
A Language for Generic Programming

Jeremy G. Siek

Doctoral Dissertation
Indiana University, Computer Science

August 24, 2005

M.C. Escher’s “Reptiles” c©2005 The M.C. Escher Company - the Netherlands. All rights reserved. Used by permission. www.mcescher.com

ii

Acknowledgements

First and foremost I thank my parents for all their love and for teaching me to enjoy learn-
ing. I especially thank my wife Katie for her support and understanding through this long
and sometimes stressful process. I also thank Katie for insisting on good error messages
for G! My advisor, Andrew Lumsdaine, deserves many thanks for his support and guidance
and for keeping the faith as I undertook this long journey away from scientific computing
and into the field of programming languages. I thank my thesis committee: R. Kent Dybvig,
Daniel P. Friedman, Steven D. Johnson, and Amr Sabry for their advice and encourage-
ment. A special thanks goes to Ronald Garcia, Christopher Mueller, and Douglas Gregor
for carefully editing and catching the many many times when I accidentally skipped over
the important stuff. Thanks to Jaakko and Jeremiah for hours of stimulating discussions
and arguments concerning separate compilation and concept-based overloading. Thanks to
David Abrahams for countless hours spent debating the merits of one design over another
while jogging through the hinterlands of Norway. Thanks to Alexander Stepanov and David
Musser for getting all this started, and thank you for the encouragement over the years.
Thanks to Matthew Austern, his book Generic Programming in the STL was both an inspi-
ration and an invaluable reference. Thanks to Beman Dawes and everyone involved with
the Boost libraries. The collective experience from Boost was vital in the creation of this
thesis. Thanks to Vincent Cremet and Martin Odersky for answering questions about Scala
and virtual types.

i

Abstract

The past decade of software library construction has demonstrated that the discipline of
generic programming is an effective approach to the design and implementation of large-
scale software libraries. At the heart of generic programming is a semi-formal interface
specification language for generic components. Many programming languages have fea-
tures for describing interfaces, but none of them match the generic programming specifi-
cation language, and none are as suitable for specifying generic components. This lack of
language support impedes the current practice of generic programming. In this dissertation
I present and evaluate the design of a new programming language, named G (for generic),
that integrates the generic programming specification language with the type system and
features of a full programming language. The design of G is based on my experiences,
and those of colleagues, in the construction of generic libraries over the past decade. The
design space for programming languages is large, thus this experience is vital in guiding
choices among the many tradeoffs. The design of G emphasizes modularity because generic
programming is inherently about composing separately developed components. In this dis-
sertation I demonstrate that the design is implementable by constructing a compiler for G
(translating to C++) and show the suitability of G for generic programming with prototypes
of the Standard Template Library and the Boost Graph Library in G. I formalize the essential
features of G in a small language and prove type soundness.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Lowering the cost of developing generic components 4
1.2 Lowering the cost of reusing generic components 5
1.3 G: a language for generic programming . 6
1.4 Related work in programming language research 7
1.5 Claims and evaluation . 8
1.6 Road map . 8

2 Generic programming and the STL 10
2.1 An example of generic programming . 11
2.2 Survey of generic programming in the STL 16

2.2.1 Generic algorithms and STL concepts 17
2.2.2 Generic containers . 31
2.2.3 Adaptors and container concepts . 37
2.2.4 Summary of language requirements 39

2.3 Relation to other methodologies . 40
2.4 Summary . 44

3 The language design space for generics 45
3.1 Preliminary design choices . 45
3.2 Subtyping versus type parameterization . 48

3.2.1 The binary method problem . 49
3.2.2 Associated types . 50
3.2.3 Virtual types . 51
3.2.4 Evaluation . 52

3.3 Parametric versus macro-like type parameterization 52
3.3.1 Separate type checking . 55
3.3.2 Compilation and run-time efficiency 55
3.3.3 Evaluation . 58

3.4 Concepts: organizing type requirements . 58

iii

CONTENTS iv

3.4.1 Parameteric versus object-oriented interfaces 59
3.4.2 Type parameters versus abstract types 64
3.4.3 Same-type constraints . 66

3.5 Nominal versus structural conformance . 66
3.6 Constrained polymorphism . 68

3.6.1 Granularity . 68
3.6.2 Explicit versus implicit model passing 69

3.7 Summary . 71

4 The design of G 72
4.1 Generic functions . 73
4.2 Concepts . 76
4.3 Models . 77
4.4 Modules . 78
4.5 Type equality . 79
4.6 Function application and implicit instantiation 81

4.6.1 Type argument deduction . 82
4.6.2 Model lookup (constraint satisfaction) 84

4.7 Function overloading and concept-based overloading 87
4.8 Generic user-defined types . 89
4.9 Function expressions . 91
4.10 Summary . 92

5 The definition and compilation of G 95
5.1 Overview of the translation to C++ . 96

5.1.1 Generic functions . 97
5.1.2 Concepts and models . 101
5.1.3 Generic functions with constraints 102
5.1.4 Concept refinement . 103
5.1.5 Parameterized models . 105
5.1.6 Model member access . 106
5.1.7 Generic classes . 107

5.2 A definitional compiler for G . 107
5.2.1 Types and type equality . 108
5.2.2 Environment . 113
5.2.3 Auxiliary functions . 113
5.2.4 Declarations . 120
5.2.5 Statements . 126
5.2.6 Expressions . 129

5.3 Compiler implementation details . 131
5.4 Summary . 133

CONTENTS v

6 Case studies: generic libraries in G 134
6.1 The Standard Template Library . 135

6.1.1 Algorithms . 135
6.1.2 Iterators . 136
6.1.3 Automatic algorithm selection . 136
6.1.4 Containers . 139
6.1.5 Adaptors. 141
6.1.6 Function expressions . 141
6.1.7 Improved error messages . 142
6.1.8 Improved error detection . 143

6.2 The Boost Graph Library . 143
6.2.1 An overview of the BGL graph search algorithms 144
6.2.2 Implementation in G . 146

6.3 Summary . 147

7 Type Safety of FG 153
7.1 FG = System F + concepts, models, and constraints 154

7.1.1 Adding concepts, models, and constraints 154
7.1.2 Lexically scoped models and model overlapping 158

7.2 Translation of FG to System F . 159
7.3 Isabelle/Isar formalization . 167
7.4 Associated types and same-type constraints 169
7.5 Summary . 178

8 Conclusion 179

A Grammar of G 182
A.1 Type expressions . 182
A.2 Declarations . 183
A.3 Statements and expressions . 184
A.4 Derived forms . 186

B Definition of FG 187

Software production in the large would be enormously helped by the
availability of spectra of high quality routines, quite as mechanical
design is abetted by the existence of families of structural shapes,
screws or resistors...
One could not stock 300 sine routines unless they were all in some
sense instances of just a few models, highly parameterized, in which
all but a few parameters were intended to be permanently bound
before run time. One might call these early-bound parameters ‘sale
time’ parameters...
Choice of Data structures... this delicate matter requires careful plan-
ning so that algorithms be as insensitive to changes of data structure
as possible. When radically different structures are useful for similar
problems (e.g., incidence matrix and list representations for graphs),
several algorithms may be required.

M. Douglas McIlroy, 1969 [126] 1
Introduction

A decade or two ago computers were primarily the tools of specialists and the toys of hobby-
ists. Now they are a part of everyday life: they are used to create the family photo albums,
make travel reservations, communicate with friends, and get directions for a trip. Despite
the advances in computer science and software engineering, computers still must be told
what to do in excruciating detail. Thus, the production of software to control our computers
is an important endeavor, one that affects more and more aspects of our lives.

Producing software is hard: massive amounts of time and money go into creating the
software applications we use today. This cost affects the prices we pay for shrink wrapped
software and factors into the prices of many other goods and services. Further, software
quality affects our lives: buggy software is a constant annoyance and software bugs some-
times cause or contribute to more serious harm

The 1968 NATO Conference on Software Engineering popularized the terms “software
crisis” and “software engineering”. The crisis they faced was widespread difficulties in
the construction of large software systems such as IBM’s OS/360 and the SABRE airline
reservation system [64, 154]. The conference attendees felt it was time for programmers
and managers to get more serious about the process of producing software. McIlroy gave
an invited talk entitled Mass-produced Software Components [126]. In this talk he proposed
the systematic creation of reusable software components as a solution to the software crisis.
The idea was that most software products are created from building blocks that are quite
similar, so software productivity would be increased if a standard set of blocks could be
shared among many software products.

Barnes and Bollinger define a simple equation that summarizes the savings that can be
achieved through software reuse [15]. Let D stand for the cost of developing a reusable

1

CHAPTER 1. INTRODUCTION 2

component and n be the number of uses of the component. The savings is calculated by:(
n∑

i=1

(Ci −Ri)

)
−D (1.1)

where Ci is the cost of writing code from scratch to solve a problem and Ri is the cost of
reusing the component. A particularly interesting aspect of this equation is that if Ci > Ri,
then as n tends to infinity so does the savings from reuse. On the other hand, if n is small,
then the benefits of reuse may be outweighed by the initial investment D of developing the
reusable component. Studies by Margono and Rhoads have shown that a typical value for
D is twice the cost of building a non-reusable version of the component [125].

In addition to the savings in software production, reuse can increase software quality.
One of the reasons given by Lim [116] is that the more a piece of software is used, the
faster the bugs in the software are found and fixed. Further, the bugs need only be fixed in
one place, in the reusable component, and then all uses of the component benefit from the
increase in quality.

Today we are starting to see the benefits of software reuse: Douglas McIlroy’s vision is
gradually becoming a reality. The number of commercial and open source software com-
ponent libraries has steadily grown and it is commonplace for application builders to turn
to libraries for user-interface components, database access, report creation, numerical rou-
tines, and network communication, to name a few. In addition, many software companies
have benefited from the creation of in-house domain-specific libraries which they use to
support entire software product lines. The software product lines approach is described by
Clements and Northrop in [46]. One of the strengths of the Java language is its large suite
of standard libraries developed by Sun Microsystems. Software libraries have also seen par-
ticularly heavy use in scripting languages such as Visual Basic, Perl, Python, and PHP, and
for a long time there has been considerable library building activity in C, C++, and Fortran
for systems-level and performance-oriented domains. There is also a growing number of
libraries available for research languages such as Objective Caml and Haskell.

As the field of software engineering progresses, we learn better techniques for build-
ing reusable software. In 1994, Stepanov and Lee [181] presented a library of sequential
algorithms and data structures to the C++ standards committee that was immediately rec-
ognized as a leap forward in library design. The Standard Template Library (STL), as it was
called, was the product of a methodology called Generic Programming developed during the
1980’s by Stepanov, Musser, and colleagues [103–105, 137–139, 179]. The term “generic
programming” is often used to mean any use of “generics”, i.e., any use of parametric poly-
morphism or templates. The term is also used in the functional programming community
for function generation based on algebraic datatypes, i.e., “polytypic programming”. This
thesis uses the term “generic programming” solely in the sense of Stepanov and Musser.

The main idea behind generic programming is the separation of algorithms from data-
structures via abstractions that respect efficiency. For example, instead of writing functions
on arrays we write generic functions implemented in terms of abstract iterators. The it-
erator abstraction can be implemented in terms of arrays, linked-lists, and many other

CHAPTER 1. INTRODUCTION 3

data-structures that represent sequences of elements. The advantage of generic program-
ming is that it greatly increases the number of situations in which a component may be
used, thereby increasing n in Equation 1.1. Generic programming accomplishes this by
making components more general while retaining the efficiency of specialized components.
Chapter 2 describes how this is done.

The STL was accepted as part of the C++ Standard Library [86] thereby introduc-
ing generic programming to mainstream programmers. Since 1994 generic program-
ming has been successfully applied in domains such as computer vision [108], computa-
tional geometry [21], bioinformatics [152], geostatistics [156], physics [190], text process-
ing [55, 122], numerical linear algebra [174, 198], graph theory [113, 169], and operations
research [12].

My interest in generic programming began in 1998, with work on the Matrix Template
Library [166, 174] with Andrew Lumsdaine and Lie-Quan Lee, building on earlier work
by Andrew Lumsdaine and Brian McCandless [120, 121]. We were successful in produc-
ing numerical routines that could compete with Fortran codes in terms of performance and
that offered greater functionality and flexibility. In 1999, motivated by the need for sparse
matrix reordering algorithms, we turned our attention to graph theory and developed a
library of generic graph algorithms and data structures [113]. With this library we ex-
ceeded the expectations expressed by McIlroy in the quote at the beginning of this chapter:
we implemented algorithms that were insensitive to whether an incidence matrix or list
representation is used to represent graphs.

In 2000 we began collaborating with the Boost open source community [22] and our
graph library evolved into the Boost Graph Library (BGL) [169]. Boost is an on-line com-
munity founded by members of the C++ standards committee to foster the development of
modern C++ libraries with an emphasis on generic programming. The Boost library collec-
tion currently contains 65 peer reviewed libraries (it is continuously growing) and there
were over 90,000 downloads of the latest release. The C++ Standards Committee is ex-
panding the C++ standard library with the publication of a technical report on C++ library
extensions [10]. Most of the libraries in that report started as Boost libraries.

I found the construction and maintenance of generic libraries in C++ to be both reward-
ing and frustrating. It was rewarding because we were able to deliver highly reusable and
efficient software and received positive feedback from users. On the other hand, it was frus-
trating because constructing libraries in C++ was difficult and the resulting libraries were not
as easy to use or as robust in the face of user error as we would have hoped. The method-
ology of generic programming is effective, and while C++ provides good support for generic
programming, it is not the ideal language for this purpose. In terms of Equation 1.1, both
the cost of developing reusable components and the cost of reusing a component were higher
than they should be, thereby reducing the savings from reuse.

Our frustration with C++ motivated several of us at the Open Systems Lab to study to
what extent other programming languages support generic programming. In 2003 we an-
alyzed six programming languages: C++, Standard ML, Haskell, Eiffel, Java, and C#. We
implemented a subset of the BGL in each of these languages and then evaluated them with

CHAPTER 1. INTRODUCTION 4

respect to how straightforward it was to express and use the BGL algorithms and abstrac-
tions [69]. Since then we have evaluated several more languages, including Cecil and
Objective Caml [70]. All of these languages provide some support for generic programming
but none is ideal.

Given the state of the art in programming languages, it is time to incorporate what we
have learned from the past decade of generic library construction back into the design of
programming languages. In this dissertation, I present and evaluate the design of a lan-
guage named G that provides improved support for generic programming with the goal
of lowering the cost of developing reusable components and lowering the cost of reusing
components. The next section summarizes the problems we encountered with generic pro-
gramming in C++ and the proposed solutions for G.

1.1 Lowering the cost of developing generic components

Generic programming in C++ is considered an advanced technique because the construction
of generic libraries requires the use of many advanced idioms. There is a cost associated
with translating the intent of the programmer to the appropriate idiom. Further, the idioms
require an in-depth knowledge of language features such as partial template specialization,
partial ordering of function templates, and argument dependent lookup. The acquisition
and maintenance of this knowledge is expensive. Nonetheless, generic libraries created
using these idioms have proved exceeding useful despite the extra cost. The language G
instead provides direct and simple language mechanisms that fulfill the same purposes.

Testing and debugging generic functions in C++ is difficult. C++ does not perform type
checking on definitions of templates. Thus, a generic library developer does not enjoy
the usual benefits of a static type system. Type checking is performed on the result of
instantiating a template with particular type parameters. A library developer can test the
generic function on particular types, but this does not guarantee that the generic function
will work for other types and, in general, a generic function is supposed to work for an
infinite number of types. The language G type checks the definition of a generic function
independently of any of its instantiations. A generic function that passes type checking is
guaranteed to be free of type errors when instantiated with type arguments that satisfy the
requirements of the generic function.

Most generic functions make some assumptions about their type parameters, such as the
assumption that an operator== is defined for the type. From the user’s point of view, these
assumptions are requirements. Since type requirements are not directly expressible in C++,
library authors instead state the type requirements in the documentation for the generic
function. It is important that the documented assumptions be complete, otherwise a user
may attempt to apply a generic function in a situation it is not equipped to handle. The
author of a C++ generic library must manually compare the documented assumptions to the
implementation of the generic function. This process is time consuming and error prone.
The language G provides the means to express type requirements as part of the interface
of a generic function, and the type checker ensures that the assumptions are complete with

CHAPTER 1. INTRODUCTION 5

respect to the implementation.
Another problem that plagues generic library developers in C++ is that namespaces do

not provide complete protection from name pollution, so library developers must go out of
their way to ensure that their calls to internal helper functions do not accidentally resolve
to functions in other libraries. The language G provides complete name protection.

Developing high-quality generic libraries in C++ is costly, much more so than it should
be, thereby reducing the savings from reuse (Equation 1.1). The design of G reduces the
cost of generic library development by simplifying the language mechanisms for generic
programming, by introducing static error detection for generic functions, and by making
generic libraries more robust.

The next section discusses costs associated with using generic components. Many
generic components use other generic components, so reductions in the cost of using generic
components also reduces the cost of producing generic components.

1.2 Lowering the cost of reusing generic components

The productivity gains due to reuse are highly sensitive to the cost of using a generic com-
ponent because this cost is multiplied by n in Equation 1.1. This section discusses factors
that affect the cost of using generic components.

A strength of the C++ template system is that calling a generic function is syntactically
identical to calling a normal function. Many alternative approaches to generics require the
user to explicitly provide the type arguments for the generic function or explicitly provide
the type-specific operations needed by the generic function. The C++ compiler, in contrast,
deduces the type arguments for a function template from the types of the normal argu-
ments. I refer to this as implicit instantiation. C++ also provides an implicit mechanism for
resolving type-specific operations within a template. The language G retains these strengths
of C++, although the mechanism for resolving type-specific operations is much different.

The most visible disadvantage of generic programming in C++ is the infamous error
messages that a user experiences after making mistakes. The error messages are long, hard
to understand, and do not point to the source of the problem. Instead the error messages
point deep inside the implementation of the generic library. The problem is that the C++ type
system does not know the type requirements for the generic function (they are written in
English in the documentation) and therefore cannot warn the user when the requirements
are violated. As mentioned above, in the language G, the interface of a generic function
includes its type requirements. The type checker uses this information to verify whether
the requirements are satisfied at a particular use of the generic function. In this thesis I use
the term separate type checking to mean that type checking the use of a generic function
is independent of the generic function’s implementation, and conversely, type checking the
implementation of a generic function is independent of its uses.

Another disadvantage of C++ is that the time to compile a program is a function of the
size of the program plus the size of all generic components used by the program (and all
the generic components used by those generic components, etc.). This has proven to be a

CHAPTER 1. INTRODUCTION 6

serious problem in practice: compile times become prohibitive when several large generic
libraries are used in the same program. This problem is especially acute during development
and debugging, when the compilation time becomes the bottleneck in the compile-run-
debug cycle. In C++, the size of non-generic components used in a program does not factor
into the compile time because the non-generic components can be separately compiled to
object code. The addition of the export facility of C++ [86] does not provide true separate
compilation for templates because the compile time of a program remains a function of all
the generic components it uses. The language G provides separate compilation for both
generic and non-generic components. As we shall see, there is a run-time cost associated
with separate compilation so G provides the programmer with the choice of whether to
compile modules together or separately.

As described in the previous section, G aids in the discovery of bugs and inconsistencies
in generic functions. This improvement in quality translates into saving for users of generic
libraries because bugs in libraries are extremely costly to users.

Many generic functions are higher-order functions: they take functions as parame-
ters. The function arguments are typically task-specific and only used in a single place in a
program. Thus it is convenient to define the function in place with an anonymous function
expression. C++, however, does not have a facility for creating function expressions: instead,
function objects are used. A function object is an instance of a class with an operator()

member function. Creating a class is more work than writing a function expression so
this adds to the syntactic cost of calling a generic higher-order function. The language G
provides function expressions (as is common in functional languages).

1.3 G: a language for generic programming

The primary challenge in the design of G is resolving the tension between modularity and
interaction. A component is trivially modular if it has no inputs or outputs and operates only
on private data. Of course, such a component is useless. On the other hand, a system with
unrestrained interaction between components is difficult to debug and maintain. Thus the
challenge is to allow for rich interactions between components so that they may accomplish
useful work while at the same time protecting the components from one another.

G ensures modularity for generic components by basing its design on parametric poly-
morphism, which by default severely restricts interaction. G makes rich interactions possible
by providing an expressive language for describing contracts between generic components.
The contracts, or interface specifications, are used by the type system to govern the inter-
actions between components. For the generic components of G, contracts mainly consist of
requirements on their type parameters. I refer to language mechanisms that provide type
parameterization and requirements on type parameters as generics.

The primary influence on the design for generics in this dissertation is the semi-formal
specification language currently used to document C++ libraries [11, 86, 169, 176]. I per-
formed a thorough survey of the documentation of the STL (Chapter 2), recording what
kinds of requirements were expressed, and then incorporated each kind of requirement

CHAPTER 1. INTRODUCTION 7

into the design of G. Another influence on G is the Tecton specification language by Kapur,
Stepanov, and Musser [101, 102] and related work [164, 200] that formalizes the generic
programming specification language.

The non-generic language features of G are borrowed from C++, though the design for
generics mandated modifications to non-generic parts of the language. The design for
generics in G could be applied to other programming languages, such as Java or C#. We
chose C++ because it would facilitate the evaluation of G, easing the translation of the STL
and BGL from C++.

A secondary challenge faced in the design of G is the tension between run-time efficiency
and fast compile times. To achieve fast compile times, separate compilation of components
is needed. However, to produce the most optimized code, the compiler must have access to
the whole program. For example, the C++ compilation model for function templates stamps
out a specialized version of the function for each set of type arguments, producing highly
efficient code but forcing templates to be compiled with their uses. If a C++ programmer
wants separate compilation, then a generic function must be expressed using classes and
subtype polymorphism instead of using templates. Providing both versions of a generic
function is a costly endeavor and is seldom done in practice.

Compilers for languages such as Java and Standard ML typically produce a single set
of instructions for a given generic function, thereby achieving fast compile times but sac-
rificing efficiency. However, this second approach leaves open the door to allowing the
programmer or compiler to choose when run-time efficiency is favored over compile-time
efficiency. A compiler (or just-in-time compiler) may perform function specialization and
inlining as an optimization (without changing the semantics of the program) and gain the
efficiency of C++ templates. The design of G is similar to Java and Standard ML: a generic
function may be separately compiled to single set of instructions or it may be compiled to a
specialized function. The compiler for G described in Chapter 5 does not perform function
specialization or inlining but these optimizations are well-known and the relevant literature
is discussed in Section 3.3.

1.4 Related work in programming language research

The design for generics in G is most closely related to type classes in Haskell: there is an
analogy between the concept and model features of G and the class and instance features
of Haskell [196], respectively. However, many of the design goals and details differ. There
are also some similarities between ML signatures and G concepts and we have applied
several compilation techniques developed for ML to the compilation of G. Both Haskell and
ML are based on the Hindley-Milner type system whereas G is based on the polymorphic
lambda calculus of Girard and Reynolds [71, 157].

Chapter 3 gives an in-depth discussion of language mechanisms for generics and surveys
the various forms of polymorphism in programming languages.

CHAPTER 1. INTRODUCTION 8

1.5 Claims and evaluation

The following points list the concrete claims of this thesis and the methods used to substan-
tiate the claims.

1. The type system of G separately type checks definitions and uses of generic compo-
nents. This is verified in Chapter 5 by inspection of the type rules for G.

2. G is not type safe because it inherits type safety holes from C++, such as the potential
to dereference dangling pointers. However, the design for generics does not contain
type holes. Chapter 7 verifies this claim with a type safety proof for the language FG

which captures the essence of the generics of G in a small formal language.

3. G provides implicit instantiation of generic functions. Chapter 5 defines the static
semantics of G including how implicit instantiation is performed. The algorithm is
based on the variant of unification used in MLF, which was proved effective and
sound [24].

4. G provides a mechanism for implicitly satisfying the type requirements of a generic
function at its point of instantiation. The static semantics of G described in Chapter 5
demonstrates how this is accomplished by translating model definitions into function
dictionaries and by explicitly passing dictionaries to generic functions with type re-
quirements.

5. G provides separate compilation of both generic and non-generic functions. This is
demonstrated with the construction of a compiler for G that in fact compiles generic
functions to object code. Chapter 5 describes the compilation of G to C++.

6. G provides complete namespace protection. That is, the author of a module has com-
plete control over which names and model definitions are visible to the module and
which names are exported from the module. The module author can determine the
bindings of all variable references in the module by static inspection of the module
code.

7. G supports the common idioms [11] of generic programming and formalizes the spec-
ification language used to document generic libraries. We substantiate this claim
by implementing prototypes of the Standard Template Library and the Boost Graph
Library and verifying that G provides all the necessary language facilities for their
expression, which is described in Chapter 6.

1.6 Road map

Chapter 2 is an introduction to generic programming and to the Standard Template Library
of C++, which is representative of current practice in generic C++ libraries. The current
practice of generic programming is directly supported and formalized in the design of G.
Chapter 3 is a survey and evaluation of programming language mechanisms that support

CHAPTER 1. INTRODUCTION 9

generic programming, describing various forms of polymorphism and ways to constrain it.
This evaluation establishes the foundation for the design of G and explains the inherent
tradeoffs in the solution space. Chapter 5 describes the design and implementation of G.
This includes an introduction to generics in G and the rationale for the design. Chapter 5
then covers the type system of G in detail and the translation of G to C++, which serves to
define the semantics of G and shows how to compile G. Chapter 6 evaluates the suitability
of G for generic programming with two case studies: prototype implementations of the
STL and the BGL. Chapter 7 formalizes the essential features of G, defining a core calculus
named FG and proves type safety for FG . Chapter 8 concludes this dissertation.

To become a generally usable programming product, a program must
be written in a generalized fashion. In particular the range and form
of inputs must be generalized as much as the basic algorithm will
reasonably allow.

Frederick P. Brooks, Jr., [64]

That is the fundamental point: algorithms are defined on algebraic
structures.

Alexander Stepanov [160] 2
Generic programming and the STL

This chapter reviews the generic programming methodology of Stepanov and Musser and
how this methodology is applied in modern C++ libraries, with the Standard Template Li-
brary (STL) as the prime example. This chapter starts with a short history of generic pro-
gramming and a description of the methodology. The description is made concrete with a
small example: the development of an algorithm for accumulating elements of a sequence.
The design and implementation of the STL is then discussed, with emphasis placed on how
the STL components are specified and on which C++ features are used in the implementa-
tion. The generic programming facilities of C++ are analyzed so that the design of G may
build on the strengths and improve on the weaknesses. This chapter concludes with a
comparison of generic programming to other programming methodologies.

Generic programming has roots in mathematics, especially abstract algebra. Abstraction
plays an important role in mathematics: it helps mathematicians capture the essence of the
entities they study and makes theorems more general and therefore more widely applicable.
In the 1800’s Richard Dedekind and Emmy Noether began to distill algebra into fundamen-
tal abstract concepts such as Group, Ring, and Field. These concepts were generalizations of
the mathematical entities they were studying; they captured the essential properties needed
to prove their theorems. Noether’s student van der Waerden popularized these ideas in his
book Modern Algebra [192].

In the early 1980’s, Alexander Stepanov and David Musser, with several colleagues,
discovered how to use algebraic structures, and similar abstractions, to organize programs
to enable a high degree of reuse [104]. (There were similar developments around the
same time in a language for computer algebra by Jenks and Trager [93].) Stepanov and
Musser drew ideas from research on abstract data types [32, 77, 118, 185, 203], functional
programming languages [13, 61, 87], and mathematics [25]. Their initial idea was to use
“operators” (higher-order functions) to express generic algorithms, and to organize function

10

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 11

Generic programming is a sub-discipline of computer science that deals with find-
ing abstract representations of efficient algorithms, data structures, and other soft-
ware concepts, and with their systematic organization. The goal of generic pro-
gramming is to express algorithms and data structures in a broadly adaptable,
interoperable form that allows their direct use in software construction. Key ideas
include:

• Expressing algorithms with minimal assumptions about data abstractions,
and vice versa, thus making them as interoperable as possible.

• Lifting of a concrete algorithm to as general a level as possible without losing
efficiency; i.e., the most abstract form such that when specialized back to the
concrete case the result is just as efficient as the original algorithm.

• When the result of lifting is not general enough to cover all uses of an al-
gorithm, additionally providing a more general form, but ensuring that the
most efficient specialized form is automatically chosen when applicable.

• Providing more than one generic algorithm for the same purpose and at the
same level of abstraction, when none dominates the others in efficiency for
all inputs. This introduces the necessity to provide sufficiently precise char-
acterizations of the domain for which each algorithm is the most efficient.

Figure 2.1: Definition of Generic Programming from Jazayeri, Musser, and Loos[92]

parameters along the lines of algebraic structures.
In the late 1980’s Stepanov and Musser applied their ideas to the creation of libraries

for processing sequences and graphs in the Scheme programming language [105, 180] and
also in Ada [138]. Their work came to fruition in the early 1990’s with the C++ Standard
Template Library [181], when generic programming began to see widespread use.

Figure 2.1 reproduces the standard definition of generic programming from Jazayeri,
Musser, and Loos [92]. In the next section we show how this methodology can be ap-
plied to implement a generic algorithm in Scheme [3, 56, 65]. The generic programming
methodology always consists of the following steps: 1) identify a family of useful and ef-
ficient concrete algorithms with some commonality, 2) resolve the differences by forming
higher-level abstractions, and 3) lift the concrete algorithms so they operate on these new
abstractions. When applicable, there is a fourth step to implement automatic selection of
the best algorithm, as described in Figure 2.1.

2.1 An example of generic programming

Figure 2.2 presents a family of concrete functions that operate on lists and vectors, comput-
ing the sum or product of the elements or concatenating the elements (which in this case

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 12

are lists). These functions share a common control-flow; at some level of abstraction these
functions are essentially the same. Each of these functions is recursive, with a base case that
returns an object and a recursion step that combines the current element of the sequence
with the result of applying the function to the rest of the sequence.

There is a special relation between the base case object and the combining function
used in each algorithm. The following equations express the relationship: an application of
the combining function to the base object and an arbitrary value a yields a. Thus the base
object is the identity element.

