average degree—is % = 2. Person A sees that D has two
friends and B has three friends. Person B sees that A and D both have
two friends and C' has only one friend. Person C' sees that B has three
friends. And person D sees that A has two friends and B has three friends.
Therefore, the average number of friends one sees js 2H2H2E2I04243
2.25.7

Ajur frowned at this result.

3https://research.fb.com/blog/2016/02/three-and-a-half-degrees-of-separation/
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Figure 21.2: A graph that explains the Facebook friends paradox

Rishnak continued, “This is in contradiction to the common belief that
one has more friends than their friends have!”

Ajur protested, saying, “That doesn’t make any sense.”

Rishnak laughed and mentioned that there was a nice mathematical
explanation for this phenomenon—and that Ajur should discover it on his
own.

Kinaja, a glowing white ghost, suddenly appeared. She had been listen-
ing to Rishnak go on and on about social networks. She glided in to join
them and said, “I think that virtual social networks, being unregulated,
cause a lot of harm—and here are three reasons why:

1. Users can too easily be bullied.

2. Bots and trolls pretend to be genuine users, but they propagate mis-
information.

3. One’s private information too easily gets stolen or sold to advertisers.”

Rishnak and Ajur both nodded in agreement.

Question for the nineteenth day

Rishnak said, “Ajur, we have come to the nineteenth day. Here is your ques-
tion. Does the Facebook paradox still hold for a regular graph of degree 3
with 10 vertices?”

Before you turn the page, try to come up with an answer of your own!
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Answer for the nineteenth day

Ajur worked this problem out by thinking aloud. He said, “If the degree
is 3, then each person will have three friends, but the average number of
friends one sees is w = 3. Therefore, for this graph, there will be no
paradox.”

Rishnak said, “Good, Ajur. And note that most real social networks
are not regular, so most social networks do see this paradox.”

That was a good place to stop the discussion for the night.
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Instant Insanity Puzzle

Rishnak was examining the headstones of some of the graves and came
across a headstone with the name Schossow{] on a grave. Memories of
this puzzle flooded Rishnak’s senses. Schossow’s puzzle had card suits
(i.e., hearts, diamonds, clubs, and spades) marked on each face. In 1967,
Frank Armbruster created a variation of this puzzle with colors instead of
suits, which was published by Parker Brothers—that puzzle was called the
“instant insanity” puzzle.

Rishnak thought this puzzle, with its graph-theoretic solution, would
certainly appeal to Ajur. It did not take long for Rishnak to find Ajur and
Jura.

Excitedly, Rishnak said, “For our last day, we are going to talk about
one of my favorite puzzles. This puzzle has a long solution that uses search
techniques and a short solution that we can explore using some clever graph
theory techniques.”

Ajur, seeing Rishnak’s enthusiasm, said, “Sure, what’s the puzzle?”

Rishnak continued, “The puzzle itself consists of four cubes numbered 1, 2, 3, 4,

with each face colored as shown in front of you.” Rishnak waved his hands
and a colorful display of cubes floated in front of Ajur [Figure [22.1].

IFrederick Schossow received a patent in 1900 for proposing this puzzle in 1899, as
described here: https://patents.google.com/patent/US646463A/en.
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Figure 22.1: The four cubes that make up the instant insanity puzzle

Figure 22.2: Cube 4 placed on top of cube 1 such that all faces have distinct
colors

Rishnak said, “The problem is to stack these four cubes vertically in a
column such that all of the cubes on each side of the column (left, right,
front, and back) have distinct colors. Here”—he flashed his hands and two
cubes came together [Figure —“We have cube 4 sitting on top of cube 1.
See that all faces have distinct colors?”

Ajur nodded. He asked, “We need to do that with all four cubes?”

Rishnak nodded, unable to stop himself from smiling. He said, “If we
start with a brute force solution, also known as an exhaustive search tech-
nique, then for each cube, we have to choose which face should be at the
bottom of the cube. There are six possibilities to choose from. And once
we have decided on the color of the bottom face, there are four rotations
for the sides of the cube. Therefore, we have 24 possibilities for each cube.”

Ajur caught on quickly. He said, “And with four cubes to be stacked,
that means we have 24 x 24 x 24 x 24 possibilities.”

Rishnak said, “Correct, or 24, which equals 331,776 possibilities. By
searching each of these 331, 776 possibilities, we will find a solution and—"

Ajur said, “Wait, for the bottom cube, we don’t need to consider the
four rotations. Instead, we can fix that cube in place.”

