
Algorithm Concepts

David R. Musser Brian Osman

May 16, 2003

Click here for printer-friendly version

This document contains Section 1 of Algorithm Concepts, a collection
of algorithm concept descriptions in both Web page and print form under
development at Rensselaer Polytechnic Institute by David R. Musser, with
the aid of graduate research assistants Brian Osman, Michael LaSpina,
and Mayuresh Kulkarni, and with significant participation also of students
in the “Adopt an Algorithm” project in CSCI-4020 Computer Algorithms,
Spring 2002 and Spring 2003.

http://www.cs.rpi.edu/~musser/ca/restricted/concepts1/algorithms-print.pdf


1. Basic Algorithm Concepts

1.1. Computational Method

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

Computational

Method

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

A computational method is a method for solving a specific type of problem
by means of a finite set of steps operating on inputs, which are quantities
given to it before execution of the steps begins or during executing, and
producing one or more outputs, which have a specified relation to the
inputs. The number of steps in the method is required to be not only
finite but also independent of the inputs. (The program does not grow
or shrink in response to the inputs, but it might have different variations
for different types of inputs.) The method is also required to be resource
constrained, which means there are requirements on all operations of all



steps of the method that constrain the resources (time, space) that can
used in executions of the method.

Execution of steps may repeat other steps, so that although the set of
steps is finite, executions of them may produce an infinite sequence of
steps—finite termination is not a requirement (it is a requirement of the
algorithm (§1.2) concept). Some nonterminating computational methods
are useful, such as computer operating systems or event-driven simulation
systems. Even though the execution of such methods does not terminate,
we are still generally interested in bounding the number of steps taken
in producing some partial output (as in proving response-time guarantees
for an operating system).

In order to bound the resources—time and space—consumed during an
execution of the method, we first need bounds on the resources consumed
by individual steps. This motivates the resource-constraint requirement
on computational methods.

Effectiveness of a computational method is the property that all oper-
ations of all steps of the method “must be sufficiently basic that they
can in principle be done exactly and in a finite length of time.” (Knuth
[1] adds “by someone using pencil and paper,” but it is a philosophical
question whether humans have any computational capability beyond the
effectiveness of machines.) As defined here, effectiveness of computa-
tional methods follows from their resource-constraint requirement.



Definiteness of a computational method is the property that each step
of the method “must be precisely defined; the actions to be carried out
must be rigorously and unambiguously specified for each case” [1]. This
includes the property that it must be unambiguous which step, if any,
follows the current step in any execution of the method.

Again, resource-constraint requirements place some limitations on just
how “indefinite” the steps of a method may be.

Refinements: Algorithm (§1.2)



1.2. Algorithm

�� �

�
 �	

�� �
 �� �

�� �
�� �
�� �
�� �
�
 �	

Computational

Method 1.1

Algorithm

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Sequence
Algorithm 2.1

Graph
Algorithm 3.1

Divide &
Conquer 1.5

Dynamic
Programming 1.6

Greedy 1.7

Refinement of: Computational Method (§1.1)

Finiteness of a computational method is the property that the number
of steps in any execution of the method must be finite. The finiteness
property is also called termination, and the method is said to be ter-
minating. Algorithm is a synonym for finite computational method, a
computational method (§1.1) with the additional property of finiteness.
Every abstraction that belongs to an algorithm concept must have the
termination property.



Note that among the abstractions belonging to a computational method
concept, some might be terminating while others are nonterminating.

Refinements: Algorithm Specialized by Input (§1.3), Algorithm Spe-
cialized by Strategy (§1.4).



1.3. Algorithm Specialized by Input

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

Computational

Method 1.1

Algorithm 1.2

Input-
Specialized

Strategy-
Specialized 1.4

Sequence
Algorithm 2.1

Graph
Algorithm 3.1

Refinement of: Algorithm (§1.2)

This concept is a narrowing of the algorithm (§1.2) concept by restrictions
on the form of input. Subconcepts restrict their input to some particular
domain, such as sets, graphs, or linear sequences.



Refinements: Set Algorithm, Sequence Algorithm (§2.1), Polynomial
Algorithm, Matrix Algorithm, Graph Algorithm (§3.1)



1.4. Algorithm Specialized by Strategy

�
�

�
��� �


�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� �
�� �


Computational

Method 1.1

Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized

Divide and
Conquer 1.5

Dynamic
Programming 1.6

Greedy 1.7 Iterative 1.8

Refinement of: Algorithm (§1.2)

This concept is a narrowing of the algorithm (§1.2) concept in terms of
strategies used in structuring the steps of the algorithm.

Refinements: Divide-and-Conquer Algorithm (§1.5), Dynamic Program-
ming Algorithm (§1.6), Greedy Algorithm (§1.7), Iterative Algo-
rithm (§1.8).