(+ 0 a) = a

(* 1 a) = a

(append '() a) = a

This grouping of an identity element, binary operator, and a set of values (e.g., integers or
strings), is traditionally called a Monoid. The first step of lifting the algorithms in Figure 2.2
is to recognize that they operate on Monoids. Thus, we can reduce the six algorithms to just
two by writing them in terms of an arbitrary id-elt and binop. We use the more generic
name accumulate for these algorithms and pass the id-elt and binop in as parameters.

(define accumulate-list

(λ (ls binop id-elt)

(cond [(null? ls) id-elt]

[else (binop (car ls) (accumulate-list (cdr ls) binop id-elt))])))

(define accumulate-vector

(λ (vs binop id-elt)

(letrec ([loop (λ (i)

(cond [(eq? i (vector-length vs))

id-elt]

[else (binop (vector-ref vs i)

(loop (+ i 1)))]))])

(loop 0))))

In the generic programming literature, abstractions such as Monoid [11, 103] are called
concepts. There are two equivalent ways to think about concepts. First, a concept can be
thought of as a list of requirements. The requirements include things like function signa-
tures and equalities. The following table shows the requirements for the Monoid concept.
We use X as a place-holder for a type that satisfies the Monoid concept and a is an arbitrary
value of type X.

Monoid concept
binop : X × X → X

id-elt : X

(binop id-elt a) = id-elt = (binop a id-elt)

(binop a (binop b c)) = (binop (binop a b) c)

The Monoid concept includes the requirement that the binary operator be associative.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 13

Figure 2.2: A family of related algorithms implemented in Scheme.

(define sum-list

(λ (ls)

(cond [(null? ls) 0]

[else (+ (car ls) (sum-list (cdr ls)))])))

(define product-list

(λ (ls)

(cond [(null? ls) 1]

[else (* (car ls) (product-list (cdr ls)))])))

(define concat-list

(λ (ls)

(cond [(null? ls) '()]

[else (append (car ls) (concat-list (cdr ls)))])))

(define sum-vector

(λ (vs)

(letrec ([loop (λ (i)

(cond [(eq? i (vector-length vs))

0]

[else (+ (vector-ref vs i)

(loop (+ i 1)))]))])

(loop 0))))

(define product-vector

(λ (vs)

(letrec ([loop (λ (i)

(cond [(eq? i (vector-length vs))

1]

[else (* (vector-ref vs i)

(loop (+ i 1)))]))])

(loop 0))))

(define concat-vector

(λ (vs)

(letrec ([loop (λ (i)

(cond [(eq? i (vector-length vs))

'()]

[else (append (vector-ref vs i)

(loop (+ i 1)))]))])

(loop 0))))

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 14

While this is not strictly necessary for the accumulate function it is a useful requirement
because it would allow us to change the implementation later on to process portions of the
sequence in parallel.

The second way to think about a concept is as a set of types. This is equivalent to
thinking of a concept as a list of requirements because a type is in a concept (a set of
types) if and only if it satisfies the list of requirements. When a type satisfies a concept,
we say that the type models the concept. Sometimes it is useful to generalize the notion of
a concept from a set of types to a relation on types, functions, and objects. For example,
with the Monoid concept, there are multiple ways in which the type integer can satisfy the
requirements, for example, with + and 0 or with * and 1.

Getting back to the accumulate example, the two new algorithms still differ in the data
structures they process: a linked list and a vector. However, both data structures represent
a sequence. When viewed at this higher level of abstraction the algorithms can be seen to
perform the same operations:

• Access the element at the current position (car for lists and vector-ref for arrays).

• Move the position to the next element (cdr for lists and (+ i 1) for arrays).

• Check if the position is past the end of the sequence (null? for lists and eq? for arrays).

There is a concept named Input Iterator in the STL that groups together these operations. The
following table describes the requirements for the Input Iterator concept (loosely translated
into Scheme).

Input Iterator concept
type value

type difference

difference models the Signed Integral concept
next : X → X

curr : X → value

equal? : X × X → bool

(equal? i j) implies (eq? (curr i) (curr j))

next, curr, and equal? must be constant time

The value and difference types that appear in the requirements for Input Iterator are
helper types. A value type is needed for the return type of curr and a difference type
is needed for measuring distances between iterators of type X. The difference type is
required to be an appropriate integer type. The helper types may vary from iterator to
iterator and are determined by the iterator type. We refer to such helper types as associated
types.

The Input Iterator concept also includes complexity guarantees about the required opera-
tions: they must have constant time complexity. Such complexity guarantees are important
for describing the time complexity of algorithms. For example, our accumulate algorithms
are linear time provided that the iterator and monoid operations are constant time.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 15

Figure 2.3: A generic accumulate function in Scheme.

(define accumulate

(λ (binop id-elt next curr equal?)

(λ (first last)

(letrec ([loop (λ (first)

(cond [(equal? first last)

id-elt]

[else (binop (curr first)

(loop (next first)))]))])

(loop first)))))

Lifting the accumulate algorithms with respect to Input Iterator produces the generic
accumulate function in Figure 2.3. The accumulate function is curried according to the
two different times at which the inputs are available. The client of accumulate first sup-
plies the Monoid and Input Iterator operations and in return gets a concrete function, where
the meaning of id-elt, binop, next, etc. is fixed. This corresponds to McIlroy’s notion
of “sale time” parameters in the quotation from Chapter 1. Iterators can be fed into the
concrete function to compute a result.

The original concrete functions can be recovered by applying the generic accumulate to
the appropriate type-specific operations. The following code implements the list processing
algorithms using cons-lists directly as iterators.

(define sum-list (λ (ls) ((accumulate + 0 cdr car eq?) ls '())))

(define product-list (λ (ls) ((accumulate * 1 cdr car eq?) ls '())))

(define concat-list (λ (ls) ((accumulate append '() cdr car eq?) ls '())))

The iterators for vectors are pairs consisting of the vector and the index of the current
position. The following functions implement the iterator operations in terms of these pairs.

(define vnext (λ (v-i) (cons (car v-i) (+ 1 (cdr v-i)))))

(define vcurr (λ (v-i) (vector-ref (car v-i) (cdr v-i))))

(define veq? (λ (v-i v-j) (eq? (cdr v-i) (cdr v-j))))

The vector processing algorithm can then be implemented using the generic accumulate

and the vector iterator functions.

(define sum-vector (λ (vs) ((accumulate + 0 vnext vcurr veq?)

(cons vs 0) (cons vs (vector-length vs)))))

(define product-vector (λ (vs) ((accumulate * 1 vnext vcurr veq?)

(cons vs 0) (cons vs (vector-length vs)))))

(define concat-vector (λ (vs) ((accumulate append '() vnext vcurr veq?)

(cons vs 0) (cons vs (vector-length vs)))))

With the generic accumulate we can implement a potentially infinite number of con-
crete algorithms with very little effort. Granted, because accumulate is only a few lines of

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 16

Iterator ConceptsAlgorithms Containers

partition

merge

stable_sort

sort_heap

binary_search

Forward
Bidirectional

Random Access

list

vector

map

set

T[]

AdaptorsFunction Objects

multiplies
binder1st

mem_fun reverse_iterator
back_insert_iterator

stack

priority_queue...
...

...
...

...

Figure 2.4: High-level structure of the STL.

code, this is not a huge gain, but many of the STL and BGL algorithms are hundreds of lines
long, encapsulating large amounts of domain knowledge and expertise. Reusing that code
results in a significant savings. In general, if we wish to implement M algorithms for N
data structures we would need M times N concrete algorithms. With generic programming
we write M generic functions plus N data structure implementations. Thus we get a multi-
plicative amount of functionality for an additive amount of work. M and N do not have to
grow very large before the generic programming approach realizes significant savings.

The approach used in this section to implement generic functions, passing concept oper-
ations as parameters, was one of the first language mechanisms used by Stepanov, Musser,
and Kershenbaum to implement generic algorithms [105, 180] and it remains an important
tool for building modern generic libraries. However, we do not use function parameters
as the primary mechanism for providing access to concept operations. The reason is that
generic functions can become difficult to use due to the large number of parameters. In
some cases, a library author can supply specific versions of the algorithms, as we did above.
However, a user may wish to apply the generic algorithm to some new data type.

Ideally, we would like calls to generic algorithms to be uncluttered by concept operation
parameters. Instead, if the author of a data type registers which concepts the data type
models and then the programming language can take care of passing the concept operations
into a generic function. The language Haskell has a type class feature that provides this
capability as does the language G of this thesis.

2.2 Survey of generic programming in the STL

The high-level structure of the STL is shown in Figure 2.4. There are five categories of com-
ponents in the STL, but of primary importance are the algorithms. The STL contains over
fifty classic algorithms on sequences including sorting, searching, binary heaps, permuta-
tions, etc. The STL also includes a handful of common data structures such as doubly-linked
lists, resizeable arrays, and red-black trees.

Many of the STL algorithms are higher-order: they take functions as parameters, al-

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 17

lowing users to customize the algorithm to their own needs. The STL includes function
objects for creating and composing functions. For example, the plus function object adds
two numbers and the unary_compose function object combines two function objects, f and
g, to create a function that performs the computation f(g(x)).

The STL also contains a collection of adaptor classes. An adaptor class is parameterized
on the type being adapted. The adaptor class then implements some functionality using
the adapted type. The adapted type must satisfy the requirements of some concept and the
adaptor class typically implements the requirements of another concept. For example, the
back_insert_iterator adaptor is parameterized on a Back Insertion Sequence and imple-
ments Output Iterator. Adaptors play an important role in the plug-and-play nature of the
STL and enable a high degree of reuse. One example is the find_end algorithm which is
implemented using the search algorithm and the reverse_iterator adaptor.

The rest of this section takes a closer look at the STL components, reviewing how they
are implemented in C++ and highlighting the interface specification elements used in the
STL documentation. The goal is to come up with the list of language features that are
needed in G to allow for a straightforward implementation of the STL.

2.2.1 Generic algorithms and STL concepts

The algorithms of the STL are organized into the following categories:

1. Iterator functions

2. Non-mutating algorithms

3. Mutating algorithms

4. Sorting and searching

5. Generalized numeric algorithms

In this context, “mutating” means that the elements of an input sequence are modified in-
place by the algorithm. Most of the algorithms operate on sequences of elements, but a few
basic algorithms operate on a couple of elements.

We look in detail at a selection of algorithms from the STL, at least one from each of
the above categories. Algorithms were selected to demonstrate all the C++ techniques and
specification elements that are used in the STL.

min (sorting) This simple function makes for a good starting point to talk about C++ function
templates, type requirements, and the Less Than Comparable concept.

count (non-mutating) This algorithm operates on iterators, so we introduce the Input Itera-
tor concept and describe the STL’s iterator hierarchy. An important but unusual aspect
of concepts (for those unfamiliar to generic programming) is the notion of associated
types. We introduce the C++ traits idiom that is used to access associated types.

unique (mutating) A generic algorithm usually places constraints on its type parameters.
In this algorithm (and many others) constraints are also placed on associated types.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 18

stable_sort (sorting) We show a misuse of this algorithm and the resulting C++ error mes-
sage. This leads to a short discussion of C++ techniques for improving error messages
and for checking whether an algorithm’s implementation is consistent with its docu-
mented interface.

merge (sorting) This algorithm demonstrates the need for another kind of constraint which
we call same-type constraints. The merge algorithm also shows the need to generalize
concepts so that they can place requirements on multiple types instead of just a single
type (not counting associated types).

accumulate (generalized numeric) Like most STL algorithms, there are two versions of
accumulate. One of the versions takes an extra function parameter and is therefore
an example of a higher order function. We discuss function objects, function concepts
like Binary Function, and conversion requirements.

advance (iterator functions) This function uses a C++ idiom called tag dispatching to dis-
patch to different implementations depending on the capabilities of the iterator.

min, function templates, and type requirements

Perhaps the simplest of STL algorithms is min, which returns the smaller of two values.
The STL algorithms are implemented in C++ with function templates. The min template is
parameterized on type T.

template<typename T>

const T& min(const T& a, const T& b) {

if (b < a) return b; else return a;

}

The min function template does not work on an arbitrary type T; the STL SGI documentation
lists the following restriction:

• T is a model of Less Than Comparable.

The C++ Standard defines concepts with requirements tables. The table below defines
when a type T is a model of Less Than Comparable. The values a and b have type T.

expression return type semantics
a < b convertible to bool < is a strict weak ordering relation

Figure 2.5: Requirements for Less Than Comparable

In C++ documentation, valid expressions are used to express requirements instead of func-
tion signatures. The reason is that in C++ a function signature would be more restrictive,
ruling out other function signatures that could also be used for the same expression. For
example, the signature

bool operator<(const T&, const T&);

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 19

would require a free function, ruling out less-than operators implemented as member func-
tions.

A function template is instantiated by binding concrete types to the type parameters,
thereby creating a concrete function, The following program shows two instantiations of
the min template. The first instantiation is explicit, with min applied to the type argument
foo::bar. The second instantiation is implicit: the type argument is deduced by the C++

compiler from the types of a and b.
namespace foo {

struct bar { int n; };

bool operator<(bar a, bar b) { return a.n < b.n; }

}

#include <algorithm>

using std::min;

int main() {

foo::bar a = { 0 }, b = { 1 };

foo::bar c = min<foo::bar>(a, b); // explicit instantiation, T=foo::bar

foo::bar d = min(a, b); // implicit instantiation, T=foo::bar

assert(c.n == 0 && d.n == 0);

}

Name lookup in C++ In C++, uses of names inside of a template definition, such as the
use of operator< inside of std::min, are resolved after instantiation. For the instantiation
std::min<foo::bar>, overload resolution looks for an operator< defined for foo::bar.
There is no such function defined in the scope of std::min, but the C++ compiler also
searches the namespace where the arguments’ types are defined, so it finds the operator<

in namespace foo. This rule is known as argument dependent lookup (ADL).
The combination of implicit instantiation and ADL makes it convenient to call generic

functions. This is a nice improvement over passing concept operations as arguments to a
generic function, as in the accumulate example from Section 2.1. However, ADL has two
flaws. The first problem is that the programmer calling the generic algorithm no longer
has control over which functions are used to satisfy the concept operations. Suppose that
namespace foo is a third party library and the application programmer writing the main

function has defined his own operator< for foo::bar. ADL does not find this new operator<.
The second and more severe problem with ADL is that it opens a hole in the protection

that namespaces are suppose to provide. ADL is applied uniformly to all name lookup,
whether or not the name is associated with a concept in the type requirements of the tem-
plate. Thus, it is possible for calls to helper functions to get hijacked by functions with the
same name in other namespaces. Figure 2.6 shows an example of how this can happen. The
function template lib::generic_fun calls load with the intention of invoking lib::load.
In main we call generic_fun with an object of type foo::bar, so in the call to load, x also
has type foo::bar. Thus, argument dependent lookup also consider namespace foo when
searching for load. There happens to be a function named load in namespace foo, and it

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 20

Figure 2.6: Example problem caused by ADL.

namespace lib {

template<class T> void load(T x, string)

{ std::cout << "Proceeding as normal!\n"; }

template<class T> void generic_fun(T x)

{ load(x, "file"); }

}

namespace foo {

struct bar { int n; };

template<class T> void load(T x, const char*)

{ std::cout << "Hijacked!\n"; }

}

int main() {

foo::bar a;

lib::generic_fun(a);

}

// Output: Hijacked!

is a slightly better match than lib::foo, so it is called instead, thereby hijacking the call to
load.

count, iterator concepts, and associated types

Most STL algorithms operate on sequences of elements and access to the sequence is ex-
pressed in terms of iterator concepts. The count algorithm is a simple example but touches
many aspects of generic programming in C++. This algorithm counts hows many elements
in the sequence are equal to the value parameter. The sequence is delimited by the pair of
iterators first and last, where first points to the first element of the sequence and last

points “one past the end” of the sequence.
template<typename Iter, typename T>

typename iterator_traits<Iter>::difference_type

count(Iter first, Iter last, const T& value) {

typename iterator_traits<Iter>::difference_type n = 0;

for (; first != last; ++first)

if (*first == value)

++n;

return n;

}

The following are the type requirements for this function template.

• Iter is a model of Input Iterator.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 21

• An object of Iter’s value type can be compared for equality with an object of type T.

Figure 2.7 shows the definition of the Input Iterator concept following the presentation style
used in the SGI STL documentation [9, 176]. The definition says that Input Iterator is a
refinement the Trivial Iterator concept.1 Thus, all of the requirements of Trivial Iterator are
included in the requirements for Input Iterator and any type that models Input Iterator must
also model Trivial Iterator.

The Input Iterator concept also includes requirements for several associated types: the
value_type, difference_type, and the iterator_category. The Input Iterator concept re-
quires that these associated types be accessible via the iterator_traits class. The return
type of the count function is an example of using iterator_traits to map from the Iter

type to its difference_type:
iterator_traits<Iter>::difference_type

The reason the count uses the iterator specific difference_type instead of int is to
accommodate iterators that traverse sequences that may be too long to be measured with
an int.

Traits classes and template specialization A traits class [140] maps from a type to
other types or functions. Traits classes rely on C++ template specialization to perform this
mapping. The following is the main template definition for iterator_traits.

template<typename Iterator>

struct iterator_traits { ... };

A template specialization is defined by specifying particular type arguments for the tem-
plate parameter and by specifying an alternate body for the template. When a programmer
creates a new iterator class, such as the my_iter class below, the iterator_traits tem-
plate can be specialized to specify the value_type, etc., for the new iterator. In this case
the value_type of my_iter should be float to match the return type of operator*.

class my_iter {

float operator*() { ... }

...

};

template<>

struct iterator_traits<my_iter> {

typedef float value_type;

typedef int difference_type;

typedef input_iterator_tag iterator_category;

};

When iterator_traits<my_iter> is used in other parts of the program it refers to the
above specialization, whereas iterator_traits< list_iterator<T> > refers to the main
template definition.

1The specification of Input Iterator in the SGI STL documentation differs somewhat from the C++ Standard.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 22

Input Iterator

Description
An Input Iterator is an iterator that may be dereferenced to refer to some object, and
that may be incremented to obtain the next iterator in a sequence. Input Iterators are
not required to be mutable. The underlying sequence elements is not required to be
persistent. For example, an Input Iterator could be reading input from the terminal. Thus,
an algorithm may not make multiple passes through a sequence using an Input Iterator.

Refinement of
Trivial Iterator.

Notation
X A type that is a model of Input Iterator
T The value type of X
i, j Objects of type X

t Object of type T

Associated types
iterator_traits<X>::value_type

The type of the value obtained by dereferencing an Input Iterator
iterator_traits<X>::difference_type

A signed integral type used to represent the distance from one iterator to another, or
the number of elements in a range.
iterator_traits<X>::iterator_category

A type convertible to input_iterator_tag.

Definitions
An iterator is past-the-end if it points beyond the last element of a container. Past-the-end
values are nonsingular and nondereferenceable. An iterator is valid if it is dereference-
able or past-the-end. An iterator i is incrementable if there is a "next" iterator, that is,
if ++i is well-defined. Past-the-end iterators are not incrementable. An Input Iterator j
is reachable from an Input Iterator i if, after applying operator++ to i a finite number of
times, i == j. The notation [i,j) refers to a range of iterators beginning with i and
up to but not including j. The range [i,j) is a valid range if both i and j are valid
iterators, and j is reachable from i.

Valid expressions
In addition to the expressions in Trivial Iterator, the following expressions must be valid.

expression return type semantics, pre/post-conditions
*i Convertible to T pre: i is incrementable
++i X& pre: i is dereferenceable, post: i is dereferenceable

or past the end
i++ Equivalent to (void)++i.
*i++ Equivalent to {T t = *i; ++i; return t;}

Complexity guarantees
All operations are amortized constant time.

Models
istream_iterator

Figure 2.7: Input Iterator requirements

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 23

For parameterized types, partial template specialization can be used to define a trait. A
partial specialization still has template parameters but restricts which types it applies to. For
example, the following is the partial specialization of iterator_traits for all pointer types,
as specified by the <T*>. The rules for template instantiation ensure that the specialization
that best matches the type arguments is used.

template<typename T>

struct iterator_traits<T*> {

typedef random_access_iterator_tag iterator_category;

typedef T value_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef T& reference;

};

Template specialization is a form of dispatching on types and therefore the use of spe-
cialized class templates inside of function templates relies on the C++ compilation model:
template definitions are type checked, etc., after instantiation, when all type arguments are
known. For the return type of count, the type iterator_trait<Iter> is analyzed after
instantiation, when it is known that Iter=my_iter.

Requirements on associated types in concept definitions The Input Iterator concept re-
quires that the associated difference_type be a signed integral type. This requirement
is needed in count, for example, because it applies the increment operator to n. Placing
requirement on associated types is fairly common in concept definitions. Another example
is the Container concept, with its associated iterator type that is required to be a model of
Input Iterator.

The iterator concept hierarchy The Input Iterator concept provides limited functionality:
the ability to read elements from a sequence in a single pass. More iterator concepts are
needed to fulfill the needs of other sequence algorithms. For example, the copy algorithm
copies one sequence into another and therefore needs an Output Iterator to accommodate
writing values. Another example is the search algorithm which finds occurrences of a
particular subsequence within a larger sequence. To accomplish this, search must make
multiple passes through the sequence. This capability is captured in Forward Iterator. The
inplace_merge algorithm needs to move backwards and forwards through the sequence,
so it requires Bidirectional Iterator. And finally, the sort algorithm needs to jump arbitrary
distances within the sequence, so it requires Random Access Iterator. (The sort function
uses the introsort algorithm [133] which is based on quicksort [83].)

The Forward Iterator concept is a refinement of (includes the requirements of) Input It-
erator and Output Iterator. Likewise, Bidirectional Iterator refines Forward Iterator and Random
Access Iterator refines Bidirectional Iterator. The refinement hierarchy for this family of iterator
concepts is shown in Figure 2.8.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 24

Random Access Bidirectional Forward

Input

Output

Figure 2.8: The refinement hierarchy of iterator concepts.

unique and requirements on associated types

The unique algorithm removes subsequences of duplicate elements, replacing them with a
single occurrence of the element. The following is the signature and type requirements for
unique.

template<class Iter>

Iter unique(Iter first, Iter last);

• Iter is a model of Forward Iterator.

• Iter’s value type is a model of Equality Comparable.

Here we see a requirement placed on the associated type of a type parameter. The above
language is a slightly informal way of saying that the type

iterator_traits<Iter>::value_type

must model the Equality Comparable concept.

stable_sort, error messages, and concept checking

The stable_sort algorithm sorts a sequence in place into ascending order according to the
value type’s operator<. Also, stable_sort preserves the original ordering of equivalent
elements, that is, an x and y are equivalent if neither x < y nor y < x.

template<typename Iter>

void stable_sort(Iter first, Iter last);

The type requirements for stable_sort are:

• Iter is a model of Random Access Iterator.

• Iter is mutable.

• Iter’s value type is Less Than Comparable.

C++ template libraries have become infamous for their hard to understand error mes-
sages. When the user of an algorithm makes a mistake, such as accidentally attempting to
use the algorithm with the wrong kind of iterator. The resulting compiler error is usually
quite long and points into the internals of the template library. The following code tries to
use stable_sort with the iterators from std::list.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 25

#include <algorithm>

#include <list>

int main() {

std::list<int> l;

std::stable_sort(l.begin(), l.end());

}

Figure 2.9 shows the error message from GNU C++. The error message mentions lots of
functions and types that the user should not know about such as __inplace_stable_sort
and _List_iterator. Further, it is not clear from the error message who is responsible for
the error. The error message is pointing inside the STL so the user might conclude that
there is an error in the STL.

Concept checking We developed a C++ idiom to combat the error message problem. The
basic idea was to exercise all of the requirements of a function template at the beginning of
the function using concept checking classes [170]. Thus, if a user sees errors coming from
a concept checking class, then the user knows he made a mistake and sees the name of
the concept that was not satisfied. The main trick is to get the compiler to exercise all the
requirements without creating run-time overhead. This is achieved by writing expressions
for the requirements in a separate function and creating a pointer to this function inside the
generic algorithm (but the function is not called).

The following is a concept checking class for the Less Than Comparable concept. It
contains a constraints method that uses operator< on two variables of type T and checks
that the return type is convertible to bool.

template <class T>

struct LessThanComparableConcept {

void constraints() {

bool x = a < b;

}

T a, b;

};

The stable_sort function listed below is annotated with concept checks. The Boost Con-
cept Checking library [167] provides pre-defined concept checking classes for the STL con-
cepts and the function_requires utility that triggers the concept checking.

template<typename Iter>

void stable_sort(Iter first, Iter last)

{

typedef typename iterator_traits<Iter>::value_type ValueType;

function_requires(Mutable_RandomAccessIteratorConcept<Iter>)

function_requires(LessThanComparableConcept<ValueType>)

...

}

The concept checking idiom has been applied in the SGI STL implementation and the
GNU C++ standard library. With concept checking, error messages are much more informa-

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 26

stl_algo.h: In function ‘void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)
[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’:

stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)
[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’

stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2345: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2349: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2352: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2352: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h: In function ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’:
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2497: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2498: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2507: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2507: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h: In function ‘void std::__insertion_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’:
stl_algo.h:2346: instantiated from ‘void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2095: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int’ operator
stl_algo.h:2346: instantiated from ‘void std::__inplace_stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stl_algo.h:2565: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2099: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int’ operator
stl_algo.h: In function ‘void std::__merge_sort_with_buffer(_RandomAccessIter, _RandomAccessIter, _Pointer)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗]’:
stl_algo.h:2504: instantiated from ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2457: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h: In function ‘void std::__chunk_insertion_sort(_RandomAccessIter, _RandomAccessIter, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Distance = int]’:
stl_algo.h:2461: instantiated from ‘void std::__merge_sort_with_buffer(_RandomAccessIter, _RandomAccessIter, _Pointer)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗]’
stl_algo.h:2504: instantiated from ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2431: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2432: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2433: error: no match for ‘std::_List_iterator<int, int&, int∗>& += int&’ operator
stl_algo.h: In function ‘void std::__merge_sort_loop(_RandomAccessIter1, _RandomAccessIter1, _RandomAccessIter2, _Distance)

[with _RandomAccessIter1 = std::_List_iterator<int, int&, int∗>, _RandomAccessIter2 = int∗, _Distance = int]’:
stl_algo.h:2464: instantiated from ‘void std::__merge_sort_with_buffer(_RandomAccessIter, _RandomAccessIter, _Pointer)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗]’
stl_algo.h:2504: instantiated from ‘void std::__stable_sort_adaptive(_RandomAccessIter, _RandomAccessIter, _Pointer, _Distance)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>, _Pointer = int∗, _Distance = int]’
stl_algo.h:2567: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)

[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’
stable_sort_error.cpp:5: instantiated from here
stl_algo.h:2388: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2389: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2389: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2389: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2392: error: no match for ‘std::_List_iterator<int, int&, int∗>& += int&’ operator
stl_algo.h:2395: error: no match for ‘std::_List_iterator<int, int&, int∗>& std::_List_iterator<int, int&, int∗>&’ operator
stl_algo.h:2396: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator
stl_algo.h:2396: error: no match for ‘std::_List_iterator<int, int&, int∗>& + int&’ operator

Figure 2.9: Error message from a misuse of stable_sort.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 27

tive but they are still confusing and hard to read. The following is the error message with
concept checking.

concept_check.h:48: instantiated from ‘void boost::function_requires(boost::mpl::identity<T>∗)
[with Concept = boost::Mutable_RandomAccessIteratorConcept<std::_List_iterator<int, int&, int∗> >]’

stable_sort_error.cpp:16: instantiated from ‘void std::stable_sort(_RandomAccessIter, _RandomAccessIter)
[with _RandomAccessIter = std::_List_iterator<int, int&, int∗>]’

stable_sort_error.cpp:5: instantiated from here
concept_check.h:665: error: no match for ‘std::_List_iterator<int, int&, int∗>& [ptrdiff_t&]’ operator
...

Completeness of type requirements and archetype classes Concept checking helps to
find and understand errors in the use of generic functions, but it does not check whether
the documented type requirements of a generic function are enough to cover the needs
of the implementation. If the documented type requirements are not enough, a user may
experience compiler errors despite having satisfied the requirements.

The common practice for ensuring that all operations used in a generic function are
covered by the type requirements is to manually inspect the implementation. This is tedious
and error prone. A more automated approach is to create classes that minimally satisfy
concepts, we call them archetype classes, and then see if the function template compiles
when used with the archetype class [170]. The generic library author no longer needs to
manually inspect each algorithm, but creating correct archetype classes is non-trivial and
error prone.

The following is an archetype class for the Less Than Comparable concept.
template <class Base = null_archetype<> >

class less_than_comparable_archetype : public Base {

public:

less_than_comparable_archetype(detail::dummy_constructor x) : Base(x) { }

};

template <class Base>

boolean_archetype

operator<(const less_than_comparable_archetype<Base>&,

const less_than_comparable_archetype<Base>&)

{

return boolean_archetype(static_object<detail::dummy_constructor>::get());

}

The only function required by Less Than Comparable is the operator<. One minor compli-
cation in this archetype is that the return type is declared to be boolean_archetype instead
of bool. The reason is that Less Than Comparable does not require that operator< return
bool, but only that the return type be convertible to bool, which boolean_archetype satis-
fies. The Base type parameter is to allow for the composition of archetype classes.

merge, same-type constraints, and multi-parameter concepts

The merge algorithm combines two sorted ranges into a single sorted range.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 28

template<class InIter1, class InIter2, class OutIter>

OutIter merge(InIter1 first1, InIter1 last1,

InIter2 first2, InIter2 last2,

OutIter result);

The following are the type requirements for merge. An interesting aspect of these require-
ments is the use of a same-type constraints that requires two type expressions to refer to
the same type.

• InIter1 is a model of Input Iterator.

• InIter2 is a model of Input Iterator.

• InIter1’s value type is the same type as InIter2’s value type.

• InIter1’s value type is a model of Less Than Comparable.

• OutIter is a model of Output Iterator and InIter1’s value type is a type in OutIter’s
set of value types.