Rishnak smiled, impressed with Ajur’s quickness. Rishnak continued,
“And if we find one solution, then we can also permute the cube positions
without altering the constraints to find other solutions. We could consider
three opposite faces of each cube. There are four colors—red, yellow, green,
and blue—so these form the vertices. Two vertices (or colors) are adjacent
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if they form the opposite sides of the same cube.”
Ajur was puzzled, so Rishnak waved his hands and showed an exam-
ple graph [Figure [22.3]. Rishnak said, “This graph represents the first

cube.” He waved his hands again and again, forming three other graphs

[Figure 22.4] [Figure 22.5] [Figure [22.6], then said, “Similarly, we can draw

graphs for each of the other cubes.”

Figure 22.3: The graph representing cube 1
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Figure 22.4: The graph representing cube 2
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Figure 22.5: The graph representing cube 3

Ajur was mesmerized by the graphs in front of him. He said, “Now we
need to combine these graphs, right?”
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Figure 22.6: The graph representing cube 4

Rishnak smiled broadly. He flashed his hands and the graphs came
together to form one giant graph [Figure 22.7].

N

4
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Figure 22.7: The graph representing all four of the cubes

Rishnak said, “From this graph, we need to figure out which faces of
the cubes are selected as sides of the column. Essentially, there are four
sides—front, back, left, and rightEFand the graph in front of you has this
information as a subgraph. Let us try to obtain two subgraphs with orien-
tation so that we know the order of the sides. The first subgraph will give
us the front and back faces, while the second subgraph will give us the left
and right faces.”

Ajur scratched his head but continued to follow along.

Rishnak continued, “The constraints on the subgraphs are:

1. The two subgraphs should have no edge in common since an edge
represents front-to-back or left-to-right, and we cannot use them for

2For this problem, the top and bottom faces are not relevant.
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both.

2. Each subgraph should contain an edge from each cube, which will
make sure that we use all four of the cubes. In the graph, this means
all of the edges should be different colors.

3. Each vertex should have a degree of 2 in the subgraph since the colors
cannot repeat.”

Ajur tried to keep up.
Excitedly, Rishnak went on, waving his hands to form the two subgraphs

[Figure [22.8] [Figure [22.9]. He said, “From the original graph, we can
extract these two subgraphs.”

4 —>
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Figure 22.8: A subgraph depicting the front and back faces
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Figure 22.9: A subgraph depicting the left and right faces

Rishnak continued, “From these two subgraphs, we can figure out what
colors the four sides must be. Here is the solution for each cube.

1. Cube 1: front is yellow, back is blue, left is red, right is green—and
this corresponds to an edge color of cyan in the subgraphs.

2. Cube 2: front is green, back is yellow, left is blue, right is red—and
this corresponds to an edge color of orange in the subgraphs.
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3. Cube 3: front is blue, back is red, left is yellow, right is blue—and
this corresponds to an edge color of black in the subgraphs.

4. Cube 4: front is red m back is green, left is green, right is yellow—and
this corresponds to an edge color of purple in the subgraphs.”

Ajur asked, “How did you find the subgraphs with the constraints that
you mentioned?”

Rishnak grinned and said, “For a small case, we can do a visual in-
spection and obtain the decomposition, but in general, this is a very hard
problem.”

Ajur said, “Suppose we have four cubes, with each cube colored on all
faces with the same color. So the first cube is all red, the second cube is
all yellow, the third cube is all blue, and the fourth cube is all green. Then
the two subgraphs will be easy to extract—and of course the solution is
trivial.”

Rishnak waved his hands and four new graphs appeared [Figure .
He said, “Yes, here are the original four graphs. And the decomposition
into two subgraphs is shown here.”

He flashed his hands again and two more figures appeared [Figure [22.11]

[Figure [22.12].
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Figure 22.10: A graph for all four of the cubes
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Figure 22.11: A subgraph for the graph shown in Figure [22.10| representing
the front and back faces
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Figure 22.12: A subgraph for the graph shown in Figure [22.10] representing
the left and right faces

Before Rishnak could speak further, Ajur quickly said, “Aha, the solu-
tion is then this.

1. Cube 1: front is red, back is red, left is red, right is red.
2. Cube 2: front is yellow, back is yellow, left is yellow, right is yellow.

3. Cube 3: front is blue, back is blue, left is blue, right is blue.

W

. Cube 4: front is green, back is green, left is green, right is green.”