1.5. Divide-and-Conquer Algorithm

�� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� �
�� �


Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer

Dynamic
Programming 1.6

Greedy 1.7 Iterative 1.8

A divide-and-conquer algorithm is an algorithm (§1.2) whose steps are
structured according to the following strategy:

1. Construct the output directly and return it, if the input is simple
enough. Otherwise:

2. Divide the input into two or more (a finite number) of smaller
inputs.

3. Recursively apply the algorithm to each of the smaller inputs pro-
duced in the first step.



4. Combine the outputs from the recursive applications to produce the
output corresponding to the original input.

This concept is one of many known ways of narrowing the algorithm
concept in terms of a strategy (§1.4), which gives a specific structure to
the steps of the algorithm.



1.6. Dynamic Programming Algorithm

�� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� �
�� �


Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer 1.5

Dynamic
Programming

Greedy 1.7 Iterative 1.8

Refinement of: Algorithm Specialized by Strategy (§1.4)

A dynamic programming algorithm is an algorithm which solves a given
problem by combining solutions to smaller subproblems. The strategy
depends on two characteristics of the problem to be solved, optimal sub-
structure and overlapping subproblems.

Optimal substructure: A problem is said to have optimal substruc-
ture if the optimal solution to the problem contains within it optimal



solutions to the contained subproblems.

Overlapping subproblems: A problem exhibits overlapping subprob-
lems if the total number of subproblems required to assemble and
solve the complete problem is “small,” generally polynomial in the
input size. In other words, a naive recursive (top down) approach
to the problem would recompute the solution to the subproblems
many times.

Taking advantage of the above properties, a dynamic programming al-
gorithm functions in a bottom up fashion. The overall strategy can be
descibed as:

1. Compute and store the solutions to all of the simplest subproblems.

2. Repeat until the full problem has been solved:

(a) Combine the solutions to the subproblems of a given size to
compute and store the solutions to the next largest subprob-
lems.

As can be seen, the solutions to the various subproblems are stored for
repeated access in computing the solutions to larger subproblems. This



storage is often done in some table, and dynamic programming is some-
times referred to as a tabular method.

This concept if one of many known ways of narrowing the algorithm
concept in terms of a strategy (§1.4), which gives a specific strategy to
the steps of the algorithm.



1.7. Greedy Algorithm

�� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� �
�� �


Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer 1.5

Dynamic
Programming 1.6

Greedy Iterative 1.8

Refinement of: Algorithm Specialized by Strategy (§1.4)

A greedy algorithm is an algorithm which always makes locally optimal
choices during its execution to produce a globally optimal solution to
some problem. For such a strategy to work, the problem must exhibit the
greedy choice property, and optimal substructure.

Greedy choice property: A problem exhibits the greedy choice prop-
erty if a globally optimal solution can be arrived at by making lo-



cally optimal decisions at every decision point. In other words, the
subproblems which would result from various decisions, and their
resulting solutions to the whole problem, are irrelevant.

Optimal substructure: A problem is said to have optimal substruc-
ture if the optimal solution to the problem contains within it optimal
solutions to the contained subproblems.

Having seen this, a greedy algorithm is simply an algorithm which makes
a sequence of locally optimal decisions. Generally, the structure of the
algorithm follows this pattern:

1. Repeat until the problem has been reduced to an empty or trivial
base case.

(a) Augment the solution in some locally optimal fashion.

(b) Apply the local choice made to reduce or contract the problem.

This concept if one of many known ways of narrowing the algorithm
concept in terms of a strategy (§1.4), which gives a specific strategy to
the steps of the algorithm.



1.8. Iterative Algorithm

�� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�� �
�� �


Algorithm 1.2

Input-
Specialized 1.3

Strategy-
Specialized 1.4

Divide and
Conquer 1.5

Dynamic
Programming 1.6

Greedy 1.7 Iterative

Refinement of: Algorithm Specialized by Strategy (§1.4)

An iterative algorithm is an algorithm which, throughout the course of
execution, maintains some approximate output. As the name implies, the
primary step in the strategy is to recalculate a new approximate output
based on the previous approximation. In general, the approximate output
grows closer to the final output (or solution) with each iteration, but this
condition is not necessary.



Another important note is that an iterative algorithm must include some
termination criteria. There are many useful iterative procedures which
are not algorithms without a change in their formulation. Without termi-
nation, they must be considered iterative computational methods (§1.1).

This concept if one of many known ways of narrowing the algorithm
concept in terms of a strategy (§1.4), which gives a specific strategy to
the steps of the algorithm.



References

[1] Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fun-
damental Algorithms, Third Edition, Addison-Wesley, Reading, MA,
1997.


	Basic Algorithm Concepts
	Computational Method
	Algorithm
	Algorithm Specialized by Input
	Algorithm Specialized by Strategy
	Divide-and-Conquer Algorithm
	Dynamic Programming Algorithm
	Greedy Algorithm
	Iterative Algorithm