With the same type constraint, an expression of the form *first1 < *first2 is valid since
both sides of the equality have the same type, and that type is a model of Less Than Compa-
rable.

Another interesting aspect of the type requirements for merge is the requirement that
OutIter be a model of Output Iterator. The Output Iterator concept has an associated set of
types that are writable to the iterator. Instead of using the notion of a set of types, Output
Iterator can be formulated as a multi-parameter concept. The following is the concept
checking class for this two-parameter version of Output Iterator. The parameter X is for the
iterator and ValueType is for the value type.

template <class X, class ValueType>

struct OutputIteratorConcept {

void constraints() {

function_requires< AssignableConcept<X> >();

++i; i++; *i++ = t;

}

X i;

ValueType t;

};

The requirements on the OutIter parameter of merge can then be written as follows.

• OutIter and InIter1’s value type together model Output Iterator.

The merge algorithm only uses the output iterator with a single value type, so one
might wonder why the Output Iterator concept is not formulated with a single value type.
There are other algorithms, such as replace_copy, that use an output iterator with multiple
value types. The following is the interface and type requirements for replace_copy. This
algorithm uses another multi-parameter concept: Equality Comparable2 which requires an
operator== that works on arguments of different types.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 29

Figure 2.10: An output stream iterator that can output values of multiple types.

class outstream_iterator

: public std::iterator<std::output_iterator_tag, void, void, void, void> {

public:

explicit outstream_iterator(std::ostream& out) : out(out) {}

struct output_proxy {

output_proxy(std::ostream& out) : out(out) { }

template<class T> output_proxy& operator=(const T& value)

{ out << value; return *this; }

std::ostream& out;

};

output_proxy operator*() { return output_proxy(out); }

outstream_iterator& operator++() { return *this; }

outstream_iterator& operator++(int) { return *this; }

private:

std::ostream& out;

};

template <class InIter, class OutIter, class T>

OutIter replace_copy(InIter first, InIter last, OutIter result,

const T& old_value, const T& new_value);

• InIter is a model of Input Iterator.

• OutIter and T together model Output Iterator.

• OutIter and InIter’s value type together model Output Iterator.

• InIter’s value type and T together model Equality Comparable2.

The multiple value types formulation of Output Iterator would be useless if there were
no concrete iterator classes that could output multiple value types. However, there are
examples of such iterator classes. The example in Figure 2.10 shows an output iterator that
writes to an output stream. It has an operator= member template that may be used with
any value type accepted by std::ostream.

accumulate, function objects, and conversion requirements

The accumulate algorithm of the STL combines the elements of a sequence with the binop

function, starting with id_elt. Like many STL algorithms, there are two versions of
accumulate, one that relies on an operator (in this case +) and the other that has an extra
function parameter.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 30

template <class Iter, class T>

T accumulate(Iter first, Iter last, T id_elt);

template <class Iter, class T, class Fun>

T accumulate(Iter first, Iter last, T id_elt, Fun binop);

The type requirements for the second version of accumulate are:

• Iter is a model of Input Iterator.

• T is a model of Assignable.

• Fun is a model of Binary Function.

• T is convertible to Fun’s first argument type.

• The value type of Iter is convertible to Fun’s second argument type.

• Fun’s return type is convertible to T.

Function objects The second version of accumulate can be adapted to solve more prob-
lems than the first version, but the user must do a little more work by supplying the binary
operator. Typically, the binary operator is a function object: an instance of a class with a
call operator (which is written operator()). The STL includes many predefined function
classes. There is a function class for each built-in operator, such as the multiplies class for
operator*, and there are function combinators, such as unary_compose and bind2nd. The
following example computes the product of an array of integers. The standard multiplies

function object is used for the binary operation and 1 for the identity element.
int a[] = { 1, 1, 2, 3, 5, 8 };

std::multiplies<int> binop;

int prod = std::accumulate(a, a + 6, 1, binop);

assert(prod == 240);

If there is no combination of predefined function objects that meet the user’s need, or if the
combination is too complex, then the user may instead write a custom function object. The
following example sums the elements of an array, modulo 10.

struct add_modulo {

add_modulo(int m) : m(m) { }

int operator()(int a, int b) { return (a + b) % m; }

int m;

};

int main() {

int a[] = { 1, 1, 2, 3, 5, 8 };

add_modulo binop(10);

int sum_mod10 = std::accumulate(a, a + 6, 0, binop);

assert(sum_mod10 == 0);

}

The type requirements for accumulate state that the Fun type parameter must model
the Binary Function concept. Figure 2.11 shows the requirements for this concept. Basically,

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 31

any function pointer or class with an operator() that takes two parameters is a model of
Binary Function.

Function objects have a few disadvantages. The class typically needs to be defined at
global scope, which fragments the code. Also, when the function object needs to refer to
a variable from the surrounding scope, such as a2 in the above example, the variable must
be passed to the function object. Finally, the syntactic overhead associated with function
objects is significant.

Conversion requirements The type requirements for accumulate require that the type
T of the identity element be convertible to the first argument type of Fun. A conversion
requirement says there must be an implicit conversion from one type to another. Many STL
algorithms use conversion requirements instead of same-type constraints to provide more
flexibility.

advance and tag dispatching

One of the main points in the definition of generic programming in Figure 2.1 was that it
is sometimes necessary to provide more than one generic algorithm for the same purpose.
When this happens, the standard approach in C++ libraries is to provide automatic dis-
patching to the appropriate algorithm using the tag dispatching idiom or enable_if [90].
Figure 2.12 shows the advance algorithm of the STL as it is typically implemented using the
tag dispatching idiom. The advance algorithm moves an iterator forward (or backward) n

positions. There are three overloads of advance_dispatch, each with an extra iterator tag
parameter. The C++ Standard Library defines the following iterator tag classes, with their
inheritance hierarchy mimicking the refinement hierarchy of the corresponding concepts.

struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag : public input_iterator_tag {};

struct bidirectional_iterator_tag : public forward_iterator_tag {};

struct random_access_iterator_tag : public bidirectional_iterator_tag {};

The main advance function obtains the tag for the particular iterator from
iterator_traits and then calls advance_dispatch. Normal static overload resolution then
chooses the appropriate overload of advance_dispatch.

2.2.2 Generic containers

The STL container classes include some of the most common data structures for represent-
ing sequences of elements, though they are not a comprehensive collection.

vector is a resizeable array.

list is a doubly-linked list.

deque is a container with fast insertion and removal at the beginning and end of the se-
quence in addition to fast access to arbitrary elements.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 32

Binary Function

Description
A Binary Function is a kind of function object: an object that is called as if it were an
ordinary C++ function. A Binary Function is called with two arguments.

Refinement of
Assignable, Copy Constructible.

Notation
F A type that is a model of Binary Function
X The first argument type of F
Y The second argument type of F
Result The result type of F
f Object of type F

x Object of type X

y Object of type Y

Associated types
First argument type
The type of the Binary Function’s first argument.
Second argument type
The type of the Binary Function’s second argument.
Result type
The type returned when the Binary Function is called

Definitions
The domain of a Binary Function is the set of all ordered pairs (x, y) that are permissible
values for its arguments. The range of a Binary Function is the set of all possible value that
it may return.

Valid expressions
In addition to the expressions in Trivial Iterator, the following expressions must be valid.

expression return type semantics, pre/post-conditions
f(x,y) Result Calls f with arguments (x,y). pre: (x,y) is in the

domain of f, post: The return value is in f’s range.

Complexity guarantees
None.

Models

• Result (*)(X,Y)

• plus

• project1st

Figure 2.11: Binary Function requirements

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 33

Figure 2.12: The advance algorithm and the tag dispatching idiom.

template<typename InIter, typename Distance>

void advance_dispatch(InIter& i, Distance n, input_iterator_tag) {

while (n--) ++i;

}

template<typename BidirIter, typename Distance>

void advance_dispatch(BidirIter& i, Distance n, bidirectional_iterator_tag) {

if (n > 0) while (n--) ++i;

else while (n++) --i;

}

template<typename RandIter, typename Distance>

void advance_dispatch(RandIter& i, Distance n, random_access_iterator_tag) {

i += n;

}

template<typename InIter, typename Distance>

void advance(InIter& i, Distance n) {

typename iterator_traits<InIter>::iterator_category cat;

advance_dispatch(i, n, cat);

}

set is a container of sorted elements.

multiset is a container of sorted elements that permits multiple equivalent elements.

map is an associative container that maps keys to values.

multimap is an associative container that allows multiple values with the same key.

The C++ committee’s official Technical Report on C++ Library Extensions [10] adds hash
tables to the above selection. Also, many STL implementations include a singly-linked
slist class.

The list class is typical of the STL containers. The following is an outline of list class
template. list is parameterized on two types: T is the element type, and Alloc is a policy
class that determines how elements of the list are allocated.

template<typename T, typename Alloc = allocator<T> >

class list { ... };

Just as the function templates of the STL have type requirements, so do the container
classes. The type requirements for the list template are:

• T must model Copy Constructible and Assignable.

• Alloc must model Allocator.

The member functions of the list class rely on these type requirements. For example, the
copy constructor of the list class uses the copy constructor for T.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 34

There are many helper types that play a role in the functionality of the list class.
The list class contains type definitions for each of the helper types, so for example,
a programmer can access the iterator type for a list with a type expression such as
list<int>::iterator. The identities of many of the helper types are intended to be hid-
den implementation details. The C++ typedef does not make them truly hidden, but it is
good programming style to treat them as if they were. The following are the nested type
definitions within list:

template<typename T, typename Alloc = allocator<T> >

class list {

public:

typedef T value_type;

typedef value_type* pointer;

typedef const value_type* const_pointer;

typedef _List_iterator<T,T&,T*> iterator;

typedef _List_iterator<T,const T&,const T*> const_iterator;

typedef reverse_iterator<const_iterator> const_reverse_iterator;

typedef reverse_iterator<iterator> reverse_iterator;

typedef value_type& reference;

typedef const value_type& const_reference;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

typedef Alloc allocator_type;

...

};

As is usual for C++ classes, list has several constructors, a destructor, and an assignment
operator. These member functions are vital for allowing a user to treat an object of type
list as if it were a built-in type, giving the object value semantics. For example, just like
an object of type int, a list object may be declared as a local variable (allocated on the
stack), it may be assigned and copied, and when the variable goes out of scope, the lifetime
of the object ends.

{

std::list<int> x; // default constructor is called

x.push_back(1);

std::list<int> y = x; // copy x into y

x.push_back(2);

assert(y.size() == 1);

assert(x.size() == 2);

} // the destructors for x and y are called

The list object contains a pointer to heap allocated nodes, so the implicit call to the de-
structor is needed to allow for the manual deletion of this memory. The following are the
constructors, destructors, and related member functions for list.

template<typename T, typename Alloc = allocator<T> >

class list {

public:

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 35

...

explicit list(const allocator_type& a = allocator_type());

list(size_type n, const value_type& value,

const allocator_type& a = allocator_type());

explicit list(size_type n);

list(const list& x);

template<typename InIter>

list(InIter first, InIter last, const allocator_type& a = allocator_type());

~list();

list& operator=(const list& x);

void assign(size_type n, const value_type& val);

template<typename InIter> void assign(InIter first, InIter last);

void swap(list& x);

allocator_type get_allocator() const;

...

};

Two of the above list members are of interest because they are member function tem-
plates parameterized on an InIter type. The type requirements for InIter are:

• InIter must be a model of Input Iterator.

• InIter’s value type must be convertible to the value type of the list.

The list class provides iterators so that it may be used with the STL sequence algo-
rithms. The list iterators are models of the Bidirectional Iterator concept; the nodes are
doubly-linked so they enable both forward and backward traversal. The begin and end

member functions return iterators pointing to the first elements and pointing just after the
last element, respectively. There are constant iterators for read-only access and mutable
iterator for read-write access. The list class also provides reverse iterators that flip the di-
rection of traversal. These iterators are implemented using the reverse_iterator adaptor
which is described in Section 2.2.3.

template<typename T, typename Alloc = allocator<T> >

class list {

public:

...

iterator begin();

const_iterator begin() const;

iterator end();

const_iterator end() const;

reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

reverse_iterator rend();

const_reverse_iterator rend() const;

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 36

...

};

The rest of the member functions of list are typical of a container class. We list them
below for completeness.

template<typename T, typename Alloc = allocator<T> >

class list {

public:

...

bool empty() const;

size_type size() const;

size_type max_size() const;

void resize(size_type new_size, const value_type& x);

void resize(size_type new_size);

void clear();

reference front();

const_reference front() const;

reference back();

const_reference back() const;

void push_front(const value_type& x);

void pop_front();

void push_back(const value_type& x);

void pop_back();

iterator insert(iterator position, const value_type& x);

void insert(iterator pos, size_type n, const value_type& x);

template<typename InIter>

void insert(iterator pos, InIter first, InIter last);

iterator erase(iterator position);

iterator erase(iterator first, iterator last);

void remove(const T& value);

template<typename Predicate>

void remove_if(Predicate);

void splice(iterator position, list& x);

void splice(iterator position, list&, iterator i);

void splice(iterator position, list&, iterator first, iterator last);

void unique();

template<typename BinaryPredicate>

void unique(BinaryPredicate);

void merge(list& x);

template<typename StrictWeakOrdering>

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 37

ContainerForward ContainerReversible Container

Random Access Container Sequence

Front Insertion Sequence

Back Insertion Sequence

Figure 2.13: The refinement hierarchy of container concepts.

void merge(list&, StrictWeakOrdering);

void reverse();

void sort();

template<typename StrictWeakOrdering>

void sort(StrictWeakOrdering);

};

2.2.3 Adaptors and container concepts

An adaptor class transforms the interface or behavior of other classes. The adapted class is
typically assumed to satisfy the requirements of some concept and the adaptor class usually
implements the requirements of another concept. The STL has several adaptors, listed
below, that implement iterator concepts on top of containers. Thus, a family of container
concepts are needed to express the requirements of these adaptors. Figure 2.13 shows the
refinement hierarchy for the container concepts.

back_insert_iterator adapts a Back Insertion Sequence and implements Output Iterator.

front_insert_iterator adapts a Front Insertion Sequence and implements Output Iterator.

insert_iterator adapts a Container and implements Output Iterator.

The following example computes the set difference of two arrays of integers using the
generic set_difference algorithm. The output is stored in a vector and the vector is
adapted to the expected Output Iterator interface using back_insert_iterator. The function
back_inserter provides a convenient way to create a back_insert_iterator.

int a1[] = { 0, 1, 2, 3, 4, 5, 6 };

int a2[] = { 1, 4, 5 };

std::vector<int> a3;

int a4[] = { 0, 2, 3, 6 };

std::set_difference(a1, a1 + 5, a2, a2 + 3, std::back_inserter(a3));

assert(std::equal(a3.begin(), a3.end(), a4));

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 38

The Container concept and same-type constraints The Container concept requires a mod-
eling type to provide several associated types, including a value_type and an iterator type
that models Input Iterator. The iterator type has its own associated value_type. The Con-
tainer concept requires that the iterator’s value_type be the same type as the container’s
value_type.

The Sequence concept and parameterized function requirements The Sequence con-
cept includes the requirement for an insert function that inserts a range of elements from
another sequence. The range is specified as a pair of arbitrary Input Iterators. Thus, a class
that models Sequence must implement insert as a template member function. The list

class, for example, includes an insert member function template.

Reverse iterators and conditional models The reverse_iterator class template adapts
a Bidirectional Iterator and implements Bidirectional Iterator, flipping the direction of traver-
sal, so operator++ goes backwards and operator-- goes forwards. An excerpt from the
reverse_iterator class template is shown below.

template<typename Iter>

class reverse_iterator {

protected:

Iter current;

public:

explicit reverse_iterator(Iter x) : current(x) { }

Iter base() const { return current; }

reference operator*() const { Iter tmp = current; return *--tmp; }

reverse_iterator& operator++() { --current; return *this; }

reverse_iterator& operator--() { ++current; return *this; }

reverse_iterator operator+(difference_type n) const

{ return reverse_iterator(current - n); }

...

};

The reverse_iterator class template is an example of a type that models a con-
cept conditionally: if the Iter type models Random Access Iterator, then so does
reverse_iterator<Iter>. The definition of reverse_iterator defines all the operations,
such as operator+, required of a Random Access Iterator. The implementations of these op-
erations rely on the Random Access Iterator operations of the underlying Iter. One might
wonder why reverse_iterator can be used on iterators such as list<int>::iterator that
are bidirectional but not random access. The reason this works is that a member function
such as operator+ is type checked and compiled only if it is used.

The find_end algorithm is a nice example of the reuse enabled by adaptors such as
reverse_iterator. The find_end algorithm searches within the first sequence (first1
and last1) for the last subsequence that matches the second sequence (first2 and last2).
Figure 2.14 shows the version of the find_end algorithm for Bidirectional Iterators. This
version is implemented with search and reverse_iterator. The search algorithm finds

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 39

Figure 2.14: The find_end algorithm implemented with search and reverse_iterator.

template<typename BidirIter1, typename BidirIter2>

BidirIter1

find_end_dispatch(BidirIter1 first1, BidirIter1 last1,

BidirIter2 first2, BidirIter2 last2,

bidirectional_iterator_tag, bidirectional_iterator_tag)

{

typedef reverse_iterator<BidirIter1> RevIter1;

typedef reverse_iterator<BidirIter2> RevIter2;

RevIter1 rlast1(first1);

RevIter2 rlast2(first2);

RevIter1 rresult = search(RevIter1(last1), rlast1,

RevIter2(last2), rlast2);

if (rresult == rlast1)

return last1;

else {

BidirIter1 result = rresult.base();

advance(result, -distance(first2, last2));

return result;

}

}

the first matching subsequence, so applying this algorithm in reverse finds the last matching
subsequence.

Container adaptors The STL contains the following three container adaptors.

stack adapts a Back Insertion Sequence and implements a last-in-first-out interface.

queue adapts type that models both Back Insertion Sequence and Front Insertion Sequence
and implements a first-in-first-out interface.

priority_queue adapts a Random Access Container and a comparison function and imple-
ments a queue interface where the element with the highest priority is first to leave
the queue.

2.2.4 Summary of language requirements

In this chapter we surveyed how generic programming is accomplished in C++, taking note
of the variety of language features and idioms that are used in current practice. In this
section we summarize the findings as a list of requirements for a language to support generic
programming.

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 40

1. The language provides type parameterized functions with the ability to express con-
straints on the type parameters. The definitions of parameterized functions are type
checked independently of how they are instantiated.

2. The language provides a mechanism, such as “concepts”, for naming and grouping
requirements on types, and a mechanism for composing concepts (refinement). Con-
cepts should be allowed to have multiple parameters.

3. Type requirements include:

• requirements for functions and parameterized functions
• associated types
• requirements on associated types
• same-type constraints
• conversion requirements

4. The language provides an implicit mechanism for providing type-specific operations
to a generic function, but this mechanism should maintain modularity (in contrast to
argument dependent lookup in C++).

5. The language implicitly instantiates generic functions when they are used.

6. The language provides a mechanism for concept-based dispatching between algo-
rithms.

7. The language provides function expressions and function parameters.

8. The language supports conditional modeling.

9. The language provides a mechanism for creating abstract data types, such as list,
that manage some private resources. It should be possible to implement ADT’s that
behave like built-in types in that they have value semantics.

2.3 Relation to other methodologies

This section describes the place of generic programming within the larger realm of software
engineering. The relationship between generic programming and other software construc-
tion techniques and methodologies is discussed.

Object-Oriented Programming Definitions of object-oriented programming vary, but the
equation

object = data + functions

is central to all of them: an object consists of data fields and pointers to functions. In
generic programming there is also a connection between data and operations on the data,
but the operations are not physically attached to the data. Instead, generic programming
adheres to the view that data types and operations on those types are grouped (usually in

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 41

a module) to form an abstract data type. Instead of physically attaching functions to data,
they are merely logically attached.

abstract data type = representation types + functions

This subtle difference has many repercussions, both in program design and in program-
ming language design. When designing a program using object-oriented techniques, there
is a strong motivation to assign each function to a particular class. This is difficult to do
when there are multiple classes in tight collaboration. With generic programming, such
classes are simply placed in the same module together with free-standing functions.

Another repercussion on language design concerns data-encapsulation and information
hiding. In object-oriented languages, protection is associated with classes, whereas with
abstract data types the information hiding occurs at the module level. Again, in the situation
where multiple classes are in tight collaboration, module level protection is a better fit; with
class level protection one is forced to bypass the protection by granting friendship. It makes
sense to ask the question, who do we need to deny access to? It is certainly important to
protect the internals of a module from users of the module, but why protect two different
parts of a module from each other, especially when the two parts are either implemented
by the same programmer or by programmers working in close collaboration?

Another idea central to object-oriented programming is late binding (dynamic dispatch).
This allows object-oriented programs to be extremely flexible. Dynamic dispatch provides a
mechanism for data-directed programming [4]: dispatching to different routines based on
the run-time type of the data.

Generic programming, with its emphasis on libraries, more often relies on static binding:
fixing generic parameters and operations at “sale time” (when the application program is
compiled and the library linked in). One interesting question is whether polymorphism
based on concepts can be extended to allow for run-time dispatch. Indeed, this is the case,
through the use of existential types [111, 130]. For a long time existential types were a
research language novelty but they are starting to see more widespread use [42, 107, 111].

It is also interesting to ask whether generic programming can be accomplished in object-
oriented languages. The answer is yes. For example, the Template Method design pat-
tern [68] can be used to define generic algorithms. However, object-oriented languages
are not a particularly good fit for generic programming, which is discussed in depth in
Section 3.2.

Perhaps the most important difference between generic programming and object-
oriented programming is the emphasis that generic programming places on algorithms.
Generic algorithms are separated from objects and classes; this separation allows for the
high degree of reuse in generic libraries. Object-oriented libraries often attach algorithms
to particular classes and in doing so miss opportunities for reuse.

Functional Programming There are two characteristics that are often associated with
functional programming: higher-order functions and a lack of side-effects. As mentioned

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 42

at the beginning of this chapter, generic programming was inspired by ideas from func-
tional programming languages. In particular, the appearance of higher-order functions
(then called operators) in early functional languages such as FP [13] and APL [61, 87] in-
spired the higher-order approach to generic programming used by Stepanov and Musser in
their generic Scheme libraries [180].

At first, Stepanov was fond of the absence of side-effects in some functional languages.
However, he was soon convinced by Aaron Kershenbaum that side effects were necessary
because many efficient algorithms and data-structures are deeply imperative [105, 169].
For example, the best purely functional implementation of Dijkstra’s single-source shortest
paths is O((V + E) log V) [82] while the best imperative implementation is O(V log V +
E) [49]. Generic programming methodology places a high priority on efficiency, so the most
efficient algorithm (including constant factors) is always chosen, regardless of whether it is
imperative or pure-functional.

Generative Programming is an approach to the automatic generation of families of soft-
ware components developed by Czarnecki and Eisenecker [51]. Generative programming
concerns the construction of generators whose inputs are specifications expressed in a do-
main specific language (DSL) and whose outputs are software components assembled from
many pre-built components based on some configuration knowledge. Generic program-
ming is one of the key implementation technologies used to build the components within a
generative system (Czarnecki and Eisenecker dedicate a chapter to generic programming in
their book). Metaprogramming techniques can be used to automatically select and compose
generic components. Both generic and generative programming place a strong emphasis on
domain engineering and on the analysis of the common and variable properties of elements
in a domain. Closely related to generative programming is the Intentional Programming of
Simonyi, also described by Czarnecki and Eisenecker in [51]. The main idea behind Inten-
tional Programming is the use of structured editors to lower the cost of creating new DSLs
and to make it possible to use several DSLs together (similar to the use of several software
libraries in an application). The underlying representation for DSLs is abstract syntax trees
which are manipulated and transformed within the Intentional Programming framework.

Software Product Lines The Software Engineering Institute has developed a framework,
called Software Product Lines [46], for managing software product lines that target specific
market segments or problem domains. The key to this approach is improving the time to
market and quality of the product lines by building on a shared set of software libraries and
frameworks. As in generic programming, there is an emphasis on domain engineering and
the systematic organization of the libraries. Thus, generic programming can be seen as an
enabling technology for software product lines.

Aspect-Oriented Programming AOP [106] consists of methodologies and tools for sep-
arating the cross-cutting concerns of a program into aspects. Each aspect is programmed

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 43

separately and then combined to form the program using an aspect weaver. Generic pro-
gramming traditionally deals with the separation of concerns through function parameter-
ization, separating data structure concerns from algorithm concerns. However, function
parameterization is not ideal for other cross-cutting concerns. Thus, generic libraries could
benefit from aspect-oriented programming. At the same time, aspects can benefit from the
abstraction and parameterization afforded by generic programming. Some work in this vein
has already begun [119, 175].

Parameterized Programming This is a programming methodology developed by Goguen
and colleagues [72, 74]. It is very similar to generic programming: it emphasizes abstrac-
tion and the construction of parameterized components. For example, the analogue of a
concept in parameterized programming is a theory. Parameterized programming has not
been applied to the same extent as generic programming to the construction of libraries of
algorithms, such as the STL, nor does parameterized programming have the same emphasis
on efficiency that is characteristic of generic programming. Also, parameterized program-
ming traditionally uses parameterized modules whereas generic programming more often
relies on parameterized functions.

Metaprogramming There is a close relationship between metaprogramming and generic
programming, and they are often confused, especially with regards to C++ template
metaprogramming [5]. Metaprogramming, in general, deals with various programming
techniques and language features for code generation and for compile-time (or more gen-
erally, staged) computation [75, 165, 183]. Template metaprogramming is used in generic
C++ libraries to generate customized implementations of data-structures [6, 51, 169, 174]
and sometimes to specialize parts of algorithms. Generic programming and template
metaprogramming, however, are distinct in that generic programming is primarily con-
cerned with constructing type-independent components whereas template metaprogram-
ming usually consists of type-dependent computations.

Model Driven Architecture The Object Management Group has coined the phrase Model
Driven Architecture (MDA) [177] to refer to a style of software development that empha-
sizes the modeling of both problem domain abstractions, with high-level platform inde-
pendent models (PIMs), and solution domain abstractions, with mid-level platform specific
models (PSMs), using the Unified Modeling Language [145] and similar standards. Associ-
ated with MDA are tools for generating executable specifications, or even programs, from
UML models. There are links between MDA and generative programming: UML can be
viewed as a particular framework for defining domain specific languages which can then be
used within a generative system to construct components.

In generic programming, the results of domain engineering are usually captured with
concept definitions, using the semi-formal specification language of generic programming.
It is possible to embed concept definitions in UML. For example, Eichelberger modeled the

CHAPTER 2. GENERIC PROGRAMMING AND THE STL 44

STL in UML [57] but found it is necessary to extend the basic UML constructs because the
built-in features of UML are biased towards object-oriented designs.

2.4 Summary

This chapter introduced the generic programming methodology of Stepanov and Musser by
stepping through the process of creating a generic accumulate function. We then analyzed
the language features needed to implement the Standard Template Library (STL). Our goal
is to meet these needs in the design of G. The last section of the chapter described the
relationship between generic programming and other programming methodologies.

polymorphism: the quality or state of existing in or assuming different
forms

Webster’s Dictionary

Parametric polymorphism is obtained when a function works uni-
formly on a range of types; these types normally exhibit some com-
mon structure. Ad-hoc polymorphism is obtained when a function
works, or appears to work, on several different types (which may not
exhibit a common structure) and may behave in unrelated ways for
each type.

Christopher Strachey [182] 3
The language design space for generics

This chapter surveys and evaluates the design space of generics, that is, language features
relating to the parameterization of components on types. I evaluate the points in this de-
sign space with respect to how well they support generic programming, and in particular,
whether they meet the requirements discussed in Chapter 1 and in Section 2.2.4. This
evaluation serves as the rationale for the fundamental design decisions of G. This chapter
includes material from our earlier study of language support for generic programming [69].

3.1 Preliminary design choices

The focus on generics presupposes several design decisions, such as whether to use static
typing or dynamic typing and whether to use type parameters or subtype polymorphism.
Thus, this chapter begins with a brief discussion of higher-level design decisions before
analyzing the design space for generics.

Types as contracts A large part of this chapter is dedicated to discussing type systems.
Type systems are typically used to detect errors and to aid the compiler in producing efficient
executables. My interest in types is primarily as a lightweight language for expressing
contracts between generic components and their users.

With the types-as-contracts view, the type system plays the role of the contract enforcer:
it identifies errors (contract violations) and determines which piece of code is responsible,
either the user’s code or the library code. This role is vital, for without it, when something
goes wrong during the use of a component, the user may find it difficult to determine the
problem. For example, to understand the problem, the user may need knowledge of the

45

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 46

component’s implementation. This is knowledge the user should not be expected to have.
Thus I view a type system as a tool that facilitates black-box reuse.

There are many semantic aspects of a component’s interface that are not easily captured
with types. Nevertheless, types are a convenient way to express some basic assumptions
about the input and output of a component.

Semantic and behavioral contracts There is a considerable body of research on express-
ing semantic contracts and putting them to use. There are numerous specification languages
that employ some form of logic, such as Larch [76], Z [178], CASL [47], Tecton [101],
OBJ [73], and ANNA [109, 194]. There are also many languages and tools for annotating
programs with assertions such as Eiffel’s support for Design by Contract [127].

Semantic specifications can be put to use in a number of ways. One straightforward use
of specifications is to generate run-time checks [62, 63, 159, 162]. Such checks can help
identify who is to blame when a contract violation occurs during program execution.

Another use of specifications is in formal program verification. There is ongoing work
to develop formal methods for verifying generic algorithms by Musser [134, 135] using
the Athena theorem prover [7]. Several other theorem provers also show promise for for-
mal generic programming with their support for concept-like abstractions: axiomatic type
classes in the Isabelle-Isar system [143, 144, 199] and theory parameters in PVS [161].
Despite the advances in tool support there are a number of hurdles to overcome before for-
mal program verification can be directly applied to generic algorithms. One of the hurdles
is dealing with pointers and arrays in a way that scales to complex algorithms. There has
been recent progress in this area, for example, the work by Bornat [23] and the develop-
ment of separation logic by Reynolds and colleagues [158]. However, much more research
is needed to scale these ideas up to production languages.