By this time, from the past nineteen days, Ajur felt he had a very clear
understanding of all of the concepts of graph theory they had covered, as
well as a desire to keep learning more.

He faced Rishnak and said, “Rishnak, thank you for teaching me and
helping me understand all of these wonderfully interesting problems.”

Rishnak blushed (if that is possible for a ghost).
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Question for the twentieth day

After a few moments, Rishnak said, “At long last, we have arrived at the
twentieth day. I have one last question for you, Ajur. I hope you can answer
it, as it will also set me free.”

Ajur took a deep breath and said, “I will do my best.”

Rishnak said, “Can you decompose this graph”—Rishnak flashed his
hands and a final graph appeared [Figure 22.13]—“for all new sets of cubes
by drawing the color of one face of one of the cubes?”

—
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-

Figure 22.13: A graph for all of the new cubes

%

Before you turn the page, try to come up with answers of your own!
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Answer for the twentieth day

Ajur tried to decompose the graphs using the same approach as before.
Before long, he drew two final subgraphs in the dirt [Figure [22.14] [Fig-
ure [22.15]. He said, “Here are the two subgraphs, Rishnak.”
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Figure 22.14: The subgraph from the graph in Figure 22.13| depicting the
front and back faces
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Figure 22.15: The subgraph from the graph in Figure [22.13| depicting the
left and right faces

Rishnak smiled like he had never smiled before. He said, “Correct.”

Ajur smiled back and said, “Thank you, Rishnak.”

Ajur and Jura said their goodbyes to Rishnak. Not far away, Kinaja
watched, smiling to herself that Ajur not only understood the concepts but
also had the decency to thank Rishnak for all of his efforts.
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Conclusion

Rishnak used to teach at a college in Royt. He was such a mean teacher
that his students landed a curse on him such that he would remain a ghost
until a student whom he teaches appreciates his teaching. Shortly after
Ajur thanked Rishnak, Rishnak was released from his curse. He could now
join his own ancestors in the other world. Rishnak was also happy that
young Ajur was not afraid of failure and instead persevered to understand
and solve all of the hard problems he faced. To show his appreciation to
Ajur, Rishnak presented Ajur with a pet monkey named Ruele and Ajur
was ecstatic.
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Summary

Here at journey’s end, we summarize which concepts were covered in each
chapter. If some of these concepts are not clear, please go through the
chapter again or contact the first author, mskgraph149@gmail.com.

In the first chapter, we defined a graph in terms of vertices, edges,
and relations between them. A few example graphs were given to illustrate
the concept.

In the second chapter, we introduced the main characters of our
story.

In the third chapter, we explained the degree of a vertex and provided
some elementary properties of degrees.

In the fourth chapter, we discussed trees and rooted trees, as well
as some example applications.

In the fifth chapter, we discussed subgraphs and the different types
of subgraphs.

In the sixth chapter, we covered a specific type of path and a specific
type of cycle, i.e., the Eulerian path and the Eulerian cycle.

In the seventh chapter, we introduced another type of path and cycle,
i.e., the Hamiltonian path and the Hamiltonian cycle.

In the eighth chapter. we discussed isomorphism and subgraph
isomorphism between graphs.

In the ninth chapter, we covered the embedding of graphs in a plane,
i.e., planar graphs.

In the tenth chapter, we introduced various graph coloring prob-
lems and showed a few examples.
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In the eleventh and twelfth chapters, we discussed the two closely
related problems of spanning trees and shortest paths. In these chap-
ters, we also provided methods to compute minimum cost spanning trees
and shortest paths.

In the thirteen, fourteenth chapters, we described special types of
subgraphs, including cliques, independent sets, vertex covers, bridges,
cut vertices, and cut sets. We also discussed applications of these special
subgraphs.

In the fifteenth chapter, we covered connected and strongly con-
nected directed graphs, including a football matches example.

In the sixteenth chapter, we discussed both matching problems
and assignment problems, including the stable marriage problem.

In the seventeenth chapter, we discussed various graph operations,
including the graph union, the graph complement, vertex addition,
the Cartesian product, and the line graph.

In the eighteenth chapter, we introduced the dominating set of a
graph.

In the nineteenth chapter, we covered the graceful numbering of
a graph.

In the twentieth chapter, we discussed brute force searching tech-
niques, including depth first search and breadth first search.

In the twenty-one chapter, we discussed social networks as an ap-
plication of graphs.

Finally, in the twenty-second chapter, we presented the instant in-
sanity puzzle and how graph theoretical techniques can be used to solve
it.
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