
2.6.1. Dijkstra’s Algorithm

Section authors: Hamilton Clower, David Scott, Ian Dundore.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

Dijkstras Algorithm

Edge Comparison

Based 3.2

Single-Source

Shortest-Paths 3.7

Strategy
Specialized 1.4

Greedy 1.7

Refinement of: Single-Source Shortest-Paths (§3.7), Greedy Algorithm
(§1.7).

Dijkstra’s Algorithm locates the shortest paths to all vertices in a graph.
It is based on a greedy strategy, similar to Prim’s algorithm (§3.3) for
finding minimum spanning trees, and it is a key component in Johnson’s
all-pairs shortest-paths algorithm.



Prototype:

template <typename VertexListGraph,
typename P, typename T, typename R>

void
dijkstra_shortest_paths(VertexListGraph& g,
typename
graph_traits<VertexListGraph>
::vertex_descriptor s,

const bgl_named_params<P, T, R>& params);

Input:
Dijkstra’s algorithm requires a directed, acyclic graph with no negative-
weight edges. In terms of the Boost Graph Library, the inputs are
a Graph object, a vertex descriptor object which names the source
vertex (s), and a parameter list object.

Output:
Dijkstra’s algorithm finds the shortest path to all Vertices in a given
graph leading from a single source vertex. The length between
vertices is defined by the CompareFunction object passed into
the parameter list.

Effects:

• After the algorithm has run, the parent of each vertex has
been set in the predecessor map passed in via the params



object. If, for some vertex u, p[u] is equal to u, then u is
either the source vertex, or unreachable from the source.

• After the algorithm has run, the distance from the source to
each vertex has been set in the distance map passed in via
the params object. If, for some vertex u, d[u] is zero, then u is
the source vertex. If u is unreachable from the source, d[u] will
be set to an infinity value. (This is defined as the maximum
value for whatever type distances are defined as, e.g. if the
type is long, then the infinity value is MAX LONG).

Complexity:

• This algorithm is O(E log V ) if all vertices are reachable from
the named source vertex s.

• In the worst case, where there are some vertices unreachable
from the source vertex, which results in a O((V + E) log V )
time bound.

• Note: In the Boost Graph Library, optimizations to the algo-
rithm prevent the dijkstra shortest paths from examining any
vertices not connected to the source vertex. This does not
change the asymptotic running time of the algorithm, but it
does change the circumstances in which the worst-case run-
ning time occurs. With these optimizations, the worst-case
times occur when all nodes are reachable from the source.
For an illustration of this, see the pair of charts below.



Running Time:

Note: All times are in thousandths of a second.
The data for the following chart was generated completely randomly, with
no guarantee as to whether the graphs were connected or not.

Edges
Vertices 4 16 64 256 1024 4096

4 0 0 1 4 13 54
16 0 1 2 4 15 55
64 1 0 1 9 21 62
256 2 2 2 1 43 94
1024 5 5 5 5 5 197
4096 20 20 19 19 20 20

The data for the following chart was generated by a different algorithm.
This alternate method of generating graphs generated each edge of the
graph from a vertex reachable from the source vertex to a random vertex.
While this will not ensure that all vertices are reachable from the start
vertex, it does ensure that all edges are reachable from the start vertex.



Edges
Vertices 4 16 64 256 1024 4096

4 0 0 1 4 14 55
16 0 1 2 5 15 54
64 1 1 4 9 20 62
256 2 2 6 19 43 89
1024 6 5 11 28 95 201
4096 21 21 24 48 135 446



Running Time Chart:
The above chart shows comparative run-times of graphs generated
by the all-edges-reachable algorithm with variable numbers of edges
and vertices. The horizontal scale shows the number of edges, while
each line represents a constant number of vertices. The cyan line
represents 4096 vertices, the yellow line represents 256 vertices, the
magenta line represents 64 vertices and the black line represents 16
vertices.



Animation:
A short animation of Dijkstra’s algorithm in action has been pre-
pared and presented on the Web.

Pseudocode:

From the Boost Graph Library.

(Q is a min-priority queue that supports
the DECREASE-KEY operation.)

DIJKSTRA(G, s, w)
for each vertex u in V
d[u] := infinity
p[u] := u
color[u] := WHITE

end for
color[s] := GRAY
d[s] := 0
INSERT(Q, s)
while (Q != )
u := EXTRACT-MIN(Q)
S := S U { u }
for each vertex v in Adj[u]
if (w(u,v) + d[u] < d[v])
d[v] := w(u,v) + d[u]
p[v] := u
if (color[v] = WHITE)

http://www.rpi.edu/~scottd/ca/dijkstra.ppt
http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html


color[v] := GRAY
INSERT(Q, v)
else if (color[v] = GRAY)
DECREASE-KEY(Q, v)
end if
end if
end for
color[u] := BLACK

end while
return (d, p)
End DIJKSTRA


	Dijkstra's Algorithm