Another use of semantic specifications is in optimizing compilers. Many compilers apply
simplifications and rewrites based on properties they know to be true of scalar types such
as int and float. With the appropriate semantic specifications, these compiler optimiza-
tions can also be applied to user-defined types, as shown by Schupp, Gregor, Musser, and
Liu [163]. Extending G with semantic contracts is a promising area of future research, but
it is beyond the scope of this thesis.

Static vs. dynamic type checking Type checking can be performed during compilation,
in which case a type is attached to each program point. Type checking can also happen
during execution, by examining type tags that are attached to an object. Either of these
approaches is compatible with the use of types as contracts. In the dynamic setting, a type
annotation in the interface of a function would correspond to a run-time guard that would
be checked during calls to the function.

Static type checking has benefits and costs: it aids with the early detection of bugs but
forces the programmer to type check the entire program before running and testing parts
of the program. It would be nice to have a single language that provides both static and
dynamic type checking, allowing the programmer to gradually add type annotations and

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 47

type check more of the program as development progresses. There has been some work on
integrating static and dynamic type systems. For example, the soft types of Cartwright and
Fagan [36] and dynamic types [2]. However, there has been little work on implicitly mixing
static and dynamic type checking within a single program.

It would be interesting to integrate both static and dynamic checking in the design for G.
However, this integration would be non-trivial to implement because G relies on many forms
of complex type-based dispatching. With a static type system, the dispatching is resolved
during compilation and therefore no run-time support is needed. However, if type checking
were delayed until runtime, a complex run-time system would be needed to perform type-
based dispatching. Because the integration of static and dynamic typing is non-trivial and
not central to the goals of this thesis, I leave this for future research. In this thesis I restrict
my attention to static type systems.

Explicit vs. implicit type annotations Many languages allow the programmer to omit
type annotations for function parameters, local variables, etc. while retaining static type
safety. The type of every declaration and expression is instead inferred by the type system.
This provides some of the convenience of dynamically typed languages.

However, type inferencing has some disadvantages:

• Type inferencers often produce error messages that are difficult to understand. In
particular, the messages sometimes point to a line that is not the real cause of the
type error. There has been work on improving error reporting [19, 43, 80, 201], but
these approaches add yet more complication to the type inferencing system.

• The programming language is often constrained to make type inferencing tractable.
For example, function overloading (not type classes but the conventional overload-
ing of a function name) and first-class polymorphism are two features typically not
included in languages with type inferencing. Adding support for first-class polymor-
phism is an active area of research [24, 97, 112, 148, 150, 155].

In the design of G we balance the complexity and usability of the type system with the
convenience of omitting type annotations. We allow programmers to omit annotations in
frequently occurring locations: we infer the types of local variables from their initializing
expression and we perform implicit instantiation of polymorphic functions. Neither of these
forms of inference require Hindley-Milner style inferencing and can be incorporated into a
conventional type system (similar to that of System F) that produces easy to understand
error messages. We do require type annotations on function parameters. Function param-
eters occur less frequently in code and are a valuable form of specification. A programmer
can write down the type signature of a function and then check whether the implementa-
tion matches the intended specification. Also, the type annotations are a valuable source
of documentation and making it part of the type system allows for automatic consistency
checking.

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 48

3.2 Subtyping versus type parameterization

The decision to focus on static type systems poses a challenge because simple static type
systems, such as those of Pascal and Fortran, inhibit the expression of generic functions.
Each parameter of a function has a particular concrete type, preventing a function from
being used with any other data types. There are two approaches to enabling the use of
a function with different types: subtype polymorphism and type parameterization. In this
section I present reasons for preferring type parameterization to subtyping for the purposes
of generic programming.

With subtype polymorphism, a function’s parameter types are base classes (interfaces).
A call to the function is valid so long as the argument types are subtypes of the parameter
types, respectively. To enable this, the type system includes a rule known as the subsump-
tion principle: an expression of type σ may be implicitly coerced to type τ if σ is a subtype
of τ . The following small Java program demonstrates subtype polymorphism. The function
identity is used with two different types, A and B, both of which are subtypes of I.

interface I { }

class A implements I { }

class B implements I { }

class Main {

public static I identity(I i) { return i; }

public static void main(String args[]) {

A a = new A();

I a2 = identity(a);

B b = new B();

I b2 = identity(b);

}

}

With type parameterization, the function’s parameter types are themselves parameters.
The following Java 1.5 program shows the identity function parameterized on type T.
When identity is called with c (which is an instance of C), then C is substituted for T,
whereas when identity is called with d, D is substituted for T. Thus, instead of the argu-
ment changing its type to match the function as with subtyping, the function is instantiated
to match the type of the argument.

class C { }

class D { }

class Main2 {

public static <T> T identity(T i) { return i; }

public static void main(String args[]) {

C c = new C();

C c2 = identity(c);

D d = new D();

D d2 = identity(d);

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 49

}

}

The return type of the parameterized identity function is more accurate than the return
type of the identity that uses subtyping. The lack of accuracy with subtyping leads to
significant difficulties in using subtyping to implement generic algorithms.

3.2.1 The binary method problem

The well known binary method problem [29] is particularly problematic for generic algo-
rithms. For example, the accumulate example from Section 2.1 includes two instances of
the binary method problem, one of them concerning the Monoid concept. The following is a
Java interface definition for this concept.

interface Monoid {

Monoid binop(Monoid other);

Monoid id_elt();

};

The problem arises when we try to define a class, such as the following IntAddMonoid, that
is a subtype of Monoid.

class IntAddMonoid implements Monoid {

public IntAddMonoid(int x) { n = x; }

public IntAddMonoid binop(IntAddMonoid other)

{ return new IntAddMonoid(n + other.n); }

public IntAddMonoid id_elt() { return new IntAddMonoid(0); }

public int n;

};

The Java type system rejects the above definition because IntAddMonoid fails to override the
binop method of Monoid. The binop method in IntAddMonoid is not an override because
the parameter type differs from the parameter type in Monoid.

The language rules can not be changed to allow covariant parameters (parameter types
that change with the method’s class) without either making the type system unsound or
relying on whole program checks [28, 48, 85]. To see how allowing covariance makes a
type system unsound, consider the following program. We define another derived class of
Monoid and then assign instances of IntAddMonoid and DoubleAddMonoid to variables of
type Monoid and invoke the binop method.

class DoubleAddMonoid implements Monoid {

public DoubleAddMonoid(double x) { n = x; }

public DoubleAddMonoid binop(DoubleAddMonoid other)

{ return new DoubleAddMonoid(n + other.n); }

public DoubleAddMonoid id_elt() { return new DoubleAddMonoid(0.0); }

public double n;

};

class Main {

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 50

public static void main(String args[]) {

Monoid a = new IntAddMonoid(1);

Monoid b = new DoubleAddMonoid(1.0);

b = a.binop(b);

}

}

The method call will resolve to the binop in IntAddMonoid which tries to use member n

of object b as an int, but this member is a double, so there is a type error. A sound type
system must catch such problems during type checking.

Type soundness can be regained with whole program checks, but this is incompatible
with the goal of providing separate type checking for individual functions and modules
within a program.

The workaround for the binary method problem is to use Monoid as the parameter for
binop and then cast to IntAddMonoid.

class IntAddMonoid implements Monoid {

public IntAddMonoid(int x) { n = x; }

public IntAddMonoid binop(Monoid other)

{ return new IntAddMonoid(n + ((IntAddMonoid)other).n); }

public IntAddMonoid id_elt() { return new IntAddMonoid(0); }

int n;

};

However, this introduces clutter and opens the door to run time errors. Methods with
covariant parameters, such as binop, are pervasive so this is a serious problem for imple-
menting and using generic algorithms based on subtype polymorphism.

In contrast to covariant argument types, covariant return types cause no type soundness
problems and are allowed in Java 1.5.

3.2.2 Associated types

Many object-oriented languages lack a facility for dealing with associated types, so for ex-
ample, the Iterator interface would have to use the Object type for the return type of
the curr() method instead of the precise type of its elements. This forces the user of the
iterator to insert casts, again cluttering the code and opening the door to run-time errors.

interface Iterator {

boolean equal(Iterator other);

Object curr();

Iterator next();

};

The following is the definition of the generic accumulate algorithm using subtyping.

class Accumulate {

public static Monoid run(Iterator first, Iterator last, Monoid factory) {

if (first.equal(last)) return factory.id_elt();

else return ((Monoid)first.curr()).binop(run(first.next(), last, factory));

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 51

}

};

One minor irritation in the above definition is handling the case for an empty sequence. We
need to invoke the id_elt() method but have no elements on which to invoke it, hence the
extra factory parameter.

3.2.3 Virtual types

One of the proposed solutions for dealing with binary methods and associated types in
object-oriented languages is virtual types, that is, the nesting of abstract types in interfaces
and type definitions within classes or objects. The beginning of this line of research was
the virtual patterns feature of the BETA language [110]. Patterns are a generalization
of classes, objects, and procedures. An adaptation of virtual patterns to object-oriented
classes, called virtual classes, was created by Madsen and Moller-Pedersen [123] and an
adaptation for Java was created by Thorup [186]. These early designs for virtual types were
not statically type safe, but relied on dynamic type checking. However, a statically type safe
version was created by Torgersen [189]. A statically type safe version of BETA’s virtual
patterns was developed for the gbeta language of Ernst [58, 59]; the Scala programming
language also includes type safe virtual types [146, 147].

It turns out that virtual types can be viewed as a kind of type parameterization. To give
an intuition for this, we show an implementation of the accumulate example in Scala using
virtual types. The following are Scala traits (interfaces) for the Iterator and Monoid concepts.

trait Iterator {

type iter;

type elt;

def curr(x: iter): elt;

def next(x: iter): iter;

def equal(x: iter, y: iter): Boolean;

}

trait Monoid {

type a;

def id_elt: a;

def binop(x: a, y: a): a;

}

The accumulate algorithm can now be written as follows. We encapsulate the generic
accumulate function in an abstract class with virtual types i and t, which effectively serve
as type parameters. The monoid and iterator value parameters are used here analogously
to structures in ML with subtyping playing the role that signature matching plays in ML.
The type of the parameters first and last is i and the return type is t, so here we are
relying on type parameterization instead of subtype polymorphism.

abstract class accumulate {

type i;

type t;

def run(monoid: Monoid{type a = t},

iterator: Iterator{type iter = i; type elt = t})

(first: i, last: i): t =

if (iterator.equal(first, last)) monoid.id_elt

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 52

else monoid.binop(iterator.curr(first),

run(monoid, iterator)(iterator.next(first), last));

}

The notation

Monoid{type a = t}

creates an anonymous class derived from Monoid with type t bound to the abstract type a.
To use accumulate, we must first provide bindings for the abstract types i and t to obtain a
concrete class. We then create an instance object and invoke the run method.

val s: Int = new accumulate{type i=List[Int]; type t = Int}

.run(intMonoid, makeIterator(intEq))(lsi, List());

The virtual types i and t act just like type parameters and the process of creating an
anonymous derived class with bindings for the virtual types is just like instantiating a pa-
rameterized class. So virtual types can be seen as one approach to adding type parameteri-
zation to object-oriented languages.

3.2.4 Evaluation

Some form of polymorphism is necessary to enable the expression of generic algorithms in a
statically typed language. The two main forms of polymorphism are subtype polymorphism
and type parameterization. This section showed that subtype polymorphism is not suitable
for expressing generic algorithm due to its imprecision. In particular, it suffers from the bi-
nary method problem and does not provide a way to accurately track relationships between
types. Given the problems with subtype polymorphism, we focus on type parameterization
as the mechanism for polymorphism in G.

3.3 Parametric versus macro-like type parameterization

There are subtle and important differences from language to language in the meaning of
type parameterization. It is useful to distinguish between parameterization that relies on
parameteric polymorphism versus macro-like parameterization mechanisms.

Parametric polymorphism With parametric polymorphism, a parameterized function is a
single object that can be viewed as having many types. For example, the following function
(written in ML) can have the type fn : int -> int or fn : real -> real or any type of
the form fn : 'a -> 'a where 'a is a type variable.

- fun id x = x;

val id = fn : 'a -> 'a

- id 1;

val it = 1 : int

- id 1.0;

val it = 1.0 : real

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 53

A polymorphic function such as id is like a chameleon, it can change it’s color (type) at will.
The reason that id may take on different types is that parametric polymorphism requires
the body of the function to take a “hands off” approach with any object whose type is a
type parameter. Type-specific operations may not be applied to such objects. Therefore, the
computation of the function is independent of the type parameters.

This “hands off” restriction seems rather stringent at first, but it is not as bad as it
seems. A parametric function may be passed function parameters that perform type-specific
operations. For example, the following map function applies the int-specific dub function to
every element of a list.

- fun map f [] = []

- | map f (x::ls) = (f x)::map f ls;

val map = fn : ('a -> 'b) -> 'a list -> 'b list

- fun dub x = x + x;

val dub = fn : int -> int

- map dub [1,2,3];

val it = [2, 4, 6] : int list

Macro-like type parameterization The macro-like approach to type parameterization is
exemplified by C++ templates. An early precursor to templates can be seen in the definition
facility in ALGOL-D [66, 67] of Galler and Perlis. In C++ a function template is not itself a
function, nor does it have a type. Instead, a function template is a generator of functions.
In the following program, the compiler generates two functions from the original template,
one for int and one for double.

template <typename T>

T id(T x) { return x; }

int main() {

id(1); // id<int> is generated during compilation

id(1.0); // id<double> is generated during compilation

}

Whereas a parametric polymorphic function is like a chameleon that can change its color, a
function template is like a lizard farm, producing lizards of many different but fixed colors.

A function template produces different functions for different type arguments. This be-
havior is often used to produce more optimized versions of a function for specific types. For
example, the converter class in the Boost libraries [22] converts between two numbers of
different type. Normally, the converter checks to make sure the input number is repre-
sentable in the output type. However, if the range of the output type encloses the range
of the input type, no check is needed and so the check is omitted for the sake of efficiency.
The following program shows a simple use of the converter class to flip a pair of numbers
inside a function template.

template<typename T, typename U>

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 54

pair<T,U> flip(pair<T,U> p) {

U a = converter<U,T>::convert(p.first);

T b = converter<T,U>::convert(p.second);

return make_pair(b,a);

}

int main() {

pair<double,float> p1 = make_pair(3.1415, 1.6180f);

pair<float,double> p2 = flip(p1);

cout << "(" << p2.first << "," << p2.second << ")\n";

}

The converter template produces functions that performs different actions given differ-
ent type arguments. The function converter<float,double>::convert (double to float)
performs a check whereas the function converter<double,float>::convert does not. In
contrast, this kind of compile-time type-dispatching can not be expressed using parametric
polymorphism because a polymorphic function has uniform behavior for all type arguments.

C++ templates are often categorized as a form of parametric polymorphism. Indeed, a
common use of templates is to write type independent code. However, C++ templates are
closer to ad-hoc polymorphism as defined by Strachey [182]: they may behave in different
ways for different types.

First-class polymorphism

A strength of parametric polymorphism over macro-like parameterization is that polymor-
phic functions can be treated as first-class: they can be passed to functions and stored in
data structures. The following program, written in System F [71, 157], passes the poly-
morphic id function as a parameter to the function f, which then views its polymorphic
argument at several different types. In System F, a λ expression creates a function and Λ
parameterizes an expression on a type. A parameterized object can be viewed at a particular
type by providing type arguments in square brackets.

f ≡ λ g : ∀ t. t→t. (g[int] 1, g[real] 1.0)

id ≡ Λ t. λ x: t. x

f id

Many interesting uses of first-class polymorphism (also referred to as higher-rank polymor-
phism) may be found in an annotated bibliography by Shan [42].

Under restricted circumstances, the above can be achieved with the macro-like ap-
proach. However, if f is compiled separately from the application f id, then the macro-
like approach does not work. When compiling f id, all that is known about f is its type
(∀ t. t→t) → (int * real). It is not known how parameter g is used inside of f, so
the instantiations of id for int and real cannot be generated when compiling f id. On the
other hand, when compiling f, it is not known that id will be bound to g, so the instantia-
tions of id can not be produced while compiling f. Of course, the instantiation of id could
be done at run-time, using just-in-time compiler technology, but this would incur significant

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 55

run-time overhead and complicates the run-time system.

3.3.1 Separate type checking

As described in Chapter 1, separate type checking is vital because it lowers the cost of using
generic components and improves the quality of generic components by catching errors in
the implementation and by catching inconsistencies in the interface.

Separate type checking is straightforward with parametric polymorphism. To type check
a polymorphic function, the type system treats type parameters as abstract types, different
from any other type. Another way to say this is that a polymorphic function is type checked
under the conservative assumption that the type parameter could be instantiated with any
type. Once a polymorphic function has passed type checking, it is guaranteed to be well-
typed for any type argument.

With C++ templates, type checking is performed after instantiation, once the type argu-
ments are known, so templates are not type checked separately from their use. However,
it is possible for a macro-like system to type check a template prior to instantiation. We
took this approach in our proposal for extending C++ with support for concepts [168]. To
ensure type soundness, some restrictions must be placed on type-dispatching. This is analo-
gous to object-oriented method dispatch where the type system must ensure that overriding
methods in derived classes conform to the method signature in the base class. Such restric-
tions block most kinds of metaprogramming but allows for dispatching between different
versions of an algorithm according to differing type requirements.

Our proposal for C++ retains the unrestricted templates of C++ for purposes of tem-
plate metaprogramming and adds a new kind of template with opaque type parameters for
purposes of generic programming. This distinction between generic programming (with
its focus on generic algorithms) and metaprogramming is important. Generic algorithms
typically need very little type dispatching and metaprogramming, whereas generative com-
ponents, such as Blitz arrays [193] and matrix types in MTL [174] and GMCL [50], require
highly sophisticated metaprogramming that uses compile-time type dispatching. It there-
fore makes sense to use two different language mechanisms to fulfill the differing needs of
generic programming and generative programming.

3.3.2 Compilation and run-time efficiency

Separate compilation is important for ensuring that the time to compile a component is just
a function of the component’s size and not a function of the size of all components it uses
(transitively). However, there are tradeoffs between compile time and run time.

With the macro-like approach to type parameterization, the compiler in general must
produce a distinct sequence of machine code instructions for each instantiation of a pa-
rameterized function. Each of these sequences is specialized for the particular type argu-
ments given in the instantiation. All the type-dependent dispatching is resolved at compile
time and the results are hard coded into the instruction sequences. Parameter passing
conventions and run-time representations of data structures are exactly the same as for

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 56

non-parameterized code. The end result is highly efficient: there is no run-time overhead
associated with the parameterization. However, this approach gives up separate compila-
tion.

With parametric polymorphism, the compiler (or programmer) can choose between two
different approaches. For each use of a generic function, the compiler may perform function
specialization (sometimes called monomorphization), generating a type-specific sequence
of instructions, or the compiler may use a uniform, or generic, code sequence for the func-
tion.

For the compiler to perform function specialization, two conditions must be satisfied:
it must have access to the implementation of the polymorphic function and it must know
on which types to instantiate the function. In the macro-like approach, both of these con-
ditions are always guaranteed: separate compilation is disallowed and function templates
are second-class citizens. With the polymorphic model, the story is more complicated. In
languages like ML and Haskell 98, polymorphism is second-class, so it is straightforward
to determine which polymorphic functions are instantiated on which types [20, 37, 98].
However, in languages with first-class polymorphism—such as System F and Quest [34]—a
control flow analysis is needed to determine which polymorphic functions are instantiated
on which types [191]. (The use of control flow analysis and function specialization has been
studied in the setting of dynamically typed languages [39, 41, 88, 195].) Of course, the flow
analysis must be conservative, so in some situations unnecessary specializations may be pro-
duced or alternatively the compiler must fall back and use non-specialized code. There are
several other compiler analysis and optimizations that help enable function specialization;
most of them are components of the more general technique of partial evaluation [99].

The alternative to function specialization is to compile a polymorphic function to a
single sequence of machine-code instructions that works for any type arguments. There are
several challenges to overcome with this approach. The first is that objects of different types
may have different sizes: some fit in general registers, some fit in floating point registers,
and others must be placed on the stack or heap. Thus, different instructions are needed to
access function parameters and local variables depending on their type. One solution, called
“boxing”, is to pass pointers to objects instead of the objects themselves, since pointers have
a uniform size and fit into general registers. However, this approach forces all objects to be
stored in memory (even small objects). On modern computer architectures CPU speed has
out-paced memory access speed, so increased memory traffic can be a significant source of
overhead.

Higher-order polymorphic functions also present a challenge to uniform compilation.
Consider again the polymorphic map function. It is parameterized on types 'a and 'b, and
has a function parameter f from 'a to 'b.

val map = fn : ('a → 'b) → 'a list → 'b list

val dub = fn : int → int

- map dub [1,2,3];

val it = [2, 4, 6] : int list

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 57

The map function is applied to the function dub : int → int. The difficulty is that map
passes a boxed int to function parameter f, but dub is expecting an unboxed int. Similarly,
dub returns an unboxed int, but map is expecting a boxed int. The solution proposed by
Leroy is to coerce dub as it is passed to map by wrapping dub in a function that unboxes the
input, calls dub, and then boxes the result [114].

A related challenge is how to layout memory for parameterized data types. With the
macro-like approach, different instantiations of a parameterized data type may have a dif-
ferent layout. Consider the following pair template. When instantiated with int, the
second field is typically placed at an offset of 4 bytes from the start of the struct (on a 32
bit architecture). When instantiated with double, the second field is placed at an offset of
8 bytes.

template<class T>

struct pair {

T first;

T second;

};

// pair<int> is equivalent to:

struct int_pair {

int first;

int second; // at offset of 4 bytes

};

// pair<double> is equivalent to:

struct double_pair {

double first;

double second; // at offset of 8 bytes

};

This non-uniformity in field layout poses a problem for the compilation of polymorphic
functions because different instructions are needed to access the fields depending on the
type parameters. A common solution to this problem is to box the polymorphic fields of
a struct, thereby ensuring a uniform field layout. The following struct shows how this
representation would look in C.

// a uniform representation for pair<T>

struct pair_T {

void* first; // first and second point to objects of type T

void* second;

};

The problem with this solution is that the overhead from the indirection affects both nor-
mal (monomorphic) functions and polymorphic functions. One alternative is to use non-
uniform representations in monomorphic functions and uniform representations in poly-
morphic functions and to coerce objects as they pass between monomorphic and polymor-
phic code [114]. Of course, such coercions introduce run-time overhead, but at least there
is no overhead in purely monomorphic code.

Another alternative, called intensional type analysis of Harper and Morrisett [79], is

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 58

to pass a run-time representation of the type parameters to the polymorphic function and
use this information for dispatching inside primitive operations. This idea could be applied
to accessing a field of a struct in the following way. The run-time type information could
include the size of the type. The instructions for field access would then use this infor-
mation to compute the offset of the field within the struct. Thus, the same flattened, or
unboxed, representation could be used within polymorphic code. With the approach, in
non-polymorphic code, parameterized data structures are as efficient as non-parameterized
data structures. In separately compiled polymorphic code, there a small amount of over-
head when accessing fields of a parameterized data structure since the offset is not a con-
stant but computed.

To summarize, parametric polymorphism can be compiled using either function special-
ization or uniform compilation. This choice can be made at each call site and it can be under
the control of the compiler (based on a static analysis) or under the control of the program-
mer. With specialization, highly-efficient code is produced, but separate compilation is lost.
With uniform compilation, separate compilation is achieved, but there is a constant factor
of run-time overhead. Regardless of the compilation model, data-structures may be repre-
sented in their normal unboxed form by using intensional type analysis to manipulate this
data within polymorphic functions.

3.3.3 Evaluation

The most difficult tradeoff in the design of G is between parametric polymorphism and
the macro-like approach. The following points summarize the issues, with the second two
points being the distinguishing factors.

separate type checking can be achieved with both approaches.

low run-time overhead is possible with both approaches via function specialization.

separate compilation can be achieved with parametric polymorphism, but not with the
macro-like approach.

convenient dispatching on types is provided by the macro-like approach, but not by para-
metric polymorphism. In Section 6.1 I discuss how dispatching can be performed in a
language based on parametric polymorphism, but at the cost of some inconvenience
to the library author.

3.4 Concepts: organizing type requirements

Section 3.3 discussed how type-specific operations can be used in a polymorphic function
by adding function parameters to the polymorphic function. This approach can be used
to express generic algorithms: each concept operation is passed as a function parameter.
This is the same approach we used to implement the accumulate example in Scheme in
Section 2.1. The following code shows the definition and use of a generic accumulate

written in ML. The types for the declarations are also listed.

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 59

fun accumulate binop id_elt next curr equal =

fn (first, last) =>

let fun loop first =

if equal(first, last) then id_elt

else binop(curr first, loop (next first))

in loop first end;

fun sum_list ls = (accumulate (+) 0 tl hd (=))(ls,[]);

sum_list [1,2,3,4,5];

val accumulate = fn

: ('a * 'b -> 'b) -> 'b -> ('c -> 'c) -> ('c -> 'a) -> ('c * 'd -> bool)

-> 'c * 'd -> 'b

val sum_list = fn : int list -> int

val it = 15 : int

The use of function parameters to pass concept operations becomes unmanageable as
the concepts become more complex and the number of parameters grow. The accumulate

function is rather simple and already has 5 concept operation parameters. Many of the STL
and BGL algorithms would require dozens of function parameters. This section describes
language mechanisms that solve this problem.

Type-specific operations are just one kind of requirement on the type parameters of a
generic function, there are also associated types, same-type constraints, and conversion re-
quirements. For large libraries of generic algorithms, the task of writing requirements for
the type parameters of algorithms is a huge task that can be much simplified by reusing
requirements. In fact, many algorithms share requirements: for example, the Input Iterator
concept appears in the specification of 28 STL algorithms. Also, several other iterator con-
cepts build on the Input Iterator concept, so Input Iterator is either directly or indirectly used
in most STL algorithms. Thus, it is important to be able to group a set of requirements, give
the grouping a name, and then compose groups of requirements to form new groups. There
are a wide variety of programming language features that fulfill this role. In this section, I
discuss the major alternatives in the design of concepts and evaluate them with respect to
the needs of generic programming. The following list recalls from Section 2.2.4 the kinds
of requirements that a concept should be able to express:

• requirements for functions and parameterized functions,

• associated types,

• requirements on associated types,

• same-type constraints,

• convertability constraints.

3.4.1 Parameteric versus object-oriented interfaces

The facilities for representing concepts in object-oriented languages differ from the facilities
in languages with parametric polymorphism, such as Haskell, Objective Caml, and ML. At

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 60

first glance, the differences may seem trivial but they have significant implications. To
make the discussion concrete, I contrast Java interfaces with Haskell type classes. The
first difference is that in the definition of a Java interface, there is no direct way to name
the exact type of the modeling type. On the other hand, with Haskell type classes, a type
parameter serves as a place-holder for the modeling type. The following shows how a
Clonable concept can be represented using interfaces and type classes.

interface Clonable {

Clonable clone();

}

class Clonable a where

clone :: a -> a

The return type of clone can not be expressed precisely in the Java interface; instead the
return type is Clonable, which says that clone() may return an instance of any class de-
rived from Clonable. (This inability to refer to the modeling type was also the reason for
the binary method problem.) On the other hand, the return type of clone in the type class
is precise: it is the same type as its input parameter.

The following code shows generic functions, written in Java and Haskell. In Java, the
type parameter a is constrained to be a subtype of the Clonable interface. In Haskell, the
type parameter a is constrained to be an instance of the Clonable type class.

import java.util.LinkedList;

class clone_list {

public static <a extends Clonable>

LinkedList<a> run(LinkedList<a> ls) {

LinkedList<a> newls = new LinkedList<a>();

for (a x : ls) newls.add(x.clone());

return newls;

}

}

clone_list :: Clonable a => [a] -> a

clone_list [] = []

clone_list (x#ls) = (clone x)#(clone_list ls)

The idea of using subtyping to constrain type parameters was first introduced by
Cardelli [35] and later refined into F-bounded polymorphism by Canning and col-
leagues [33]. F-bounded polymorphism is used in Eiffel, Java, and C#.

Subtype and instance relations are quite different. For example, subtyping typically
drives a subsumption rule, allowing implicit conversions, whereas the instance relation
does not. Also, type substitution plays an important role in the instance relation, but not in
subtyping. For example, the following instance declaration is valid because substituting Int

for a in Clonable gives the signature clone :: Int -> Int which matches the type of the
clone function in the instance declaration.

instance Clonable Int where

clone i = i

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 61

Parameterized object-oriented interfaces

With Java generics, interfaces may be parameterized on types. This provides an indirect
way to refer to the modeling type. A type parameter is added to the interface and used
as a place-holder for the modeling type. Then, when defining a class that inherits from
the interface, the programmer follows the convention of passing the derived class as a
parameter to the interface.

interface Clonable<Derived> {

Derived clone();

}

class Foo implements Clonable<Foo> {

Foo clone();

}

Parameterized interfaces provide a solution to the binary method problem. The
following shows a definition of the Monoid interface and a derived class. With this
version there is no need for a dynamic cast in the binop method. The type of pa-
rameter other can be IntAddMonoid, which exactly matches the parameter type of
Monoid<IntAddMonoid>.binop.

interface Monoid<Derived> {

Derived binop(Derived other);

Derived id_elt();

}

class IntAddMonoid implements Monoid<IntAddMonoid> {

public IntAddMonoid(int x) { n = x; }

public IntAddMonoid binop(IntAddMonoid other)

{ return new IntAddMonoid(n + other.n); }

public IntAddMonoid id_elt() { return new IntAddMonoid(0); }

int n;

};

In addition to solving the binary method problem, type parameters can be used to rep-
resent associated types. For example, the Iterator concept has an associated element type,
so an Iterator interface can represent this with an extra elt parameter (the Derived pa-
rameter is necessary because of the equal binary method).

interface Iterator<Derived,elt> {

elt curr();

Derived next();

boolean equal(Derived other);

}

Concept refinement

Composition of requirements via concept refinement is straightforward to express with both
parametric and object-oriented interfaces. With object-oriented interfaces, inheritance pro-

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 62

vides the composition mechanism. The following code shows Semigroup and Monoid con-
cepts represented as Java interfaces.

interface Semigroup<T> {

T binop(T other);

};

interface Monoid<T> extends Semigroup<T> {

T id_elt();

};

With parametric interfaces, such as with Haskell’s type classes, subclassing is used to express
refinement. The Semigroup t => syntax says that an instance of Monoid must also be an
instance of Semigroup.

class Semigroup t where

binop :: t -> t -> t

class Semigroup t => Monoid t where

id_elt :: t

Composing requirements on associated types

An important form of concept composition is the inclusion of constraints on associated types
within a larger concept. For example, in the Boost Graph Library, there is an Incidence Graph
concept with three associated types: vertex, edge, and out-edge iterator. The Incidence
Graph concept includes the requirement that the edge type model the Graph Edge concept
(which requires a source and target function) and that the out-edge iterator type model the
Iterator concept.

In Haskell, this composition can be expressed as follows by referring to the GraphEdge

and Iterator type classes in the definition of the IncidenceGraph type class.
class GraphEdge e v | e -> v where

source :: e -> v

target :: e -> v

class (GraphEdge e v, Iterator iter e) =>

IncidenceGraph g e v iter | g -> iter where

out_edges :: v -> g -> iter

out_degree :: v -> g -> Int

We can use IncidenceGraph to constrain type parameters of a generic function. The re-
quirement for IncidenceGraph g e v iter implies GraphEdge e v, so it is valid to use
source and target in the body of breadth_first_search.

breadth_first_search ::

(IncidenceGraph g e v iter, VertexListGraph g v, BFSVisitor vis a g e v) =>

g -> v -> vis -> a -> a

With Java interfaces it is not possible to express this kind of concept composition. The

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 63

following shows a failed attempt to group the constraints. We define two new interfaces:
GraphEdge and IncidenceGraph and use type parameters for the associated types. Also, we
put bounds on the type parameters in an attempt to compose the requirement for Graph

and Iterator in the requirements for IncidenceGraph. The goal is to use IncidenceGraph

as a bound in a generic method and have that imply that its edge type extends GraphEdge
and its out-edge iterator extends Iterator.

public interface GraphEdge<Vertex> {

Vertex source();

Vertex target();

}

interface IncidenceGraph<Vertex,

Edge extends GraphEdge<Vertex>,

OutEdgeIter extends Iterator<OutEdgeIter,Edge>> {

OutEdgeIter out_edges(Vertex v);

int out_degree(Vertex v);

}

The reason this approach fails is subtle. The following shows an attempt at writing a generic
method for the breadth-first search algorithm that fails to type check.

class breadth_first_search_bad {

public static <

GraphT extends IncidenceGraph<Vertex, Edge, OutEdgeIter>

& VertexListGraph<Vertex, VertexIter>,

Vertex, Edge, OutEdgeIter, VertexIter,

Visitor extends BFSVisitor<GraphT,Vertex,Edge>>

void run(GraphT g, Vertex s, Visitor vis) { ... }

}

The bounds on a type parameter must be well-formed types. So, for example, the type

IncidenceGraph<Vertex, Edge, OutEdgeIter>

must be well-formed. This type is well-formed if the constraints of IncidenceGraph are
satisfied:

Edge extends GraphEdge<Vertex>

OutEdgeIter extends Iterator<OutEdgeIter,Edge>

However, these constraints are not satisfied in the context of the run method. The run

method can be made to type check by adding the following bounds to its type parameters:

class breadth_first_search {

public static <

GraphT extends IncidenceGraph<Vertex, Edge, OutEdgeIter>

& VertexListGraph<Vertex, VertexIter>,

Vertex,

Edge extends GraphEdge<Vertex>,

OutEdgeIter extends Iterator<OutEdgeIter,Edge>,

VertexIter extends Iterator<VertexIter,Vertex>,

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 64

Visitor extends BFSVisitor<GraphT,Vertex,Edge>>

void run(GraphT g, Vertex s, Visitor vis) { ... }

}

Unfortunately, this defeats our original goal of grouping constraints to allow for succinct
expression of algorithms. The constraints on the associated types must be duplicated in
every generic algorithm that uses the IncidenceGraph interface.

This problem with Java’s interfaces can be remedied. For example, the duplication of
constraints in not necessary in the language Cecil [40]. In Cecil, bounds on type parameters
of interfaces are treated differently in the context of a generic method: they need not
be satisfied and instead are added as assumptions. Going further, Järvi, Willcock, and
Lumsdaine [91] propose an extension to Generic C# to add associated types and constraints
on associated types to object-oriented interfaces. Virtual types, for example in Scala [146]
and gbeta [58], is another approach to solving this problem.

MyType and matching

The programming language LOOM [30] provides a direct way to refer to the modeling
type. The keyword MyType is introduced within the context of an interface to refer to the
exact type of this. Here is what the Monoid interface would look like with MyType’s.

interface Monoid {

MyType binop(MyType other);

MyType id_elt();

}

It would not be type sound for LOOM to use inheritance in the presence of MyType’s to
establish subtyping (and hence subsumption) since that would introduce a form of covari-
ance. Instead, LOOM introduces a matching relationship and a weaker form of subsump-
tion that does not allow coercion during assignment but does allow coercion when passing
arguments to a function with a hash parameter type. This is very similar to the object types
of Objective Caml, where polymorphism is provided by implicit row variables, which are a
kind of parametric polymorphism. In fact, the Msg and Msg# type rules of LOOM (which
handle sending a message to an object) perform type substitution on the type of the method,
replacing MyType’s with the type of the receiver. Thus, interfaces with MyType and matching
are parametric in flavor and quite different from traditional object-oriented interfaces with
subtyping.

3.4.2 Type parameters versus abstract types

Among the parametric approaches to concepts there are two different ways to introduce
types: type parameters and abstract types. The following shows the Iterator concept repre-
sented with a Haskell type class and an ML signature. The type class has type parameters
for the iterator and element types whereas the signature has abstract types declared for the
iterator and element types.

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 65

class Iterator iter elt | iter -> elt

where

next :: iter -> iter

curr :: iter -> elt

equal :: iter -> iter -> Bool

signature Iterator =

sig

type iter

type elt

val next : iter -> iter

val curr : iter -> elt

val equal : iter * iter -> bool

end

Each of these approaches has its strengths and weaknesses. The following paragraphs
argue that in fact both approaches are needed and that they are complementary to one
another.

Type parameter clutter With the type parameter approach to concepts, the main model-
ing type and all associated types of a concept are represented with type parameters. Each
algorithm that uses the concept must have type parameters for each of the concept’s param-
eters. This causes considerable clutter when the number of associated types grows large,
as it does in real-world concepts. Part of the reason for this is that if a concept refines
other concepts, it must have type parameters for each of the parameters in the concepts
being refined. For example, the Reversible Container concept of the STL has 2 associated
types and also inherits another 8 from Container for a total of 10 associated types. Now, if
a generic function were to have two type parameters that are required to model Reversible
Container, then the function would need to have an additional 20 type parameters for all the
associated types. In contrast, with abstract types, a concept can be used without explicitly
mentioning any of its associated types.

Implicit model passing The strength of the type parameter approach is that it facilitates
the implicit passing of models to a generic function. When a generic function is instantiated,
model declarations (instances in Haskell) can be found because they are indexed by the type
arguments of the concept. For example, consider the Haskell Prelude function elem (which
indicates whether an element is in a list):

elem : Eq a => a -> [a] -> Bool

and the following function call:
elem 2 [1,2,3]

The type Int is deduced for the type parameter a and then the type requirement Eq a is
satisfied by finding an instance declaration for Eq Int (this instance declaration is also in
the Prelude). So the type parameters of the concept enable implicit model passing, which
is an extremely important feature for making generic functions easy to use.

Best of both worlds For the design of G we would like to have the best of both worlds:
implicit model passing without type parameter clutter. The approach taken in G is to pro-

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 66

vide both type parameters and abstract types in concepts. When writing concepts, we use
type parameters for the modeling type and abstract types for the associated types. So, for
example, the Iterator concept could be written as follows in G, using both a type parameter
and an abstract type:

concept Iterator<iter> {

type elt;

fun next(iter c) -> iter@;

fun curr(iter b) -> elt@;

fun equal(iter a, iter b) -> bool@;

};

3.4.3 Same-type constraints

In Section 2.2.3 we discussed the Container concept and the need for same-type constraints
in concepts. We needed to express that the element type of the Container is the same type
as the element type of the Container’s iterator. ML signatures provide support for this in the
form of type sharing. The following Container signature shows the use of type sharing to
equate the elements types for the container, iterator, and reverse iterator.

signature Container =

sig

type container

type iter

type rev_iter

type elt

structure Iter : Iterator

structure RevIter : Iterator

sharing type iter = Iter.iter

sharing type rev_iter = RevIter.iter

sharing type elt = Iter.elt = RevIter.elt

val start : container -> iter

val finish : container -> iter

val rstart : container -> rev_iter

val rfinish : container -> rev_iter

end

3.5 Nominal versus structural conformance

The fundamental design choice regarding the modeling relation is whether it should depend
on the name of the concept or just on the requirements inside the concept. For example,
do the below concepts create two ways to refer to the same concept or are they different
concepts that happen to have the same constraints?

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 67

concept A<T> {

fun foo(T x) -> T;

};

concept B<T> {

fun foo(T x) -> T;

};

With nominal conformance, the above are two different concepts, whereas with structural
conformance, A and B are two names for the same concept. Examples of language mech-
anisms providing nominal conformance include Java interfaces and Haskell type classes.
Examples of language mechanisms providing structural conformance include ML signa-
tures [128], Objective Caml object types [115], CLU type sets [117], and Cforall specifi-
cations [53].

Choosing between nominal and structural conformance is difficult because both options
have good arguments in their favor.

Structural conformance is more convenient than nominal conformance With nomi-
nal conformance, the modeling relationship is established by an explicit declaration. For
example, a Java class declares that it implements an interface. In Haskell, an instance

declaration establishes the conformance between a particular type and a type class. When
the compiler sees the explicit declaration, it checks whether the modeling type satisfies the
requirements of the concept and, if so, adds the type and concept to the modeling relation.

Structural conformance, on the other hand, requires no explicit declarations. Instead,
the compiler determines on a need-to-know basis whether a type models a concept. The
advantage is that programmers need not spend time writing explicit declarations.

Nominal conformance is safer than structural conformance The usual argument
against structural conformance is that it is prone to accidental conformance. The clas-
sic example of this is a cowboy object being passed to something expecting a Window [124].
The Window interface includes a draw() method, which the cowboy has, so the type system
does not complain even though something wrong has happened. This is not a particularly
strong argument because the programmer has to make a big mistake for this kind accidental
conformance to occur.

However, the situation changes for languages that support concept-based overloading.
For example, in Section 2.2.1 we discussed the tag-dispatching idiom used in C++ to select
the best advance algorithm depending on whether the iterator type models Random Access
Iterator or only Input Iterator. With concept-based overloading, it becomes possible for ac-
cidental conformance to occur without the programmer making a mistake. The following
C++ code is an example where an error would occur if structural conformance were used
instead of nominal.

std::vector<int> v;

std::istream_iterator<int> in(std::cin), in_end;

v.insert(v.begin(), in, in_end);

The vector class has two versions of insert, one for models of Input Iterator and one for

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 68

models of Forward Iterator. An Input Iterator may be used to traverse a range only a single time,
whereas a Forward Iterator may traverse through its range multiple times. Thus, the version
of insert for Input Iterator must resize the vector multiple times as it progresses through the
input range. In contrast, the version of insert for Forward Iterator is more efficient because
it first discovers the length of the range (by calling std::distance, which traverses the
input range), resizes the vector to the correct length, and then initializes the vector from
the range.

The problem with the above code is that istream_iterator fulfills the syntactic require-
ments for a Forward Iterator but not the semantic requirements: it does not support multiple
passes. That is, with structural conformance, there is a false positive and insert dispatches
to the version for Forward Iterators. The program resizes the vector to the appropriate size
for all the input but it does not initialize the vector because all of the input has already been
read.

Why not both? It is conceivable to provide both nominal and structural conformance on
a concept-by-concept basis. Thus, concepts that are intended to be used for dispatching
could be nominal and other concepts could be structural. This would match the current
C++ practice: some concepts come with traits classes that provide nominal conformance
whereas other concepts do not (the default situation with C++ templates is structural con-
formance). However, providing both nominal conformance and structural conformance
complicates the language, especially for programmers new to the language, and degrades
its uniformity. Therefore, with G we provide only nominal conformance, giving priority to
safety and simplicity over convenience.

3.6 Constrained polymorphism

In this section we discuss some design choices regarding parametric polymorphism and
type constraints. First we discuss at what granularity polymorphism should appear in the
language and then we discuss how constraints are satisfied by the users of a generic com-
ponent.

3.6.1 Granularity

Polymorphism can be provided at several different levels of granularity in a programming
language: at the expression level (as in System F), at the function level (Haskell, Ada),
at the class level (Java, C# Eiffel), and at the module level (ML, Ada). For libraries of
generic algorithms, it is vital to have polymorphism at the function level because type re-
quirements for an algorithm are typically unique to that algorithm. We strive to minimize
the requirements for each algorithm, and the result of this minimization results in different
requirements for different algorithms. There is often commonality between requirements,
which is why we group requirements into concepts, but two algorithms rarely have exactly

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 69

the same requirements. Also, polymorphism should be provided at the function level to
enable implicit model passing, the topic of the next subsection.

Polymorphism at the module level is sometimes useful for generic libraries, but is less
important than function-level polymorphism. Polymorphism at the class level is impor-
tant for defining generic containers, and polymorphism at the expression level is useful for
defining polymorphic function expressions.

3.6.2 Explicit versus implicit model passing

We use the term model passing to refers to the language mechanisms and syntax by which
all the type-specific operations and associated types of a model are communicated to a
generic component. We say a language has explicit model passing if the programmer must
explicitly pass a representation of the model to the generic component. We say a language
has implicit model passing if the compiler finds and passes in the appropriate model when
a generic component is instantiated.

Many languages with sophisticated module systems have support for module-
parameterized modules: Standard ML [128], Objective Caml [115], Ada 95 [1], Modula-
3 [141], OBJ [73], Maude [45], and Pebble [31] to name a few. With these languages, a
model can be represented by a module, and a generic algorithm can be represented by a
module-parameterized module. The programmer explicitly instantiates a generic module
by passing in the modules that provide the type-specific operations required by the generic
algorithm.

We illustrate this approach by implementing an accumulate algorithm with modules in
Standard ML. In ML, a module is called a structure and a module-parameterized module
is called a functor. In Section 2.1 we found that accumulate operates on two abstractions:
Monoid and Iterator. So here we implement accumulate as a functor with two parameters:
parameter M for the monoid structure and parameter I the iterator structure.

functor MakeAccumulate(structure M : Monoid

structure I : Iterator

sharing type M.t = I.elt) =

struct

fun run first last =

if I.equal(first, last) then M.id_elt

else M.binop(I.curr first, run (I.next first) last)

end

The type of a structure in ML is given by a signature. The following are signature definitions
for Monoid. (The signature Iterator was defined in Section 3.4.2.)

signature Monoid =

sig

type t

val id_elt : t

val binop : t * t -> t

end

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 70

Abstract types such as t in Monoid and elt in Iterator are assumed to be different from
each other unless otherwise specified. So the type sharing constraint in MakeAccumulate

is necessary to allow the result of I.curr (which has type I.elt) to be passed to M.binop

(which is expecting type M.t).
Applying the MakeAccumulate functor to two structures produces a concrete accumulate

algorithm. The following produces a structure that sums an array of integers.

structure SumIntArray = MakeAccumulate(structure M = IntAddMonoid

structure I = ArrayIter)

The IntAddMonoid and ArrayIter structures are defined as follows:

structure IntAddMonoid =

struct

type t = int

val id_elt = 0

fun binop(a,b) = a + b

end

structure ArrayIter =

struct

datatype iter = Iter of int * int Array.array

type elt = int

fun equal (Iter(n1,a1), Iter(n2,a2)) = (n1 = n2)

fun curr (Iter(n,a)) = Array.sub(a,n)

fun next (Iter(n,a)) = Iter(n+1,a)

end

The disadvantage of the explicit model passing is that the user must do extra work to
use a generic component. We want to keep the cost of using generic components as low
as possible, so we turn our attention to various implicit language mechanisms for passing
type-specific operations to a generic algorithm.

Haskell provides implicit model passing. For example, below is a generic accumulate

function in Haskell.

accumulate :: (Monoid t, Iterator i t) => i -> i -> t

accumulate first last =

if (equal first last) then id_elt

else binop (curr first) (accumulate (next first) last)

The following are instance declarations establishing Float as a Monoid and ArrayIter as
an Iterator.

instance Semigroup Float where

binop a b = a * b

instance Monoid Float where

id_elt = 1.0

data ArrayIter t = AIter (Int, Array Int t)

instance Iterator (ArrayIter t) t where

curr (AIter (i,a)) = a!i

next (AIter (i,a)) = AIter (i + 1, a)

equal (AIter (i,a)) (AIter (j,b)) = (i == j)

The call to accumulate shown below does not need to mention the instances

CHAPTER 3. THE LANGUAGE DESIGN SPACE FOR GENERICS 71

Monoid Float and Iterator (ArrayIter Float) Float which are needed satisfy the type
requirements of accumulate. Instead, the compiler finds the appropriate instances, looking
them up by pattern matching against the type patterns in the instance declarations.

a = listArray (0,4::Int) [1.0,2.0,3.0,4.0,5.0::Float]

start = (AIter (0,a))

end = (AIter (5,a))

p = accumulate start end

In more detail, first the compiler deduces the type arguments for accumulate from the
type of the arguments start and end obtaining i=ArrayIter Float and t=Float. The
compiler then tries to satisfy the constraints for accumulate, so it needs Monoid Float and
Iterator (ArrayIter Float) Float. The instance declaration for Monoid Float satisfies
the first requirement and the instance declaration Iterator (ArrayIter t) t satisfies the
second requirement: the pattern matching succeeds with the pattern variable t matching
with Float.

3.7 Summary

This chapter surveyed the design space for programming language support for generic pro-
gramming. The chapter began with the motivation for focusing on statically typed lan-
guages and explicitly typed languages. It then compared two forms of polymorphism, sub-
typing and parametric, and argued that type parameters are a better choice because they
offer better accuracy. Type parameterization comes in two flavors, the type-independent
parametric polymorphism, as found in ML, and the type-dependent generational parame-
terization as found in C++ templates. Parametric polymorphism was favored because it is
compatible with separate compilation whereas generational parameterization is not.

The chapter then evaluated language mechanisms for representing concepts such as
object-oriented interfaces, Haskell type classes, and ML signatures. It concluded that a
mixture of features from type classes and signatures would provide the best design. In par-
ticular, the type parameters of Haskell’s type classes are needed to support implicit model
passing and the abstract types and type sharing of ML signatures are needed to support as-
sociated types. Moving on to models, we compared the nominal and structural approaches
to conformance, and decided that nominal conformance is the better choice because it is
safer in the presence of concept-based overloading. The chapter then addressed the ques-
tion of at what granularity type parameterization should occur, arguing that it should occur
at least at the function level. Finally, the chapter discussed the need for implicit model
passing and showed an example of how this works in Haskell.

I wish someone would construct a language more suitable to generic
programming than C++. After all, one gets by in C++ by the skin of
one’s teeth. Fundamental concepts of STL, things like iterators and
containers, are not describable in C++ since STL depends on rigorous
sets of requirements that do not have any linguistic representation
in C++. (They are, of course, defined in the standard, but they are
defined in English.)

Alexander Stepanov [136]

4
The design of G

The goal of this thesis is to design language features to support generic programming, and
Chapter 7 describes a core calculus, named FG , that captures the essence of this design.
However, the design must be field tested; it must be used to implement generic libraries.
Any nontrivial library requires many language features unrelated to generics so a complete
programming language is needed. Therefore the design for generics in this thesis is em-
bedded in a language, named G, that is modeled after C++ but with redesigned generics.
G is an imperative language with declarations, statements, and expressions. G shares the
same built-in types as C++, and has classes, structs, and unions, though in simplified forms.
Objects may be allocated on the stack, with lifetimes that match a procedure’s activation
and objects may be allocated on the heap with programmer controlled lifetimes.

While G is modeled after C++ it is not strictly an extension to C++. Several details of C++

are incompatible with the design for generics developed in this thesis. Further, C++ is a large
and complex language so implementing a compiler for C++ or even modifying an existing
C++ compiler would be a large and difficult task. In contrast, G is a simpler language that is
straightforward to parse and compile.

Modeling G on C++ allows for a straightforward translation of generic libraries from C++

to G, thereby facilitating the field tests of G. Furthermore, the compiler for G translates G
to C++. The bulk of the compiler implementation is concerned with translating the generic
features of G, since those differ from C++, but the rest of the features in G are straightforward
to translate to C++.

The language support for generics in G is based on parametric polymorphism, System F
in particular. As discussed in Chapter 3, this has advantages for modularity: it allows for
separate type checking and separate compilation. G augments parametric polymorphism
with a language for describing interfaces of generic components, a language inspired by the
semi-formal specification language used to document C++ libraries. The support for generic

72

CHAPTER 4. THE DESIGN OF G 73

programming in G is provided by the following language features:

1. Polymorphic functions enable the expression of generic algorithms. They include a
where clause that states type requirements. To use a polymorphic function with cer-
tain types, the where clause of the polymorphic function must be satisfied in the lex-
ical scope of the instantiation. Polymorphic functions may be called just like normal
functions; the polymorphic function is implicitly instantiated with type arguments
deduced from the types of the actual arguments.

2. The concept feature directly supports the notion of “concept” in generic program-
ming. This feature is used to define and organize requirements on types.

3. A model definition verifies that a particular type τ satisfies the requirements of a con-
cept c and adds the pair (c, τ) to the modeling relation associated with the current
scope. This modeling relation is consulted when a generic function (or class) is in-
stantiated and its where clause must be satisfied.

4. Polymorphic classes, structs, and unions allow for the definition of generic data struc-
tures. As with polymorphic functions, constraints on type parameters are expressed
with a where clause.

5. Function expressions (anonymous functions) enable the convenient customization of
generic algorithms with user-specified actions.

The following sections give a detailed description of these language features and show how
this design meets the goals described in Chapter 1 and the criteria set forth in Section 2.2.4.

4.1 Generic functions

The syntax for generic function definitions and signatures is shown in Figure 4.1. The func-
tion name is given by the identifier following fun. Generic functions are parameterized
on a list of types enclosed in angle brackets. The type parameters are constrained by re-
quirements in the where clause. The body of a generic function is type checked under the
conservative assumption that the type parameters could be any type that satisfies the con-
straints. Non-generic functions are taken as a special case of generic functions where the
type parameter list is empty.

The default parameter passing mode in G is read-only pass-by-reference, which can also
be specified with &. Read-write pass-by-reference is indicated by ! and pass-by-value is indi-
cated by @. Pass-by-value is not the default calling convention in G, as it is in C++, because it
adds requirements on the parameter type: the type must be copy constructible. Unlike C++,
G does not have reference types because they allow the calling convention to change based
on whether a generic function is instantiated with a reference type or non-reference type,
such as instantiating a parameter T with int& versus int. Such a dependency on instantia-
tion would complicate separate compilation and allow the semantics of a generic function
to change.

CHAPTER 4. THE DESIGN OF G 74

Figure 4.1: Syntax for generic functions

fundef ::= fun id polyhdr (type mode [id], . . .) Function definition
-> type mode {stmt . . . }

funsig ::= fun id polyhdr (type mode [id], . . .) Function signature
-> type mode;

decl ::= fundef | funsig
mode ::= mut [&] pass by reference

@ pass by value
mut ::= [const] constant

! mutable
polyhdr ::= [<tyvar , . . . >][where {constraint, . . . }] polymorphic header
constraint ::= cid<type, . . . > model constraint

type == type same-type constraint
funsig function constraint

id identifier
tyvar type variable
cid concept name

Constraints

Three kinds of constraints may appear in a where clause: model constraints, same-type
constraints, and function signatures. Constraints are treated as assumptions when type
checking the body of a generic function. Also, constraints must be satisfied when a generic
function is instantiated.

Model constraints such as c<τ> indicate that type τ must be a model of concept c. At
the point of instantiation, there must be a best-match model definition in the lexical
scope for c<[t/ρ]τ>, where t are the type parameters of the generic function and ρ
are the type arguments. Section 4.6.2 discusses model lookup in more detail. Inside
the generic function, the constraint c<τ> is treated as a surrogate model definition.
All of the refinements and requirements of concept c are added as surrogate model
definitions. Finally, all the function signatures from these concepts are introduced
into the scope of the function.

Same-type constraints such as τ1 == τ2 say that two type expressions must denote the
same type. False constraints such as int == float are not allowed. Inside a generic
function, the constraint τ1 == τ2 is treated as an assumption that plays a role in decid-
ing when two type expressions are equal.

Function constraints such as fun foo(T) -> T@ say that a function definition must be in
the scope of the instantiation of the generic function that has the given name and with

CHAPTER 4. THE DESIGN OF G 75

Figure 4.2: Generic accumulate function in G.

fun accumulate<Iter>

where { InputIterator<Iter>,

Monoid<InputIterator<Iter>.value> }

(Iter@ first, Iter last) -> InputIterator<Iter>.value@ {

let t = identity_elt();

for (; first != last; ++first)

t = binary_op(t, *first);

return t;

}

Figure 4.3: Syntax for accessing associated types.

type ::= scope.tyvar scope-qualified type
scope ::= scopeid

scope.scopeid scope member
scopeid ::= mid module identifier

cid<type, . . . > model identifier

a type coercible to the specified type. Also, this constraint introduces the specified
function signature into the scope of the generic function.

Figure 4.2 shows the generic accumulate function from Section 2.1 written in G. The
accumulate function is parameterized on the iterator type Iter. The where clause includes
the requirements that the Iter type must model InputIterator and the value type of
the iterator must model Monoid. The definitions of InputIterator and Monoid appear in
Section 4.2 and 4.3.

The dot notation is used to refer to the associated value type of the iterator. Figure 4.3
shows the syntax for referring to associated types. The recursion in the scope production is
necessary for handling nested requirements in concepts. For example, consider the follow-
ing excerpt from the Container concept.

concept Container<C> {

type iterator;

type const_iterator;

require InputIterator<iterator>;

require InputIterator<const_iterator>;

...

};

CHAPTER 4. THE DESIGN OF G 76

Figure 4.4: Syntax for concepts.

decl ::= concept cid<tyvar , . . . > { cmem . . . }; concept definition
cmem ::= funsig Function requirement

fundef " with default implementation
type tyvar; Associated type
type == type; Same-type requirement
refines cid<type, . . . >; Refinement
require cid<type, . . . >; Nested requirement

The following type expressions show how to refer to the value type of the container’s
iterator and const_iterator.

type iter = Container<X>.iterator;

type const_iter = Container<X>.const_iterator;

Container<X>.InputIterator<iter>.value

Container<X>.InputIterator<const_iter>.value

4.2 Concepts

The syntax for concepts is presented in Figure 4.4. A concept definition consists of a name
for the concept and a type parameter, enclosed in angle brackets, that serves as a place-
holder for the modeling type (or a list of type parameters for a list of modeling types). The
type parameters are in scope for the body of the concept. Concepts contain the following
kinds of members.

Function signatures A function signature in a concept expresses the requirement that a
function definition with a matching name and type must be provided by a model of
the concept.

Function definition A model of the concept may provide a function with the matching
name and type, but if not, the default implementation provided by the function defi-
nition in the concept is used.

Associated types An associated type in a concept requires that a model provide a type
definition for the specified type name.

Same-type constraints A same-type constraint states the requirement that two type ex-
pressions must denote the same type in the context of a model definition.

Refinements Requirements for the refined concept are included as requirements for this
concept. A model definition for the concept being refined must precede a model
definition for this concept.

CHAPTER 4. THE DESIGN OF G 77

Figure 4.5: Syntax for models.

decl ::= model polyhdr <type, . . . > { decl . . . }; model definition

Requirements Nested requirements are similar to refinement in that they compose con-
cepts. However, in this case the associated types of the required concept are not
directly included but can be accessed indirectly. For example, the Container concept
has a requirement that the associated iterator type model Iterator. The difference
type of the iterator is accessed as follows:

type iter = Container<X>.iterator;

Container<X>.ForwardIterator<iter>.difference

The following example is the definition of the InputIterator concept in G:

concept InputIterator<X> {

type value;

type difference;

refines EqualityComparable<X>;

refines Regular<X>; // this includes Assignable and CopyConstructible

require SignedIntegral<difference>;

fun operator*(X b) -> value@;

fun operator++(X! c) -> X!;

};

4.3 Models

The modeling relation between a type and a concept is established with a model definition
using the syntax shown in Figure 4.5. A model definition must satisfy all requirements of the
concept. Requirements for associated types are satisfied by type definitions. Requirements
for operations may be satisfied by function definitions in the model, by the where clause,
or by functions in the lexical scope preceding the model definition. The functions do not
have to be an exact match, but they must be coercible to the required function signature.
Refinements and nested requirements are satisfied by preceding model definitions.

The following simple example shows concept definitions for Semigroup and Monoid as
well as model definitions for int.

concept Semigroup<T> {

refines Regular<T>;

fun binary_op(T,T) -> T@;

};

concept Monoid<T> {

refines Semigroup<T>;

fun identity_elt() -> T@;

CHAPTER 4. THE DESIGN OF G 78

};

use "basic_models.g"; // for Regular<int>

model Semigroup<int> {

fun binary_op(int x, int y) -> int@ { return x + y; }

};

model Monoid<int> {

fun identity_elt() -> int@ { return 0; }

};

Model definitions, like all other kinds of definitions in G, may be enclosed in a module
thereby controlling the scope in which the model is visible. Model definitions may be im-
ported from another module with an import declaration or statement. Modules are de-
scribed in Section 4.4.

Parameterized models

A model may be parameterized: the identifiers in the angle brackets are type parameters
and the where clause introduces constraints. The following statement establishes that all
pointer types are models of InputIterator:

model <T> InputIterator<T*> {

type value = T;

type difference = ptrdiff_t;

};

Like generic functions, generic model definitions are type checked independently of any
instantiation, so no type dependent operations are allowed on objects of type T, except as
specified in the where clause.

The following is another example of a parameterized model, this time with a where

clause. This model definition says that the reverse_iterator adaptor is a model of
InputIterator if the underlying Iter type is a model of BidirectionalIterator. We
discuss reverse_iterator is more detail in Section 6.1.5.

model <Iter> where { BidirectionalIterator<Iter> }

InputIterator< reverse_iterator<Iter> > {

type value = BidirectionalIterator<Iter>.value;

type difference = BidirectionalIterator<Iter>.difference;

};

4.4 Modules

The syntax for modules is shown in Figure 4.6. The important features of modules in G are
import declarations for models and access control (public and private). An interesting
extension would be parameterized modules, but we leave that for future work.

CHAPTER 4. THE DESIGN OF G 79

Figure 4.6: Syntax for modules.

decl ::= module mid { decl . . . } module
scope mid = scope; scope alias
import scope.c<τ>; import model
public: decl . . . public region
private: decl . . . private region

4.5 Type equality

There are several language constructions in G that make it difficult to decide when two
types are equal. Generic functions complicate type equality because the names of the type
parameters do not matter. So, for example, the following two function types are equal:

fun<T>(T)->T = fun<U>(U)->U

The order of the type parameters does matter (because a generic function may be explicitly
instantiated) so the following two types are not equal.

fun<S,T>(S,T)->T 6= fun<T,S>(S,T)->T

Inside the scope of a generic function, type parameters with different names are assumed
to be different types (this is a conservative assumption). So, for example, the following
program is ill formed because variable a has type S whereas function f is expecting an
argument of type T.

fun foo<S, T>(S a, fun(T)->T f) -> T { return f(a); }

Associated types and same-type constraints also affect type equality. First, if there is a
model definition in the current scope such as:

model C<int> { type bar = bool; };

then we have the equality C<int>.bar = bool.
Inside the scope of a generic function, same-type constraints help determine when two

types are equal. For example, the following version of foo is well formed:

fun foo_1<T, S> where { T == S } (fun(T)->T f, S a) -> T { return f(a); }

There is a subtle difference between the above version of foo and the following one. The
reason for the difference is that same-type constraints are checked after type argument
deduction.

fun foo_2<T>(fun(T)->T f, T a) -> T { return f(a); }

fun id(double x) -> double { return x; }

fun main() -> int@ {

foo_1(id, 1.0); // ok

CHAPTER 4. THE DESIGN OF G 80

foo_1(id, 1); // error: Same type requirement violated, double != int

foo_2(id, 1.0); // ok

foo_2(id, 1); // ok

}

In the first call to foo_1 the compiler deduces T=double and S=double from the arguments
id and 1.0. The compiler then checks the same-type constraint T == S, which in this case is
satisfied. For the second call to foo_1, the compiler deduces T=double and S=int and then
the same-type constraint T == S is not satisfied. The first call to foo_2 is straightforward.
For the second call to foo_2, the compiler deduces T=double from the type of id and the
argument 1 is implicitly coerced to double.

Type equality is a congruence relation, which means several things. First it means type
equality is an equivalence relation, so it is reflexive, transitive, and symmetric. Thus, for
any types ρ, σ, and τ we have

• τ = τ

• σ = τ implies τ = σ

• ρ = σ and σ = τ implies ρ = τ

For example, the following function is well formed:

fun foo<R,S,T> where { R == S, S == T}

(fun(T)->S f, R a) -> T { return f(a); }

The type expression R (the type of a) and the type expression T (the parameter type of f)
both denote the same type.

The second aspect of type equality being a congruence is that it propagates in certain
ways with respect to type constructors. For example, if we know that S = T then we also
know that fun(S)->S = fun(T)->T. Similarly, if we have defined a generic struct such as:

struct bar<U> { };

then S = T implies bar<S> = bar<T>. The propagation of equality also goes in the other
direction. For example, bar<S> = bar<T> implies that S = T. The congruence extends to
associated types. So S = T implies C<S>.bar = C<T>.bar. However, for associated types,
the propagation does not go in the reverse direction. So C<S>.bar = C<T>.bar does not
imply that S = T. For example, given the model definitions

model C<int> { type bar = bool; };

model C<float> { type bar = bool; };

we have C<int>.bar = C<float>.bar but this does not imply that int = float.
Like type parameters, associated types are in general assumed to be different from one

another. So the following program is ill-formed:

concept C<U> { type bar; };

fun foo<S, T> where { C<S>, C<T> } (C<S>.bar a, fun(C<T>.bar)->T f) -> T

{ return f(a); }

The next program is also ill formed.

CHAPTER 4. THE DESIGN OF G 81

concept D<U> { type bar; type zow; };

fun foo<T> where { D<T> } (D<T>.bar a, fun(D<T>.zow)->T f) -> T

{ return f(a); }

In the compiler for G we use the congruence closure algorithm by Nelson and Op-
pen [142] to keep track of which types are equal. The algorithm is efficient: O(n log n)
time complexity on average, where n is the number of types. It has O(n2) time complexity
in the worst case. This can be improved by instead using the Downey-Sethi-Tarjan algorithm
which is O(n log n) in the worst case [54].

4.6 Function application and implicit instantiation

The syntax for calling functions (or polymorphic functions) is the C-style notation:

expr ::= expr(expr, . . .) function application

Type arguments for the type parameters of a polymorphic function need not be supplied at
the call site: G deduces the type arguments by unifying the types of the arguments with
the types of the parameters. The type arguments are substituted into the where clause and
then each of the constraints must be satisfied in the current lexical scope. The following is
a program that calls the accumulate function, applying it to iterators of type int*.

fun main() -> int@ {

let a = new int[8];

a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4; a[4] = 5;

let s = accumulate(a, a + 5);

if (s == 15) return 0;

else return -1;

}

Type arguments of a polymorphic function may be specified explicitly with the following
syntax.

expr ::= expr<|type, . . . |> explicit instantiation

Following Mitchell [129] we view implicit instantiation as a kind of coercion that
transforms an expression of one type to another type. In the example above, the accumulate
function was coerced from

fun <Iter> where { InputIterator<Iter>, Monoid<InputIterator<Iter>.value> }

(Iter@, Iter) -> InputIterator<Iter>.value@

to

fun (int*@, int*) -> InputIterator<int*>.value@

CHAPTER 4. THE DESIGN OF G 82

There are several kinds of implicit coercions in G, and together they form a subtyping
relation ≤. The subtyping relation is reflexive and transitive. Like C++, G contains some
bidirectional implicit coercions, such as float ≤ double and double ≤ float, so ≤ is not
anti-symmetric. The subtyping relation for G is defined by a set of subtyping rules. The
following is the subtyping rule for generic function instantiation.

(INST) Γ satisfies c
Γ ` fun<α>where{c}(σ)->τ ≤ [ρ/α](fun(σ)->τ)

The type parameters α are substituted for type arguments ρ and the constraints in the where

clause must be satisfied in the current environment. To apply this rule, the compiler must
choose the type arguments. We call this type argument deduction and discuss it in more
detail momentarily. Constraint satisfaction is discussed in Section 4.6.2.

The subtyping relation allows for coercions during type checking according to the sub-
sumption rule:

(SUB)
Γ ` e : σ Γ ` σ ≤ τ

Γ ` e : τ

The (SUB) rule is not syntax-directed so its addition to the type system would result in a
non-deterministic type checking algorithm. The standard workaround is to omit the above
rule and instead allow coercions in other rules of the type system such as the rule for
function application. The following is a rule for function application that allows coercions
in both the function type and in the argument types.

(APP)
Γ ` e1 : τ1 Γ ` e2 : σ2 Γ ` τ1 ≤ fun(σ3)->τ2 Γ ` σ2 ≤ σ3

Γ ` e1(e2) : τ2

4.6.1 Type argument deduction

As mentioned above, the type checker must guess the type arguments ρ to apply the (INST)
rule. In addition, the (APP) rule includes several types that appear from nowhere: σ3 and
τ2. The problem of deducing these types is equivalent to trying to find solutions to a system
of inequalities. Consider the following example program.

fun apply<T>(fun(T)->T f, T x) -> T { return f(x); }

fun id<U>(U a) -> U { return a; }

fun main() -> int@ { return apply(id, 0); }

The application apply(id, 0) type checks if there is a solution to the following system:

fun<T>(fun(T)->T, T) -> T ≤ fun(α, β) -> γ
fun<U>(U)->U ≤ α
int ≤ β

The following type assignment is a solution to the above system.

α = fun(int)->int

β = int

γ = int

CHAPTER 4. THE DESIGN OF G 83

Unfortunately, not all systems of inequalities are as easy to solve. In fact, with Mitchell’s
original set of subtyping rules, the problem of solving systems of inequalities was proved
undecidable by Tiuryn and Urzyczyn [187]. There are several approaches to dealing with
this undecidability.

Remove the (ARROW) rule.

Mitchell’s subtyping relation included the usual co/contravariant rule for functions.

(ARROW)
σ2 ≤ σ1 τ1 ≤ τ2

fun(σ1)->τ1 ≤ fun(σ2)->τ2

The (ARROW) rule is nice to have because it allows a function to be coerced to a different
type so long as the parameter and return types are coercible in the appropriate way. In
the following example the standard ilogb function is passed to foo even though it does
not match the expected type. The (ARROW) rule allows for this coercion because int is
coercible to double.

include "math.h"; // fun ilogb(double x) -> int;

fun foo(fun(int)->int@ f) -> int@ { return f(1); }

fun main() -> int@ { return foo(ilogb); }

However, the (ARROW) rule is one of the culprits in the undecidability of the subtyping
problem; removing it makes the problem decidable [187]. The language MLFof Le Botlan
and Remy [24] takes this approach, and for the time being, so does G. With this restriction,
type argument deduction is reduced to the variation on unification used in MLF. Instead of
working on a set of variable assignments, this unification algorithm keeps track of either a
type assignment or the tightest lower bound seen so far for each variable. The (APP) rule is
reformulated as follows to use this unify algorithm.

(APP)

Γ ` e1 : τ1 Γ ` e2 : σ2

Q = {τ1 ≤ α, σ2 ≤ β} Q′ = unify(α, fun(β)->γ, Q)
Γ ` e1(e2) : Q′(γ)

In languages where functions are often written in curried form, it is important to provide
even more flexibility than in the above (APP) rule by postponing instantiation, as is done in
MLF. Consider the apply example again, but this time written in curried form.

fun apply<T>(fun(T)->T f) -> (fun(T)->T)@ {

return fun(T x) { return f(x); };

}

fun id<U>(U a) -> U { return a; }

fun main() -> int@ { return apply(id)(0); }

In the first application apply(id) we do not yet know that T should be bound to int. The
instantiation needs to be delayed until the second application apply(id)(0). In general,
each application contributes to the system of inequalities that needs to be solved to instan-
tiate the generic function. In MLF, the return type of each application encodes a partial

CHAPTER 4. THE DESIGN OF G 84

system of inequalities. The inequalities are recorded in the types as lower bounds on type
parameters. The following is an example of such a type.

fun<U> where { fun<T>(T)->T ≤ U } (U) -> U

Postponing instantiation is not as important in G because functions take multiple parameters
and currying is seldom used.

Removal of the arrow rule means that, in some circumstances, the programmer would
have to wrap a function inside another function before passing the function as an argument.

Restrict the language to predicative polymorphism

Another alternative is to restrict the language so that only monotypes (non-generic types)
may be used as the type arguments in an instantiation. This approach is used in by Oder-
sky and Läufer [148] and also by Peyton Jones and Shields [100]. However, this approach
reduces the expressiveness of the language for the sake of the convenience of implicit in-
stantiation.

Restrict the language to second-class polymorphism

Restricting the language of types to disallow polymorphic types nested inside other types
is another way to make the subtyping problem decidable. With this restriction the sub-
typing problem is solved by normal unification. Languages such as SML and Haskell 98
use this approach. Like the restriction to predicative polymorphism, this approach reduces
the expressiveness of the language for the sake of implicit instantiation (and type infer-
ence). However, there are many motivating use cases for first-class polymorphism [42], so
throwing out first-class polymorphism is not our preferred alternative.

Use a semi-decision procedure

Yet another alternative is to use a semi-decision procedure for the subtyping problem. The
advantage of this approach is that it allows implicit instantiation to work in more situations,
though it is not clear whether this extra flexibility is needed in practice. The down side is
that there are instances of the subtyping problem where the procedure diverges and never
returns with a solution.

4.6.2 Model lookup (constraint satisfaction)

The basic idea behind model lookup is simple though some of the details are a bit compli-
cated. Consider the following program containing a generic function foo with a require-
ment for C<T>.

concept C<T> { };

model C<int> { };

CHAPTER 4. THE DESIGN OF G 85

fun foo<T> where { C<T> } (T x) -> T { return x; }

fun main() -> int@ {

return foo(0);// lookup model C<int>

}

At the call foo(0), the compiler deduces the binding T=int and then seeks to satisfy the
where clause, with int substituted for T. In this case the constraint C<int> must be satisfied.
In the scope of the call foo(0) there is a model declaration for C<int>, so the constraint is
satisfied. We call C<int> the model head.

In G, a model definition may itself be parameterized and the type parameters con-
strained by a where clause. Figure 4.7 shows a typical example of a parameterized model.
The model definition in the example says that for any type T, list<T> is a model of
Comparable if T is a model of Comparable. Thus, a model definition is an inference rule,
much like a Horn clause [84] in logic programming. For example, a model definition of the
form

model <T1,...,Tn> where { P1, ..., Pn }

Q { ... };

corresponds to the Horn clause:

(P1 and . . . and Pn) implies Q

The model definitions from the example in Figure 4.7 could be represented in Prolog with
the following two rules:

comparable(int).

comparable(list(T)) :- comparable(T).

The algorithm for model lookup is essentially a logic programming engine: it performs
unification and backward chaining (similar to how instance lookup is performed in Haskell).
Unification is used to determine when the head of a model definition matches. For example,
in Figure 4.7, in the call to generic_foo the constraint Comparable< list<int> > needs
to be satisfied. There is a model definition for Comparable< list<T> > and unification of
list<int> and list<T> succeeds with the type assignment T = int. However, we have
not yet satisfied Comparable< list<int> > because the where clause of the parameterized
model must also be satisfied. The model lookup algorithm therefore proceeds recursively
and tries to satisfy Comparable<int>, which in this case is trivial. This process is called
backward chaining: it starts with a goal (a constraint to be satisfied) and then applies
matching rules (model definitions) to reduce the goal into subgoals. Eventually the subgoals
are reduced to facts (model definitions without a where clause) and the process is complete.
As is typical of Prolog implementations, G processes subgoals in a depth-first manner.

It is possible for multiple model definitions to match a constraint. When this happens
the most specific model definition is used, if one exists. Otherwise the program is ill-formed.
We say that definition A is a more specific model than definition B if the head of A is a
substitution instance of the head of B and if the where clause of B implies the where clause

CHAPTER 4. THE DESIGN OF G 86

Figure 4.7: Example of parameterized model definition.

concept Comparable<T> {

fun operator==(T,T)->bool@;

};

model Comparable<int> { };

struct list<T> { /*...*/ };

model <T> where { Comparable<T> }

Comparable< list<T> > {

fun operator==(list<T> x, list<T> y) -> bool@ { /*...*/ }

};

fun generic_foo<C> where { Comparable<C> } (C a, C b) -> bool@

{ return a == b; }

fun main() -> int@ {

let l1 = @list<int>(); let l2 = @list<int>();

generic_foo(l1,l2);

return 0;

}

CHAPTER 4. THE DESIGN OF G 87

of A. In this context, implication means that for every constraint c in the where clause of A,
c is satisfied in the current environment augmented with the assumptions from the where

clause of B.
G places very few restrictions on the form of a model definition. The only restriction

is that all type parameters of a model must appear in the head of the model. That is,
they must appear in the type arguments to the concept being modeled. For example, the
following model definition is ill formed because of this restriction.

concept C<T> { };

model <T,U> C<T> { }; // ill formed, U is not in an argument to C

This restriction ensures that unifying a constraint with the model head always produces
assignments for all the type parameters.

Horn clause logic is by nature powerful enough to be Turning-complete. For example, it
is possible to express general recursive functions. The program in Figure 4.8 computes the
Ackermann function at compile time by encoding it in model definitions. This power comes
at a price: determining whether a constraint is satisfied by a set of model definitions is in
general undecidable. Thus, model lookup is not guaranteed to terminate and programmers
must take some care in writing model definitions. We could restrict the form of model defi-
nitions to achieve decidability however there are two reasons not to do so. First, restrictions
would complicate the specification of G and make it harder to learn. Second, there is the
danger of ruling out useful model definitions.

4.7 Function overloading and concept-based overloading

Multiple functions with the same name may be defined and static overload resolution is
performed to decide which function to invoke at a particular call site. The resolution de-
pends on the argument types and on the model definitions in scope. When more than one
overload may be called, the most specific overload is called if one exists. The basic overload
resolution rules are based on those of C++.

In the following simple example, the second foo is called.

fun foo() -> int@ { return -1; }

fun foo(int x) -> int@ { return 0; }

fun foo(double x) -> int@ { return -1; }

fun foo<T>(T x) -> int@ { return -1; }

fun main() -> int@ { return foo(3); }

The first foo has the wrong number of arguments, so it is immediately dropped from con-
sideration. The second and fourth are given priority over the third because they can exactly
match the argument type int (for the fourth, type argument deduction results in T=int),
whereas the third foo requires an implicit coercion from int to double. The second foo is
favored over the fourth because it is more specific.

A function f is a more specific overload than function g if g is callable from f but

CHAPTER 4. THE DESIGN OF G 88

Figure 4.8: The Ackermann function encoded in model definitions.

struct zero { };

struct succ<n> { };

concept Ack<x,y> { type result; };

model <y> Ack<zero,y> { type result = succ<y>; };

model <x> where { Ack<x, succ<zero> > }

Ack<succ<x>, zero> { type result = Ack<x, succ<zero> >.result; };

model <x,y> where { Ack<succ<x>,y>, Ack<x, Ack<succ<x>,y>.result > }

Ack< succ<x>,succ<y> > {

type result = Ack<x, Ack<succ<x>,y>.result >.result;

};

fun foo(int) { }

fun main() -> int@ {

type two = succ< succ<zero> >; type three = succ<two>;

foo(@Ack<two,three>.result());

// error: Type (succ<succ<succ<succ<succ<succ<succ<succ<succ<zero>>>>>>>>>)

// does not match type (int)

}

CHAPTER 4. THE DESIGN OF G 89

not vice versa. A function g is callable from function f if you could call g from inside f ,
forwarding all the parameters of f as arguments to g, without causing a type error. More
formally, if f has type fun<tf>whereCf (σf)->τf and g has type fun<tg>whereCg(σg)->τg

then g is callable from f if

σf ≤ [tg/ρ]σg and Cf implies [tg/ρ]Cg

for some ρ.
In general there may not be a most specific overload in which case the program is ill-

formed. In the following example, both foo’s are callable from each other and therefore
neither is more specific.

fun foo(double x) -> int@ { return 1; }

fun foo(float x) -> int@ { return -1; }

fun main() -> int@ { return foo(3); }

In the next example, neither foo is callable from the other so neither is more specific.

fun foo<T>(T x, int y) -> int@ { return 1; }

fun foo<T>(int x, T y) -> int@ { return -1; }

fun main() -> int@ { return foo(3, 4); }

Concept-based overloading

In Section 2.2.1 we showed how to accomplish concept-based overloading of several ver-
sions of advance using the tag dispatching idiom in C++. Figure 4.9 shows three over-
loads of advance implemented in G. The signatures for these overloads are the same
except for their where clauses. The concept BidirectionalIterator is a refinement of
InputIterator, so the second version of advance is more specific than the first. The concept
RandomAccessIterator is a refinement of BidirectionalIterator, so the third advance is
more specific than the second.

The code in Figure 4.10 shows two calls to advance. The first call is with an
iterator for a singly-linked list. This iterator is a model of InputIterator but not
RandomAccessIterator; the overload resolution chooses the first version of advance. The
second call to advance is with a pointer which is a RandomAccessIterator so the second
version of advance is called.

Concept-based overloading in G is entirely based on static information available during
the type checking and compilation of the call site. This presents some difficulties when
trying to resolve to optimized versions of an algorithm from within another generic function.
Section 6.1.3 discusses the issues that arise and presents an idiom that ameliorates the
problem.

4.8 Generic user-defined types

The syntax for polymorphic classes, structs, and unions is defined below.

CHAPTER 4. THE DESIGN OF G 90

Figure 4.9: The advance algorithms using concept-based overloading.

fun advance<Iter> where { InputIterator<Iter> }

(Iter! i, InputIterator<Iter>.difference@ n) {

for (; n != zero(); --n)

++i;

}

fun advance<Iter> where { BidirectionalIterator<Iter> }

(Iter! i, InputIterator<Iter>.difference@ n) {

if (zero() < n)

for (; n != zero(); --n)

++i;

else

for (; n != zero(); ++n)

--i;

}

fun advance<Iter> where { RandomAccessIterator<Iter> }

(Iter! i, InputIterator<Iter>.difference@ n) {

i = i + n;

}

Figure 4.10: Example calls to advance and overload resolution.

use "slist.g";

use "basic_algorithms.g"; // for copy

use "iterator_functions.g"; // for advance

use "iterator_models.g"; // for iterator models for int*

fun main() -> int@ {

let sl = @slist<int>();

push_front(1, sl); push_front(2, sl); push_front(3, sl); push_front(4, sl);

let in_iter = begin(sl);

advance(in_iter, 2); // calls version 1, linear time

let rand_iter = new int[4];

copy(begin(sl), end(sl), rand_iter);

advance(rand_iter, 2); // calls version 3, constant time

if (*in_iter == *rand_iter) return 0;

else return -1;

}

CHAPTER 4. THE DESIGN OF G 91

decl ::= class clid polyhdr {clmem . . . }; class
struct clid polyhdr {type id; . . . }; struct
union clid polyhdr {type id; . . . }; union

clmem ::= type id; data member
polyhdr clid(type mode [id], . . .){stmt . . . } constructor
�clid(){stmt . . . } destructor

clid class name

In G, as in C++, classes enable the definition of abstract data types. Classes consist of data
members, constructors, and a destructor. There are no member functions; normal functions
are used instead. Data encapsulation (public/private) is specified at the module level
instead of inside the class.

In G, structs are distinct from classes, and merely provide a mechanism for composing
data, i.e., structs are like Pascal records. Unions are provided for situations where the type
of data may vary at run-time and data-directed programming is necessary.

The type of a class, struct, or union is referred to using the syntax below. Such a type
is well-formed if the type arguments are well-formed and if the requirements in its where

clause are satisfied in the current scope.

type ::= clid [<type, . . .>]

4.9 Function expressions

The following is the syntax for function expressions and function types.

expr ::= fun polyhdr (type mode [id], . . .) id=expr, . . . ({stmt . . .}|:expr)
type ::= fun polyhdr (type mode, . . .)[-> type mode]

The body of a function expression may be either a sequence of statements enclosed in braces
or a single expression following a colon. The return type of a function expression is deduced
from the return statements in the body, or from the single expression.

The following example computes the sum of an array using for_each and a function
expression. 1

1Of course, the accumulate function is the appropriate algorithm for this computation, but then the example
would not demonstrate the use of function expressions.

CHAPTER 4. THE DESIGN OF G 92

fun main() -> int@ {

let n = 8;

let a = new int[n];

for (let i = 0; i != n; ++i)

a[i] = i;

let sum = 0;

for_each(a, a + n, fun(int x) p=&sum { *p = *p + x; });

return sum - (n * (n-1))/2;

}

The expression

fun(int x) p=&sum { *p = *p + x; }

creates a function object. The body of a function expression is not lexically scoped, so a
direct use of sum in the body would be an error. The initialization p=&sum both declares a
data member inside the function object with type int* and copy constructs the data member
with the address &sum.

The primary motivation for non-lexically scoped function expressions is to keep the de-
sign close to C++ so that function expressions can be directly compiled to function objects in
C++. However, this design has some drawbacks as we discovered during our implementation
of the STL. Section 6.1.6 discusses the problem we encountered.

First-class polymorphism

At the beginning of this chapter we mentioned that G is based on System F. One of the
hallmarks of System F is that it provides first class polymorphism. That is, polymorphic
objects may be passed to and returned from functions. This is in contrast to the ML family
of languages, where polymorphism is second class. In Section 4.6 we discussed how the
restriction to second-class polymorphism simplifies type argument deduction, reducing it
to normal unification. However, we prefer to retain first-class polymorphism and use the
somewhat more complicated variant of unification from MLF.

One of the reasons to retain first-class polymorphism is to retain the expressiveness of
function objects in C++. A function object may have member function templates and may
therefore by used polymorphically. The following program is a simple use of first-class
polymorphism in G. Note that f is applied to arguments of different types.

fun foo(fun<T>(T)->T f) -> int@ { return f(1) + d2i(f(-1.0)); }

fun id<T>(T x) -> T { return x; }

fun main() -> int@ { return foo(id); }

4.10 Summary

This section reviews how the design of G fulfills the goals from Chapter 1 and the criteria set
forth in Section 2.2.4. In Chapter 1 we discussed the importance of separate type checking
and separate compilation for the production and use of generic libraries. The design for

CHAPTER 4. THE DESIGN OF G 93

G provides both separate type checking and separate compilation by basing its generics on
parametric polymorphism. The essential property for separate type checking is that generic
functions are checked under the conservative assumption that the type parameters could be
any type that satisfies the type requirement. Also, to enable separate compilation, the only
type-dependent operations that are allowed are those specified by the where clause.

In Section 2.2.4 we listed nine specific language requirements for generic programming.
Each of those requirements is satisfied by the design for G.

1. G provides generic functions with where clauses to express constraints on how the
generic functions may be instantiated, and dually to express assumptions that may be
used inside the generic functions. Type checking is performed independently of any
instantiation.

2. G includes concept definitions for grouping and organizing requirements. Concepts
are composable via refinements and via nested requirements.

3. Concepts contain requirements for function signatures, associated types, and same-
type constraints. This chapter did not discuss conversion requirements, but that is
because they are trivial to express in G. A user-defined implicit conversion may be
created by defining a function named coerce. Thus a conversion requirement is ex-
pressed with a function signature in a concept.

4. The design for G provides implicit model passing via model definitions, where clauses,
and a model lookup algorithm similar to a logic programming engine.

5. Type argument deduction is provided in G by borrowing the approach of MLFwhich
is compatible with the presence of first class polymorphism.

6. Concept-based dispatching is provided through the function overloading rules that
take the where clause into consideration when determining the most specific overload.

7. Conditional modeling is needed for generic adaptors such as reverse_iterator (Sec-
tion 2.2.3). Conditional modeling is provided in G by parameterized model definitions
with where clauses.

8. G includes a simple class feature with constructors and a destructor that enables the
creation of abstract data types.

It is also instructive to evaluate the design of G with respect to the criteria from our
previous study comparing support for generic programming in several languages [69]. Ta-
ble 4.1 shows the results of that study but with a new column for G. The table also includes
a new row for concept-based dispatching. The following describes the criteria and explains
how it is fulfilled in the design of G.

Multi-type concepts are concepts with multiple type parameters. The syntax for concepts
in G, as shown in Figure 4.4, provides for multiple type parameters.

CHAPTER 4. THE DESIGN OF G 94

C++ SML Haskell Java C# G
Multi-type concepts - ∗ # #
Multiple constraints - G#

Associated type access G# G# G#
Constraints on assoc. types - G# G#

Retroactive modeling - # #
Type aliases # #

Separate compilation #
Implicit instantiation #
Concept dispatching # # # # G#

∗Using the multi-parameter type class extension to Haskell 98 [149].

Table 4.1: The level of support for generic programming in several languages. The rating
of “-” in the C++ column indicates that while C++ does not explicitly support the feature, one
can still program as if the feature were supported due to the flexibility of C++ templates.

Multiple constraints refers to the ability to place multiple constraints on a type parameter.
This is supported in G in that a where clause may include any number of requirements
each each requirement may constrain one or more of the type parameters. See Fig-
ure 4.1 for the syntax of where clauses.

Associated type access refers to the ease in which types are mapped to other types within
the context of a generic function. In G this is accomplished with the dot notation, as
shown in Figure 4.3.

Retroactive modeling indicates the ability to add new modeling relationships after a type
has been defined. This is supported in G because model definitions (see Figure 4.5)
are separate from class definitions.

Type aliases indicates whether a mechanism for creating shorter names for types is pro-
vided. G provides type aliases, though we have not yet discussed them. The syntax
for type aliases is shown in Appendix A and the compilation of type aliases is given in
Section 5.2.4 and 5.2.5.

Separate compilation indicates whether generic functions are type-checked and compiled
independently from their use. G provides both separate type checking and separate
compilation.

Implicit instantiation indicates that type arguments are deduced without requiring ex-
plicit syntax for instantiation. How implicit instantiation is performed in G is ex-
plained in Section 4.6.

Concept-based dispatching indicates whether the language provides facilities for dis-
patching between different versions of an algorithm based on which concepts are
modeled by the input.

5
The definition and compilation of G

There are many approaches to defining the meaning of phrases in a programming language.
The denotational approach maps a phrase to an object in some pre-defined formal domain,
such as mathematical sets or functions. The operational approach describes how a phrase
causes an abstract machine to change states, or describes what value will result from evalu-
ating the phrase. The translational approach maps phrases to phrases in another (hopefully
well-defined) language. The axiomatic approach to defining programming languages as-
signs a predicate to each point between statements in a program and describes how each
kind of phrase transforms these predicates. Each of the approaches is good for particular
purposes. For example, an axiomatic semantics is good for proving the correctness of pro-
grams, whereas an operational semantics is good for giving programmers a mental model
of program execution.

In this chapter we use the translational approach: we describe a translation from G to
C++. There are several reasons for this choice. The first is a matter of economy of expression:
G is a full-featured language so a denotational or operation semantics for G would be rather
large. On the other hand, G is quite similar to C++, so defining G in terms of C++ reuses much
of the effort that went into defining C++. Another reason to use the translational approach is
that the semantics of Haskell type classes is defined by translation, either translating to an
ML-like language [196] or to System F [78], and it is easier to compare G with Haskell if the
semantics are in the same style. The primary reason for choosing the translational approach
is that it also provides an implementation of a prototype compiler for the language. This
compiler was useful in testing the design of G with the implementation of the STL and BGL,
which is described in Chapter 6.

There are several disadvantages to defining G by translation to C++. First, the C++ stan-
dard is a rather informal description of the language. Second, the translation over-specifies
the language G, after all, an implementation of G does not have to translate to C++, it could

95

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 96

instead be written as an interpreter, or could translate to some other language such as C
or even directly to assembly. Of course, what is intended is that an implementation of G
should be observationally equivalent to the translation described in this chapter, for some
suitably loose definition of observational equivalence.

The first section gives an overview of the translation, describing the C++ output from
translating each of the major language features of G: generic functions, concept, models,
and generic classes. The second section describes the translation to C++ in more detail.

The full grammar for G is defined in Appendix A.

5.1 Overview of the translation to C++

This section gives an informal description of the translation from G to C++. The focus is on
what is output from the translation. The how is described in Section 5.2. The basic idea
of the translation is the same as for Haskell type classes [78, 196]. The implicit passing of
models to generic functions is translated into explicit dictionary passing, where a “dictio-
nary” is a data structure holding the functions that implement the requirements of a concept
for a particular type. Thus a dictionary is a run-time representation of a model. Mark Jones
introduces a nice way to think about dictionaries in his Ph.D. thesis [96]. A concept can be
thought of as a predicate on types, so Comparable<int> is a proposition which states that
Comparable is true for the type int. In constructive logic, a proposition is accompanied
by evidence that demonstrates that the proposition is true. Analogously, we can think of a
dictionary as the evidence that a type models a concept.

While the basic idea is the same, the translation described here differs from that of
Haskell in the following respects.

• Concepts and models in G differ in several respects from type classes, especially with
regard to scoping rules and the presence of associated types in G.

• The target language is C++ instead of ML [196] or System F [78]. This impacts the
translation because C++ has neither parametric polymorphism nor closures, both of
which are used extensively in the translations for Haskell. C++ has templates, but we
do not use them in the translation of generic functions because that would not provide
separate compilation.

• The translation does not perform type inference.

Instead of using parametric polymorphism and closures in the target language, we use
a combination of dynamic types and object-oriented features such as abstract base classes
(interfaces) and derived classes. In some sense, this translation can be seen as establish-
ing a relationship between generic programming and object-oriented programming. The
translation also shows that it is possible to do generic programming in an object-oriented
language. However, the compilation is non-trivial so without it the programmer would have
to do considerable work and would be giving up the static type safety of G.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 97

The translator mangles identifiers to prevent name clashes and to assign different names
to function overloads. However, for the sake of readability, identifiers are not mangled in
the excerpts shown in this section.

5.1.1 Generic functions

To achieve separate compilation, a generic function must be compiled to a single function
that can work on many different types of input. This presents a small challenge for compil-
ing to C++ because C++ is a statically typed language. In particular, we need to pass objects
of different types as arguments to the same parameter. For example, we need to pass objects
of type int and double to parameter x of the following id function.

fun id<T>(T x) -> T { return x; }

fun main() -> int@ {

let xi = 1; let yd = 1.0;

let x = id(xi); let y = id(yd);

return 0;

}

We use dynamic types to allow arguments of different types to be passed to the same pa-
rameter. In particular, we use a family of classes based on the Boost any class. (This class is
similar to the any type of CLU [117].) The any class is used for pass-by-value, any_ref for
mutable pass-by-reference, and any_const_ref for constant pass-by-reference. Figure 5.1
shows the implementation of the any class; the implementation of the other members of
the any family is similar. The following is the C++ translation of the above program.

any_const_ref id(any_const_ref x) { return x; }

int main() {

int xi = 1; double yd = 1.0;

int const& x = any_cast<int const&>(id(xi));

double const& y = any_cast<double const&>(id(yd));

return 0;

}

The id function is translated to a normal (non-template) function with type T replaced by
any_const_ref (because pass by const reference is the default passing mode). The coer-
cion from int to any_const_ref is handled implicitly by a constructor in the any_const_ref
class and the coercion in the other direction is accomplished by a cast that throws an ex-
ception if the actual type does not match the target type.

Alternatively, we could use void* instead of any and a C-style cast instead of any_cast.
However, that approach would complicate the translation, requiring code to be produced
for managing the lifetime of temporary objects.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 98

Figure 5.1: The C++ any Class

struct any_placeholder {

virtual ~placeholder() { }

virtual const std::type_info& type() const = 0;

virtual placeholder* clone() const = 0;

};

template<typename T>

struct any_holder : public any_placeholder {

any_holder(const T& value) : held(value) { }

virtual const std::type_info& type() const { return typeid(T); }

virtual any_placeholder* clone() const { return new any_holder(held); }

T held;

};

struct any {

template<typename T>

any(const T& value) : content(new any_holder<T>(value)) { }

any(const any& x) : content(x.content ? x.content->clone() : 0) { }

~any() { delete content; }

placeholder* content;

};

template<typename ValueType>

ValueType any_cast(to_type<ValueType>, const any& operand) {

if (operand->type() == typeid(ValueType))

return static_cast<any_holder<ValueType> *>(operand.content)->held;

else

throw bad_any_cast();

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 99

Function expressions

Anonymous functions expression in G are compiled to function objects in C++. Consider the
following program that creates a function and applies it to -1.

fun main() -> int@ {

let x = 1;

return fun(int y) mem=x { return mem + y; } (-1);

}

The C++ translation is

struct __functor_384 {

__functor_384(int mem) : mem(mem) { }

int operator()(int const& y) { return mem + y; }

int mem;

};

int main() {

int x = 1;

return (__functor_384(x))(-1);

}

A struct is defined with a function call operator containing the body of the function expres-
sion. The function expression itself is replaced by a call to the constructor of the struct. The
data member initialization mem=x in the G program translates to the data member mem in
the struct and its initialization in the constructor.

Function parameters, function types

A function may take another function as a parameter, such as parameter f in the following
apply function.

fun apply<S,T>(S x, fun(S)->T f) -> T { return f(x); }

Function pointers are a natural choice for translating G function types. However, function
objects like __functor_384 can not be passed as function pointers. We need a C++ type that
can be used for either function objects or built-in function pointers. The Boost Function
Library [22] provides a solution with its function class template. The following example
shows the use of function to declare a variable f that can hold a function pointer, such as
add, and later can hold a function object, such as an instance of sub.

int add(int x, int y) { return x + y; }

struct sub { int operator()(int x, int y) { return x - y; } };

int main() {

function<int(int,int)> f = add;

std::cout << f(1,2) << " ";

f = sub();

std::cout << f(1,2) << "\n";

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 100

}

// output is 3 -1

The following is the C++ translation of apply, using the function class template for the type
of parameter f.

any_const_ref apply(any_const_ref x,

function<any_const_ref (any_const_ref)> const& f)

{ return f(x); }

We call the apply function with the following deref function as the argument for pa-
rameter f.

fun deref<U>(U* x) -> U { return *x; }

Compiling pointers in generic functions, such as U* above, is somewhat challenging because
many pointer operations are type dependent. For example, to increment a pointer we must
know the size of the object pointed to, and the size depends on the type of the object. How-
ever, the information is not available when the generic function is compiled. The solution
we currently use is to extend the family of any classes to include any_ptr, any_ptr_ref, and
any_ptr_const_ref. (There are also classes for pointers to constant objects.) These classes
implement all of the usual pointer operations by dispatching through virtual functions to
the real type-specific pointer. The following is the translation of deref.

any_const_ref deref(any_ptr_const_ref x) { return *x; }

One major drawback of this approach is that we cannot define a constructor for any_ptr
with zero arguments (a so-called default constructor), for any_ptr must be initialized with
a real pointer (such as int*). Thus, to default construct a pointer inside a generic func-
tion, the where clause must include the requirement DefaultConstructible<T*>. In Sec-
tion 3.3.2 we discussed using intensional type analysis (run-time type passing) to access in-
formation about types. Instead of the any_ptr class we could instead use void* along with
the type information provided by the intensional type analysis to implement the pointer
operations. Such an approach has the potential to be more efficient in time (both compile
time and run time) and space (in code size) and also avoids the default construction prob-
lem (it is trivial to default construct a void*). We plan to experiment with this approach in
the future.

The following code shows a call to apply, to which we pass a pointer and the deref

function.

fun main() -> int@ {

let p = new int(0);

return apply(p, deref);

}

The deref function does not exactly match the expected type but it can implicitly instan-
tiate to the expected type: deref is coerced from the type fun<U>(U*)->U to fun(S)->T.
To accomplish this coercion, a function with type fun(S)->T is created that dispatches to
deref and applies the appropriate coercions to the arguments and return value. In general,

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 101

the inner function may be from an expression or a lexically bound variable, so the wrapper
function must hold onto it. C++ lacks real closures but function objects can be used instead.
The following is the function object wrapper that coerces deref.

struct __functor_412 {

function<any_const_ref (any_ptr_const_ref)> f;

__functor_412(function<any_const_ref (any_ptr_const_ref)> f): f(f) { }

~__functor_412() { }

any_const_ref operator()(any_const_ref x) {

return f(any_cast<any_ptr_const_ref>(x));

}

};

The translation for the main function is shown below.

int main() {

int* p = new int(0);

return any_cast<int const&>(apply(p, __functor_412(deref)));

}

5.1.2 Concepts and models

As mentioned above, the translation associates a dictionary with each model and passes
these dictionaries into generic functions. A convenient representation for dictionaries in C++

is objects with virtual function tables. We translate each concept to an abstract base class,
and each model to a derived class with a singleton instance that will act as the dictionary.
The LessThanComparable concept serves as a simple example.

concept LessThanComparable<X> {

fun operator<(X, X) -> bool@;

fun operator<=(X a, X b) -> bool@ { return not (b < a); }

fun operator>(X a, X b) -> bool@ { return b < a; }

fun operator>=(X a , X b) -> bool@ { return not (a < b); }

};

The following is the corresponding C++ abstract base class. Function signatures in the con-
cept are translated to pure virtual functions and function definitions are translated to virtual
functions (that may be overridden in derived classes.)

struct LessThanComparable {

virtual bool __less_than(any_const_ref p, any_const_ref p) = 0;

virtual bool __less_equal(any_const_ref a, any_const_ref b)

{ return ! __less_than(b, a); }

virtual bool __greater_than(any_const_ref a, any_const_ref b)

{ return __less_than(b, a); }

virtual bool __greater_equal(any_const_ref a, any_const_ref b)

{ return ! __less_than(a, b)); }

};

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 102

A model definition translates to a derived class with a singleton instance. The following
definition establishes that int is a model of LessThanComparable.

model LessThanComparable<int> { };

For this model, all of the operations are implemented by the built-in comparisons for int.
Thus, the implementation of the each virtual function coerces the arguments to int and
then applies the built-in operator.

struct model_LessThanComparable_int : public LessThanComparable {

virtual bool __less_than(any_const_ref a, any_const_ref b)

{ return any_cast<int const&>(a) < any_cast<int const&>(b); }

virtual bool __less_equal(any_const_ref a, any_const_ref b)

{ return any_cast<int const&>(a) <= any_cast<int const&>(b); }

virtual bool __greater_than(any_const_ref a, any_const_ref b)

{ return any_cast<int const&>(a) > any_cast<int const&>(b); }

virtual bool __greater_equal(any_const_ref a, any_const_ref b)

{ return any_cast<int const&>(a) >= any_cast<int const&>(b); }

};

The following is a singleton instance of the model class that is passed to generic functions,
such as minimum, to satisfy its requirement for the model LessThanComparable<int>.

LessThanComparable* __LessThanComparable_int = new model_LessThanComparable_int();

5.1.3 Generic functions with constraints

A generic function in G is translated to a normal C++ function with parameters for dictio-
naries corresponding to the models required by the where clause. Calling this C++ function
corresponds to instantiating the generic function. The result of the call is a specialized
function that can then be applied to the normal arguments. The generic minimum function
below has a where clause that requires T to model LessThanComparable. Inside the generic
function this capability is used to compare parameters a and b.

fun minimum<T> where { LessThanComparable<T> }

(T a, T b) -> T {

if (b < a) return b;

else return a;

}

The following code shows an explicit instantiation of minimum followed by a function appli-
cation. These two steps are combined when implicit instantiation is used but it is easier to
understand them as separate steps.

fun main() -> int@ {

let m = minimum<|int|>;

return m(0,1);

}

The translated minimum function is shown below.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 103

function<any_const_ref (any_const_ref, any_const_ref)>

minimum(LessThanComparable* __LessThanComparable_T) {

return __functor_550(minimum, __LessThanComparable_T);

}

The body of the minimum function is placed in the operator() of __functor_550 and the
use of operator< inside minimum is translated to __LessThanComparable_T->__less_than.
__functor_550 includes the function minimum as a data member to allow for recursion in
the body of minimum, though in this case there is no recursion.

struct __functor_550 {

typedef function<function<any_const_ref (any_const_ref, any_const_ref)>

(LessThanComparable*)> fun_type;

fun_type minimum;

LessThanComparable* __LessThanComparable_T;

__functor_550(fun_type minimum, LessThanComparable* __LessThanComparable_T)

: minimum(minimum), __LessThanComparable_T(__LessThanComparable_T) { }

~__functor_550() { }

any_const_ref operator()(any_const_ref a, any_const_ref b) {

if (__LessThanComparable_T->__less_than(b, a))

return b;

else

return a;

}

};

The instantiation (minimum<|int|> is translated to an application of the minimum func-
tion to the dictionary corresponding to the model required by its where clause, in this case
__LessThanComparable_int, followed by an application of __functor_551 to handle the
coercions from int const& to any_const_ref and back.

__functor_551(minimum(__LessThanComparable_int))

The translation of the main function contains the instantiation of minimum and a call to
m.

int main() {

function<int const& (int const&, int const&)>

m = __functor_551(minimum(__LessThanComparable_int));

return m(0, 1);

}

5.1.4 Concept refinement

The InputIterator concept is an example of a concept that refines other concepts and
includes nested requirements.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 104

concept InputIterator<Iter> {

type value;

type difference;

refines EqualityComparable<Iter>;

refines Regular<Iter>;

require SignedIntegral<difference>;

fun operator*(Iter b) -> value@;

fun operator++(Iter! c) -> Iter!;

};

Refinements and nested requirements are treated in a similar fashion in the translation.
Both are added as data members to the abstract base class. One might expect refinements
to instead translate to inheritance, but treating refinements and requirements uniformly re-
sults in a simpler implementation. The following shows the translation for InputIterator,
with three data members for the refinements and requirement. A constructor is defined to
initialize these data members.

struct InputIterator {

InputIterator(EqualityComparable* EqualityComparable_Iter,

Regular* Regular_Iter,

SignedIntegral* SignedIntegral_difference)

: EqualityComparable_Iter(EqualityComparable_Iter),

Regular_Iter(Regular_Iter),

SignedIntegral_difference(SignedIntegral_difference) { }

virtual any __star(any_const_ref b) = 0;

virtual any_ref __increment(any_ref c) = 0;

EqualityComparable* EqualityComparable_Iter;

Regular* Regular_Iter;

SignedIntegral* SignedIntegral_difference;

};

The data members are used inside generic functions when a model for a refined concept
is needed. For example, the function g requires InputIterator and calls f, which requires
EqualityComparable.

fun f<X> where { EqualityComparable<X> }

(X x) { x == x; }

fun g<Iter> where { InputIterator<Iter> }

(Iter i) { f(i); }

In the translation of g we pass the EqualityComparable_Iter member from the input iter-
ator dictionary to f. The following is the translation of g.

struct __functor_1262 {

function<function<void (any_const_ref)> (InputIterator*)> g;

InputIterator* __InputIterator_T;

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 105

__functor_1262(function<function<void (any_const_ref)> (InputIterator*)> g,

InputIterator* __InputIterator_T,)

: g(g), __InputIterator_T(__InputIterator_T) { }

void operator()(any_const_ref i) {

(f(__InputIterator_T->.EqualityComparable_Iter))(i);

}

};

function<void (any_const_ref)> g(InputIterator* __InputIterator_T) {

return __functor_1262(g,__InputIterator_T);

}

5.1.5 Parameterized models

Parameterized models, such as the following model of Input Iterator for reverse_iterator,
introduce some challenges to compilation, and is one of the reasons concepts are translated
to abstract base classes.

model <Iter> where { BidirectionalIterator<Iter> }

InputIterator< reverse_iterator<Iter> > {

type value = BidirectionalIterator<Iter>.value;

type difference = BidirectionalIterator<Iter>.difference;

};

When an instance of this model is created, it must be supplied a model of Bidirectional
Iterator for the underlying Iter type. The parameterized model needs to store away this
model for later use, so it needs some associated state. This motivated our approach of using
derived classes for model definitions. Each derived class can define different data members
corresponding to the requirement in its where clause. The following shows the translation
for the above model definition.

struct model_InputIterator_reverse_iterator : public InputIterator {

model_InputIterator_reverse_iterator(...,

BidirectionalIterator* __BidirectionalIterator)

: InputIterator(...),

__BidirectionalIterator_Iter(__BidirectionalIterator_Iter) { }

virtual any __star(any_const_ref i) {

return (__star_reverse_iterator(__BidirectionalIterator_Iter))

(any_cast<reverse_iterator const&>(i));

}

any_ref __increment(any_ref i) {

return (__increment_reverse_iterator(__BidirectionalIterator_Iter))

(any_cast<reverse_iterator&>(i));

}

BidirectionalIterator* __BidirectionalIterator_Iter;

};

For parameterized model definitions we do not create a singleton object but instead

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 106

create the objects on-demand.

5.1.6 Model member access

Model members may be accessed explicitly with the dot notation, as in the following.

let plus = model Monoid<int>.binary_op;

let z = plus(0, 0);

A model member access translates to an access of a member in the corresponding dic-
tionary. In this case, binary_op is a member of the Semigroup concept, which Monoid

refines. So the C++ output must access the sub-dictionary for Semigroup and then access
the binary_op member. However, there are two small complications handled by the two
functors in the translation:

int main() {

function<int (int const&, int const&)> plus

= __functor_522(__functor_521(__Monoid_i->Semigroup_T));

return plus_517(0, 0);

}

The first complication is that in C++ there is no direct representation for a member func-
tion bound to its receiver object. (There is a representation for an unbound member func-
tion.) Thus, we must bundle the binary_op together with the dictionary in the following
functor to obtain a first class function.

struct __functor_521 {

__functor_521(Semigroup* dict) : dict(dict) { }

any operator()(any_const_ref param_1, any_const_ref param_2)

{ return dict->binary_op(param_1, param_2); }

Semigroup* dict;

};

The second complication is that the parameter and return types of binary_op are dy-
namic types:

struct Semigroup {

Semigroup(Regular* const& Regular_T) : Regular_T(Regular_T) { }

virtual any binary_op(any_const_ref, any_const_ref) = 0;

Regular* Regular_T;

};

To obtain a function with the correct parameter and return types we wrap the binary_op
in the following function object which coerces the arguments and return value. (The argu-
ments are implicitly coerced.)

struct __functor_522 {

__functor_522(function<any (any_const_ref, any_const_ref)> f) : f(f) { }

int operator()(int const& __1, int const& __2)

{ return any_cast<int>(f(__1, __2)); }

function<any (any_const_ref, any_const_ref)> f;

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 107

};

5.1.7 Generic classes

In Section 3.3.2 we discussed the problem of how to layout the memory for parameter-
ized classes and how to access fields in a uniform way inside a generic function. Using
intensional type analysis we could use the same flattened layout for generic classes and for
non-generic classes. However, there is some challenge to implementing this portably: we
need to mimic the layout of the underlying C++ compiler, which is not completely specified
by the C++ standard. This is feasible but tricky. For now the compiler uses the simpler
approach of boxing the data members of a class.

Consider the following simple class in G. It is parameterized on type T and there is a
constraint that T model Regular, which is needed for the copy construction of the data

member.

class cell<T> where { Regular<T> }

{

cell(T x) : data(x) { }

T data;

};

The translation to C++ is shown below.

struct cell {

cell(any_const_ref x, Regular* __Regular_T)

: __Regular_T(__Regular_T), data(__Regular_T->new_on_stack(x)) { }

any data;

Regular* __Regular_T;

};

The type of the data member is any and the dictionary for Regular<T> is stored as an
extra member of the class. The reason the dictionary is stored as a member is that in general
the destructor for a class may need to use the dictionary.

5.2 A definitional compiler for G

The compiler from G to C++ is a set of mutually recursive functions that recur on the struc-
ture of the abstract syntax tree (AST) of a G program. There are three categories of syntactic
entities in G: declarations, statements, and expressions, and so there is a recursive function
for each of these categories. These functions are mutually recursive because, for example,
some statements contain expressions and some expressions contain statements.

The compiler is type-directed, which means that many of the decisions made by the
compiler are dependent on the type of an expression. Furthermore, the process of trans-
lating from implicit model passing to explicit dictionary passing is closely tied to the model
lookup aspect of the type system of G. Thus, the compiler and type checker are implemented
together as the same functions.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 108

Each of the recursive functions takes an environment parameter. The environment data
structure includes information such as the type for each variable and function that is in
scope. We describe the environment in detail in Section 5.2.2.

In addition to determining the type of an expression, the compiler also keeps track of
whether an expression refers to an lvalue or rvalue and whether it is constant or mutable.
We use the term annotated type to refer to a type together with this extra information.

The following describes the input and output of the compiler’s main functions.

Compile declaration The input is a declaration, an environment, and whether the current
access context is public or private. The output is a list of C++ declarations and an
updated environment. The reason that the output is a list of C++ declarations is that
for some G declarations the compiler produces several C++ declarations. For example,
a model definition translates to two C++ declarations: a class definition and a variable
declaration for the singleton instance of the class.)

Compile statement The input is a statement, an environment, and the declared return
type of the enclosing function (if there is one). The return type is used to check the
type of expressions in return statements. The output is a list of C++ statements, a list
of annotated types, and an updated environment. The list of annotated types are the
types from any return statements within the statement, which is used in the context
of a function expression to deduce its return type.

Compile expression The input is an expression, an environment, and the lvalue/rvalue
context. For example, an expression on the left-hand side of an assignment is in an
lvalue context. The compiler needs to know this context to make sure that an rvalue
expression does not appear in an lvalue context. The output is a C++ expression and
an annotated type.

5.2.1 Types and type equality

One of the main operations performed on types during compilation is checking whether
two types are equal. As discussed in Section 4.5, checking for type equality is somewhat
complicated in G because of type parameters and same-type constraints. In G, type equality
is a congruence relation, and we use a congruence closure algorithm [142] to maintain
equivalence classes of type expressions that refer to the same type.

The congruence closure algorithm requires that types be represented by a directed
acyclic graph (DAG), with one node for each type. Figure 5.2 shows the DAG for the
following types.

fun(cell<int>)->int

pair<cell<int>,fun(int)->float>

fun<T>(fun(T)->T, T)->T

Common parts of types are represented with a single subgraph. For example, there is
a single int node which is used in three larger types. Each node is labeled with its type,
except the sub-types are replaced with dots. The out-edges of the nodes are ordered, and

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 109

the notation u[i] denotes the target of the ith out-edge. We say that u is a predecessor of
u[i].

fun<T>(•, •)->•

fun(•)->•

T

fun(•)->•

floatint

fun(•)->•

cell<•>

pair<•,•>

Figure 5.2: Types represented as a directed acyclic graph.

During compilation we may discover that two type expressions should denote the same
type, so we need to merge two nodes into a single node. However, merging nodes is
somewhat expensive because all the in-edges and out-edges must be rewired. Instead of
merging the nodes we record that the two nodes are equivalent using a union-find data
structure [49, 184] (also known as disjoint sets). For each equivalence class of nodes, the
union-find data structure δ chooses a representative node and provides a find operation
that maps a node to the representative for its equivalence class. Therefore, two nodes u
and v are equivalent iff find(u, δ) = find(v, δ). The union-find data structure also provides
the union(u, v, δ) operation which merges the equivalence classes of u and v, updated δ in
place.

The merging of two nodes is complicated by the need to propagate the change to other
types that refer to the two merged nodes, or that are parts of the merged nodes. For
example, if we merge u and v then the nodes for cell<u> and cell<v> must also be merged.
The propagation goes in other direction as well: if cell<u> and cell<v> were first merged,
then u and v would need to be merged. A modified version of the merge algorithm from
Nelson and Oppen [142] is shown in Figure 5.3. Pu(G) denotes the set of all predecessors
of the vertices equivalent to u in graph G.

Inserting type expressions into the graph The DAG representation of the types is con-
structed incrementally as the compiler processes the G program. When a type expression
τ is encountered it is inserted into the DAG. A new node u is created for τ and then the
sub-types of τ are recursively inserted into the DAG, obtaining the nodes v1, . . . , vn. Then
the edges (u, v1), . . . , (u, vn) are added to the graph. Finally, if u is congruent to an existing
vertex v, delete u and return v instead.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 110

Figure 5.3: Merge procedure for congruence closure

merge(u,v,δ,G) modifies δ {

if (find(u,δ) = find(v,δ))
return;

union(u,v,δ)
k = outdegree(u)
if (label(u) 6= c<•>.t) // skip scoped-qualified types

for i=1...k.
merge(u[i], v[i], δ)

for each (x, y) such that x ∈ Pu(G) and y ∈ Pv(G).
if (find(x, δ) 6= find(y,δ) and congruent(x,y,δ))
merge(x, y, δ, G)

}

congruent(u,v,δ) {

label(u) = label(v)
and for i=1...outdegree(u). find(u[i],δ) = find(v[i],δ)

}

Well-formed types

The function well_formed checks whether a type is well formed and adds the type to the
type DAG in the environment, returning the node representing the type. Figure 5.4 shows
the pseudo-code for well_formed.

Translating G types to C++ types

The translation must convert from type expressions in G to type expressions in C++, for
example, when translating the parameter type of function. We define a function that trans-
lates a G type τ in environment Γ to a C++ type JτKΓ. For many types this translation is
trivial, for example, JintKΓ = int. We also define a function for translating a G type τ
and a parameter passing mode m to a C++ type Jτ,mKΓ, which is used for translating the
parameter types of a function.

The translation of type expressions is defined by recursion on the structure of types, but
only for types that are representatives of their equivalence class. All other types are first
mapped to their representative which is then translated to the C++ type. The function JτKΓ
= J[τ]ΓK where J·K is defined as follows:

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 111

Figure 5.4: Well-formed types.

well_formed(`t`, Γ) {

if (t ∈ dom(Γ.typevars)) return insert_node(t, Γ.dag)
else raise error

}

well_formed(`int`, Γ) { return insert_node(`int`, Γ.dag) }

...

well_formed(`τ*`, Γ) {

(τ ′, Γ′) = well_formed(τ,Γ)
return insert_node(`τ*`, Γ′)

}

well_formed(`fun <u> where { w }(σm) -> τm`, Γ) {

Γ′ = Γ, u

(w′, _, Γ′) = introduce_assumptions(w, Γ′)

(σ′,Γ′) = well_formed(σ, Γ′)

(τ ′,Γ′) = well_formed(τ, Γ′)

return insert_node(`fun<t′> where { w′ }(σ′m x) -> τ ′m`, Γ′)

}

well_formed(`k<τ>`, Γ) {

τ ′ = well_formed(τ, Γ)
(t, w, _) = Γ.classes(k)
if (length τ 6= length t) raise error

satisfy_requirements([τ ′/t]w, Γ)
return insert_node(`k<τ ′>`, Γ.dag)

}

well_formed(`m.a`, Γ) {

if (m /∈ dom(Γ.modules)) raise error

Γ′ = Γ.modules(m)
if (t /∈ Γ′.typevars) raise error

return insert_node(`m.a`, Γ)
}

well_formed(`c<τ>.a`, Γ) {

τ ′ = well_formed(τ, Γ)
lookup_dict(c, τ ′, Γ)
find_associated_type(a, c)

return insert_node(`c<τ ′>`, Γ.dag)
}

find_associated_type(a, c) {

(t, r) = Γ.concepts(c)
if (type a ∈ r) return

else

for each `refine c′<σ>` in r.
try { find_associated_type(a, c′); return }

catch error { continue }

raise error

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 112

JtK = any

Jc<τ>.aK = any

JintK = int (and likewise for all the basic types)

JkK = k when k is a class, union, or struct identifier

Jk<τ>K = k when k is a class, union, or struct identifier

Jτ*K =

{
any_ptr if JτK = any

JτK* otherwise

Jτ const*K =

{
any_const_ptr if JτK = any

JτKconst* otherwise

Jfun (σ m) -> τ mK = function<Jτ,mK(Jσ,mK)>

Jfun <u> where { w } (σ m) -> τ mK = function<ρ(C*)>

where C is the list {C | C<τ> ∈ c}
and ρ = function<Jτ,mK(Jσ,mK)>

The following defines the translation for parameters.

Jτ, !K =

any_ref if JτK = any

any_ptr_ref if JτK = any_ptr

any_const_ptr_ref if JτK = any_const_ptr

JτK& otherwise

Jτ,&K =

any_const_ref if JτK = any

any_ptr_const_ref if JτK = any_ptr

any_const_ptr_const_ref if JτK = any_const_ptr

JτK const& otherwise

Jτ,@K = JτK

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 113

5.2.2 Environment

The contextual information needed during the translation is maintained in an environment.
The symbol Γ is used to denote the environment. An environment consists of:

Γ.globals and Γ.locals map from global variable names to bindings and map from local
variable names to bindings, respectively. There are two kinds of bindings: for vari-
ables and for function overloads. A variable binding includes the G type (as a node),
whether it is mutable or constant, the name to use for the variable in the C++ output,
and whether the variable is public or private. The binding for a function overload
contains a list of function types (nodes) and mangled names for the functions. The
notation Γ, (global x : (x′, τ, access)) adds variable x to the global variable environ-
ment with type τ , the name x′ for the C++ output, and access specifies whether it is
public or private. The notation Γ, (local x : (x′, τ, access)) adds the variable to the
local environment. When a function named f is added to the environment, it is added
to the set of overloads for f .

Γ.classes and Γ.structs and Γ.unions maps from class, struct, and union names to their
definitions, respectively.

Γ.typevars maps from type variable names to their node in the type graph. The notation
Γ, (t : access) adds type variable t to the environment, mapping it to a new node, with
the specified access (public or private).

Γ.concepts maps from concept names to concept definitions. The notation Γ, (c 7→
(t, r, access)) adds concept c to the environment, with type parameters t and require-
ments r.

Γ.models maps from concept names to a set of models. The information for each model in-
cludes the model head (a list of type nodes), the path for accessing the dictionary that
corresponds to the model, and whether the model is public or private. The following
notation adds a model to the environment.

Γ, model c<τ ′> 7→ (path, access)

The following notation adds a parameterized model to the environment. In this case
there is no dictionary, but we record the name of the derived class for the model.

Γ, model <t> where { w } c<τ> 7→ (mclass, access)

Γ.dag is a directed acyclic graph that represents the types that appear in the program.

Γ.δ is a union-find (disjoint sets) data structure for maintaining equivalence classes of type
expressions that denote the same type.

5.2.3 Auxiliary functions

The main compilation functions rely on several auxiliary functions. The two most important
of these functions are used to process where clauses. The introduce_assumptions function

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 114

is used in the compilation of function and model definitions. This function adds surrogate
model and function signatures to the environment according to the contents of the where

clause. The satisfy_requirements function is used in the instantiation of a generic func-
tion or model, and is used to check whether a model satisfies the requirements of a concept.
This function looks in the environment to see if the where clause is satisfied, and returns
dictionaries and function definitions that satisfy the requirements.

Pseudo-code for introduce_assumptions is shown in Figure 5.5. The requirements in
the where clause are processed in order; later requirements may depend on earlier require-
ments. For example, a later requirement may refer to an associated type that an earlier
requirement brought into scope. If the requirement is a nested model requirement c<τ>
we add the model to the environment and then introduce all the assumptions associated
with the concept with a recursive call to introduce_assumptions. Refinements are pro-
cessed in a similar way except associated types are brought into scope directly instead of
being model-qualified. A function signature requirement adds to the overload set for that
function, and a same type requirement causes the two types to be merged according to the
congruence closure algorithm. Note that this merging may cause otherwise distinct model
requirements to become the same requirement. Some care must be take to ensure that such
models do not add duplicate functions into the overload set. The introduce_assumptions

function returns the where clause (now containing pointers into the type DAG), the list of
dictionary names, and the new environment.

The pseudo-code for satisfy_requirements is shown in Figure 5.6. For each model
requirement or refinement we invoke lookup_dict to find the dictionary for the model.
For each associated type we check that the type has been defined. For each same type
constraint we check that the two type expressions are in the same equivalence class using
the find function (of the union-find data structure). For each function signature we call
create_impl which checks to see if there is a function defined that can be coerced to the
signature and then creates a function that performs the coercion, if needed. The coerce

function is responsible for inserting any_casts for converting from a polymorphic object to a
concrete object, for wrapping functions when there needs to be coercions on the parameter
or return type, and for choosing a particular overload from an overload set.

The lookup_dict function finds a model for a given concept and type arguments and
returns the path to the dictionary for the model. Figure 5.7 shows pseudo-code for this func-
tion. The function is mutually recursive with the satisfy_requirements function, for if a
model is constrained by a where clause it must lookup dictionaries to satisfy those require-
ments. This recursion accomplishes a depth-first search for the requirements. Here we show
the basic algorithm, but it can be enhanced to catch problems amongst model definitions
such as catching circularity in model definitions and enhanced to prevent divergence.

In more detail, the lookup_dict function extracts all the models for concept c from the
environment and then invokes best_matching_model to choose the most specific model.
If the model is not generic we return the C++ expression for accessing the model. If the
model is generic we must construct a new model object, passing in the dictionaries for the
where clause and also the dictionaries for the refinements and requirements in concept c.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 115

Figure 5.5: Pseudo-code for introducing where clause assumptions.

introduce_assumptions(w, Γ, path = [], scope=global, inref =false) {

w′ = []
for i = 1, . . . , length(w) {

match wi with

c<τ> | require c<τ> ⇒
if (c /∈ dom(Γ)) raise error;

(τ ′, Γ) = well_formed(τ, Γ)
w′ = w′, `require c<τ ′>`

d = fresh_name(); d = d, d

(t′, w2) = Γ.concepts(c)
(_,_,Γ) = introduce_assumptions([τ ′/t′]w2, Γ, path@[d], c<τ ′>, false)

Γ = Γ, model c<τ ′> 7→ (path@[d], public)
| refine c<τ> ⇒

same as above except:

(_,_,Γ′) = introduce_assumptions([τ ′/t′]w2, Γ, path@[d], c<τ ′>, inref)
...

| type t ⇒
w′ = w′, `type t`
if (inref) Γ = Γ, t, scope.t
else Γ = Γ, scope.t

| fun<t> where { w }(σm) -> τm
| fun<t> where { w }(σm) -> τm { s } ⇒

f ′ = fresh_name()

Γ = Γ, local f : (f ′, fun<t> where { w }(σm) -> τm)
| τ1 == τ2 ⇒

(τ ′
1,Γ) = well_formed(τ1, Γ); (τ ′

2,Γ) = well_formed(τ2, Γ)
w′ = w′, `τ ′

1 == τ ′
2`

merge(τ ′
1, τ ′

2, Γ.δ, Γ.dag)
}

return (w′, d, Γ)
}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 116

Figure 5.6: Pseudo-code for satisfying requirements.

satisfy_requirements(w, Γ) {

d = []; impls = []
for each w in w {

match w with

c<τ> | require c<τ> | refine c<τ> ⇒
let (d,_) = lookup_dict(c, S(τ), Γ) in d = d, d

| type t ⇒
if (t /∈ dom(Γ.typevars)) raise error;

| τ1 == τ2 ⇒
if (find(τ1,Γ.δ) 6= find(τ2,Γ.δ)) raise error;

| fun f<t> where { w′ }(σm) -> τ ⇒
impls = impls, create_impl(f, `fun<t> where { w′ }(σm) -> τ`, Γ)

| fun f<t> where { w′ }(σm) -> τ { s } 7→ default ⇒
try { impls = impls, create_impl(f, fun<t> where { w′ }(σm) -> τ, Γ) }

catch error with { }

}

return (d, impls)
}

create_impl(f, fun<t> where { w }(σm) -> τm, Γ) {

Γ = Γ, t
(_, _, Γ) = introduce_assumptions(w, Γ)
(f ′,τ ′′) = resolve_overload(Γ(f), σm, Γ)
if (τ ′′ 6≤ τ) raise error;

p = map (λσ. fresh_name()) σ
f ′′ = coerce(f ′, τ ′′, fun(σm) -> τm, Γ)
return `JτmKΓ f(JσmKΓ p) { return f ′′(p); }`

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 117

Figure 5.7: Pseudo-code for finding the dictionary for a model.

lookup_dict(c, τ, Γ)
{

match best_matching_model(τ, Γ.models(c), Γ) with

model c<τ ′> 7→ (path, access) ⇒
return (make_dict_access(path), Γ′)

| model <t> where { w } c<τ ′> 7→ (mclass, access))
S = unify(τ ′, τ, Γ, ∅)
(dw, _) = satisfy_requirements(S(w), Γ)
(s,w2) = Γ.concepts(c)
dr = map (λ c<τ>. let (d,_) = lookup_dict(c, [S(τ ′)/s]τ, Γ) in d)

(refines and requires in w2)

return (`new GC mclass(dr, dw)`, [S(τ ′)/s]Γ′)

}

make_dict_access([d]) = `d`
make_dict_access(d :: path) =

let rest = make_dict_access(path)
in `d->rest`

We unify the type arguments with the model head to obtain a substitution which is applied
to the where clause before calling satisfy_requirements to obtain the dictionaries. The
unification algorithm used is that of MLF [24]. The dictionaries for the refines and requires
are obtained by recursive calls to lookup_dict.

The pseudo-code for best_matching_model is shown in Figure 5.8. The input to this
function is some type arguments, a list of models, and the environment; this function re-
turns a model. First we find all models that match the type arguments τ . In the case of a
generic model we try to unify the type arguments with the head of the model. Once the list
of matching models is obtained, this function determines the most specific of the matches,
if there is one, using the more-specific-model relation as defined in Section 4.6.2.

Figure 5.9 shows the pseudo-code for overload resolution. The input to this function is
a list of function names with their types, the argument types, and the environment. This
function is quite similar to the best_matching_model function, following the same basic
pattern. The algorithm first filters out functions that are not applicable to the argument
types and then tries to find the most specific function among the remaining overloads.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 118

Figure 5.8: Algorithm for finding the most specific matching model.

best_matching_model(τ, models, Γ) {

matches =

filter (λm.

match m with

model c<τ> 7→ (path, access) ⇒ return true

| model <t> where { w } c<τ ′> 7→ (mclass, access) ⇒
try { S = unify(τ ′, τ); satisfy_requirements(S(w), Γ); return true }

catch error { return false }

) models
match matches with

[] ⇒ raise error;

| [m] ⇒ return m
| m :: matches =>

best = m
while (matches 6= []) {

if (best more specific model than hd(matches)) ;

else if (hd(matches) more specific model than best) best = hd(matches)
else raise error;

matches = tl(matches)
}

return best
}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 119

Figure 5.9: Algorithm for function overload resolution.

resolve_overload(ovlds, σm, Γ) {

matches = filter (λ(f, τ).
α, β, γ,m′, r′ fresh variables

Q = {τ ≤ α, σm ≤ βm′}
try {

unify(α, fun(β)->γ, Γ, Q);

iter (λ c<τ>. lookup_dict(c, S(τ), Γ)) where(τ);
return true;

} catch error { return false; })

ovlds
match matches with

[] ⇒ raise error;

| [(f, τ)] ⇒ return (f, τ)
| (f, τ) :: matches =>

best = (f, τ)
while (matches 6= []) {

if (snd(best) more specific overload than snd(hd(matches))) ;

else if (snd(hd(matches)) more specific overload than snd(best))
best = hd(matches)

else raise error;

matches = tl(matches)
}

return best
}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 120

Figure 5.10: Pseudo-code for compiling function definitions.

compile(`fun f<t> where { w }(σm x) -> τm { s }`, Γ, access) {

Γ′ = Γ, t

(w′, dw, Γ′) = introduce_assumptions(w, Γ′)

(σ′,Γ′) = well_formed(σ, Γ′); (τ ′,Γ′) = well_formed(τ, Γ′)

τf = fun<t′> where { w′ }(σ′m x) -> τ ′m
f ′ = fresh_name()

Γ′ = Γ′, x : σ′, f : (f ′, τf)
(s′, _, _) = compile(s, τ ′m, Γ′)

if (t = [])

return (`Jτ ′mKΓ′ f ′(Jσ′mKΓ′ x) { concat(s′) }`, Γ, (global f : (f ′, τf , access)))
else

cw = map (λ c<τ>. c) w′

f ′′ = fresh_name()

return (`class f ′′ {

public:

f ′′(cw* dw) : dw(dw) { }

Jτ ′mKΓ′ operator()(Jσ′ mKΓ′ x) const { concat(s′) }

private:

cw* dw;

};

function<Jτ ′mKΓ′(Jσ′mKΓ′)> f ′(cw* dw) { return f ′′(dw); }`,

Γ, (global f : (f ′, τf , access)))

}

5.2.4 Declarations

In this section we describe the cases of the main compile function for declarations. The case
for generic function definitions is shown in Figure 5.10. The type parameters of the generic
function are added to the environment and the auxiliary function introduce_assumptions

is used to augment the environment according to the where clause of the function. The
parameters are then added to the environment and also the function itself to enable recur-
sion. The body of the function is then compiled. If the function is generic, it is compiled to a
curried function which takes the dictionaries corresponding to its where clause and returns
a function object.

Figure 5.11 shows the pseudo-code for compiling concepts. The body of the concept is
processed using the introduce_assumptions function to produce Γ′ and then the function
definitions in the concept are compiled in Γ′. The output is a class definition with pure
virtual functions for each function signature in the concept, and a virtual function for each

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 121

Figure 5.11: Pseudo-code for compiling concepts.

compile(`concept c<t>{ r };`, Γ, access) {

Γ′ = Γ, t

(t′, r′, _, Γ′) = introduce_assumptions(r, Γ′)

cr = map (λ c<τ>. c) (refines and requires in r′)

dr = map name_mangle (refines and requires in r′)

(f, _) = map (λf. compile(f, Γ′)) (funsigs in r)

(f ′, _) = map (λf. compile(f, Γ′)) (fundefs in r)
return (`class c {

public:

c(cr* dr) : dr(dr) { }

virtual f = 0;

virtual f ′

private:

cr* dr;

};`, Γ, (c 7→ (t′, r′, access)))
}

function definition. In addition, there are data members to point to the dictionaries for the
refinements and nested model requirements. The environment is updated with an entry for
the concept.

Figure 5.12 shows the pseudo-code for compiling model definitions. The definition is
compiled in an environment Γ′ that is extended with the type parameters t and also with
the where clause with a call to introduce_assumptions. The definitions in the body of
the model are compiled in Γ′ and then added to Γ′. The model definition must satisfy the
requirements of the concept, so we call satisfy_requirements. The generated C++ code
consists of a class derived from the concept’s abstract base class, and optionally a singleton
object for the dictionary. If the model is generic, the compiler instead creates dictionary
objects on-demand in lookup_dict.

The compilation of let declarations and type aliases is straightforward. A let compiles
to a variable declaration, where the variable is given the type of the expression on the right
hand side. A type alias does not produce C++ output, but updates the environment with the
equality t = τ . Figure 5.13 shows the pseudo-code for compiling value and type aliases.

Class, struct, and union definitions are similar so we only discuss compiling classes. Fig-
ure 5.14 shows the pseudo-code. The type parameters and where clause are added to the
environment to form Γ′. Class members are compiled in Γ′. The output C++ class contains
extra data members for the dictionaries corresponding to the where clause and each con-
structor includes extra parameters for these dictionaries. The constructors themselves may
be parameterized and constrained with where clauses, so two sets of dictionaries are passed
to a constructor. Overload resolution between constructors is handled in the compilation

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 122

Figure 5.12: Compile model definitions.

compile(`model <t> where { w } c<τ>{ d };`, Γ, access) {

Γ′ = Γ, t

(w′, dw, Γ′) = introduce_assumptions(w, Γ)
(τ ′, Γ′) = well_formed(τ, Γ′)

(d′, Γ′) = compile(d, Γ′)

(s,r) = Γ.concepts(c)
(dr, f) = satisfy_requirements([τ ′/s]r, Γ′)

cr = filter_map (λ c<τ>. c) r

cw = filter_map (λ c<τ>. c) w′

mclass = fresh_name(); dr = map (λc. fresh_name()) cr

mdef = `class mclass : public c {

public:

m(cr* r, cw* dw) : c(dr), dw(dw) { }

virtual f
private:

d′

cw* dw;

};`

if (t = [])
dm = fresh_name();

inst = `c* dm = new mclass(dr);`

return (mdef inst, Γ, model c<τ ′> 7→ ([dm], access))
else

return (mdef , Γ, model <t′> where { w′ } c<τ ′> 7→ (mclass, acccess))
}

Figure 5.13: Compile value and type aliases.

compile(`let x = e;`, Γ, access) {

(e′, τ) = compile(e, Γ)
return (`JτKΓ x = e′`, Γ, x : (x, τ, access))

}

compile(`type t = τ`, Γ, access) {

(τ ′, Γ) = well_formed(τ, Γ)
Γ = Γ, (t : access)
merge(t, τ ′, Γ.δ, Γ.dag)
return (``, Γ)

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 123

from G to C++ and the normal C++ constructor overload resolution must be disabled. To
this end each constructor has an extra parameter consid of a unique type that can be use
to force C++ overload resolution to the correct constructor. Otherwise, the compilation of
constructors is similar to the compilation of normal function definitions.

Figure 5.15 shows the compilation of module definitions and related declarations such
as the scope alias and public and private declarations. A module in G is translated to a
C++ namespace.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 124

Figure 5.14: Compile class definition.

compile(`class k<t> where { w } { c ~k(){s} τ x; };`, Γ, access) {

Γ′ = Γ, t

(w′, dw, Γ′) = introduce_assumptions(w, Γ)
c′ = map (λc. compile(c, cw, dw, Γ′)) c

(s′, _) = compile(s, Γ′)

τ ′ = map (λτ. well_formed(τ, Γ′)) τ

cw = filter_map (λ c<τ>. c) w′

return (`class k {

public:

c′

~k() { s′ }

Jτ ′KΓ′ x;
private:

cw dw;

};`, Γ, k 7→ (w′, c′, access))
}

compile(`<t> where { w } k(σm y) : x(e) { s }`, ck, dk, Γ) {

Γ′ = Γ, t

(w′, dw, Γ′) = introduce_assumptions(w, Γ′)

(σ′,Γ′) = well_formed(σ, Γ′)

Γ′ = Γ′, y : σ′

(e′, _) = compile(e, Γ′)

(s′, _, _) = compile(s, void, Γ′)

cw = map (λ c<τ>. c) w′

consid = fresh_name()

return (`k(ck* dk, cw* dw, Jσ′mKΓ′ y, consid) : dk(dk), dw(dw), x(e′) { s′ }`)

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 125

Figure 5.15: Compile module definition and related declarations.

compile(`module m { d }`, Γ, access) {

(d′, Γ′) = compile(d, Γ, private)

Γ′′ = public members of Γ′

return (`namespace m { d′ }`, Γ, module m 7→ (Γ′′, access))
}

compile(`scope m = scope;`, Γ, access) {

Γ′ = lookup_scope(global.scope, Γ)
return (``, Γ, module m 7→ (Γ′, access))

}

compile(`import scope.c<τ>;`, Γ, access) {

Γ′ = lookup_scope(global.scope, Γ)
(τ ′, Γ′) = well_formed(τ, Γ′)

(d,_) = lookup_dict(c, τ ′, Γ′)

return (``, Γ, model c<τ ′> 7→ ([d], access))
}

compile(`public: d`, Γ, access) {

(d′, Γ′) = compile(d, Γ, public)

return (`d′`, Γ,Γ′)

}

compile(`private: d`, Γ, access) {

(d′, Γ′) = compile(d, Γ, private)

return (`d′`, Γ,Γ′)

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 126

5.2.5 Statements

This section defines the compilation of G statements to C++.
The let statement in G binds a name to an object. Thus it is similar to reference in

C++. There is one small complication: in C++ a temporary cannot be bound to a non-const
reference whereas the right hand side e of the let may be a temporary. Thus, the output
C++ must first bind e′ to a const reference, thereby extending its lifetime to the extent of the
surrounding scope, and then assign the const reference to x, which is declared as either a
const or non-const reference depending on the mutability of e.

compile(`let x = e;`, τm, Γ) {

(e′, τm) = compile(e, Γ)
τ ′ = JτmKΓ&
return (`JτKΓ const& __x = e′;

τ ′ x = (τ ′)__x;`, [], Γ, local x : τm)

}

The type alias statement in G binds a name to a type. This introduces the type name
t and merges it with the type τ . The type alias statement translates to an empty C++

statement.

compile(`type t = τ;`, τm, Γ) {

(τ ′, Γ) = well_formed(τ, Γ)
Γ = Γ, t
merge(t, τ ′, Γ.δ, Γ.dag)
return (`;`, Γ)

}

The compilation of the return statement depends on whether it is inside a function
definition or a function expression. In the case of a function definition, there is a declared
return type and the type of e must be convertible to the declared return type. In the case
of a function expression there is no declared return type, and the compile function returns
the type of e so that the return type of the function expression may be deduced.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 127

Figure 5.16: Compilation of if, while, compound, and empty statements.

compile(`if (e) s1 else s2`, τm, Γ) {

(e′, σm′) = compile(e, Γ)
if (σ 6≤ bool) raise error;

(s′1, rets1, _) = compile(s1, τm, Γ)
(s′2, rets2, _) = compile(s2, τm, Γ)
return (`if (e′) { s′1 } else { s′2 }`, rets1@rets2, Γ)

}

compile(`while (e) s`, τm, Γ) {

(e′, σm′) = compile(e, Γ)
if (σ 6≤ bool) raise error;

(s′, rets, _) = compile(s, τm, Γ)
return (`while (e′) { s′ }`, rets, Γ)

}

compile(`{ s }`, τm, Γ) {

(s′, rets, _) = compile(s, τm, Γ)

return (`{ concat(s′) }`, concat(rets), Γ)
}

compile(`e;`, τm, Γ) {

(e′, _) = compile(e, Γ);
return (`e′`, [], Γ)

}

compile(`;`, τm, Γ) { return (`;`, [], Γ) }

compile(`return e;`, τm, Γ) {

(e′, σm′) = compile(e, Γ)
if (σm′ 6≤ τm) error

return (`return e′;`, [], Γ) {

}

compile(`return e;`, void, Γ) {

(e′, σm′) = compile(e, Γ)
return (`return e′;`, [σm′], Γ) {

}

The compilation of if, while, compound, expression, and empty statements is shows in
Figure 5.16. The compilation for each of these statements is straightforward.

The pseudo-code in Figure 5.17 describes the compilation of switch statements. The
switch statement in G is specialized for use with unions. The union object has a tag that

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 128

Figure 5.17: Compile switch statement.

compile(`switch (e) { c }`, τm, Γ) {

(e′, τ) = compile(e, Γ)
match τ with

k<τ ′> ⇒
if (k /∈ Γ.unions(k)) raise error

x = fresh_name()

(c′, rets) = map (λc.
match c with

`case y: s` ⇒
(s′, rets, _) = compile(s, τm, Γ);
(t, w, mems) = Γ.unions(k);
σ = mems(y);
z = coerce(x->u->y, σ, [τ ′/t]σ);
(`case k::y: { σ& y = z; s′ break; }`, rets)

| `default: s` ⇒
(s′, rets, _) = compile(s, τm, Γ);
(`default: s′`, rets))

c

return (`{ τ& x = e′; switch (x->tag) { c′ } }`, concat(rets), Γ)
| _ ⇒ raise error

}

indicates which data member is present, and the switch statement dispatches based on this
tag. The union class contains an enum with a constant for each data member.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 129

Figure 5.18: Compilation of function application expressions.

compile(`rator(rand), Γ) {

(rator ′, τm) = compile(rator, Γ)
(rand ′, σm) = map (λe. compile(e, Γ)) rand
(rator ′′, τ ′) = resolve_overload(τ, σm, Γ)
α, β, γ,m′, r′ fresh variables

Q = {τ ′ ≤ α, σm ≤ βm′}
S = unify(α, fun(β)->γ, Γ, Q)

rand ′′ = coerce(rand ′, σm, paramtypes(τ ′), Γ)
if (where(τ ′) = [])
return (`rator ′′(rand ′′)`, S(γ)m′)

else {

(d, _) = satisfy_requirements(S(where(τ ′)), Γ)
return (`(rator ′′(d))(rand ′′)`, S(γ)m′)

}

}

5.2.6 Expressions

This section describes the compilation of G expressions to C++.
Figure 5.18 shows the pseudo-code for compiling a function application. The rator may

be a function or a function overload set. If it is a function then we treat it as an overload
set with only a single overload. The resolve_overload function is called to determine the
best overload. We then unify the arguments’ types with the parameters’ types to obtain a
substitution S. A mismatch between argument and parameter types would cause unify to
raise an error. If the function has a where clause, satisfy_requirements is called to obtain
dictionaries. The C++ output is an application with the dictionaries and then a second
application with the arguments. If the function does not have a where clause, the C++

translation is just an application with the arguments.
Figure 5.19 shows the pseudo-code compilation of object construction. This is similar

to compiling a function application. The constructors of class k form an overload set from
which the best match is chosen according to resolve_overload. Once the best construc-
tor is chosen, unify is applied to deduce the type arguments for the constructor and then
satisfy_constraints is applied to obtain dictionaries for the where clause of the construc-
tor. The compiler must also obtain dictionaries for the where clause of class k and pass these
to the constructor.

The pseudo-code for compiling an explicit instantiation is shown in Figure 5.20.
The type of expression e must be a generic function type. The compiler invokes
satisfy_requirements to check that the requirements of the where clause are satisfied
and to obtain dictionaries. The output C++ is the compilation of e, that is e′, applied to the

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 130

Figure 5.19: Compilation of object construction.

compile(`alloc k<τ>(rand)`, Γ) {

(t, w, mems) = Γ(k)
(τ ′, Γ′) = well_formed(τ)

(dk,_) = satisfy_requirements([τ ′/t]w, Γ′)

(rand ′, σm) = compile(rand, Γ′)

(consid, σ′) = resolve_overload(mems,σ, Γ′)

α, β, γ,m′, r′ fresh variables

Q = {σ′ ≤ α, σm ≤ βm′}
S = unify(α, fun(β)->γ, Γ′, Q)

rand ′′ = coerce(rand ′, σm, paramtypes(σ′), Γ′)

if (where(σ′) = [])
return (`k(rand ′′, consid)`, k)

else {

(dc, _) = satisfy_requirements(S(where(σ′)), Γ′)

return (`JallocK k(dk, dc, rand ′′, consid)`, k<τ ′>)

}

}

J@KΓ = ``

JnewKΓ = `new`

Jnew GCKΓ = `new (GC)`

Jnew (e)KΓ = let (e′,_) = compile(e, Γ) in `new (e′)`

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 131

Figure 5.20: Compilation of explicit instantiation.

compile(`e<|σ|>`, Γ) {

(σ′, Γ′) = well_formed(σ, Γ)
(e′, τ) = compile(e, Γ)
match τ with

fun<t> where { w }(ρm) -> τ ′m ⇒
(d, _) = satisfy_requirements([σ′/t]w, Γ)
return (`e′(d)`, fun([σ′/t]ρm) -> [σ′/t]τ ′m)

| _ ⇒ error

}

dictionaries.
The compilation of variables is somewhat complicated by the distinction between global

and local variables. Further, we treat function overload sets specially by combining the
local and global overloads. Figure 5.21 shows the pseudo code for compiling a variable.
The returned expression for a function overload set is unused, the actual translation will be
determined by overload resolution, so we return `0` as the expression.

Figure 5.22 shows the pseudo-code for compiling a scope access expression. There are
two kinds of scopes in G, models and modules. In G the dot operator is used to access
members of model and scopes, whereas in the C++ translation we must use :: to access
members of modules because they are translated to a C++ namespaces and we must use
-> to access members of a model because they are translated to objects. For simplicity,
Figure 5.22 only shows the code for accessing into a single un-nested scope. This can
be extended to handle nested scopes by iterating the process. However, the access of a
model member is still complicated by the fact that the member may be in a refinement, so
the recursive access_model_member function is needed to search through the refinement
hierarchy.

Figure 5.23 shows the pseudo-code to compile the access of an object member. The
coercion is necessary, for example, to unbox the member if it is polymorphic.

5.3 Compiler implementation details

This section discusses some details of the implementation of the prototype compiler for G.
The implementation is written in Objective Caml [115]. We chose Objective Caml because
it has several features that speed compiler implementation:

• Algebraic data types and pattern matching facilitate the manipulation of abstract syn-
tax trees.

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 132

Figure 5.21: Compile variable.

compile (`x`, Γ) {

if (x ∈ dom(Γ.locals))
match Γ.locals(x) with

(x′, τ) ⇒ return (x′, τ)
| ovlds ⇒
match Γ.globals(x) with

(x′, τ) ⇒ return (`0`, ovlds)
| ovlds ′ ⇒ return (`0`, ovlds@ovlds ′)

else if (x ∈ dom(Γ.globals))
match Γ.locals(x) with

(x′, τ) ⇒ return (x′, τ)
| ovlds ⇒ return (`0`, ovlds)

else error;

}

Figure 5.22: Compilation of scope member access expressions.

compile(`m.x`, Γ) {

Γ′ = Γ.modules(m)
if ((x : (x′, τ)) ∈ Γ′) return (`m::x′`, τ)
else raise error

}

compile(`c<τ>.x`, Γ) {

(τ ′, Γ′) = well_formed(τ, Γ)
(d, Γ′) = lookup_dict(c, τ ′, Γ′)

return access_model_member(x, c, τ ′, d, [])
}

access_model_member(c<τ ′>.x, path, Γ) {

(t, r) = Γ.concepts(c)
if (x ∈ dom(r))

d = make_dict_access(path)
return coerce(`d->x`, r(x), [τ ′/t]r(x))

else

for each `refine c′<σ>` in r.
try {

m = name_mangle(c′<σ>)

return access_model_member(c′, [τ ′/t]σ, x, path@[m], Γ)
} catch error { continue }

raise error;

}

CHAPTER 5. THE DEFINITION AND COMPILATION OF G 133

Figure 5.23: Pseudo-code for compiling access to an object member.

compile(`e.x`, Γ) {

(e′, τ) = compile(e, Γ)
match τ with

k<σ> ⇒
(t, w, mems) = Γ.classes(k)
τ ′ = [σ/t]mems(x)
return (coerce(`e′.x`, mems(x), τ ′), τ ′)

| _ ⇒
error

}

• The Ocamllex and Ocamlyacc tools for lexical analysis and parsing are particularly
easy to use.

• Automatic memory reclamation removes the work of manual memory management.

One disadvantage of Objective Caml with respect to Scheme for compiler construction
is that Objective Caml does not have quasi-quote. In Scheme, quasi-quote provides a con-
venient way to form abstract syntax trees.

Ocamlyacc is an LALR(1) parser. The grammar of G is similar to that of C++ but differs in
several respects to make the grammar LALR(1). For example, explicit instantiation uses <|
and |> instead of < and > to avoid ambiguities with the less-than and greater-than operators.
In addition, great care was taken to separate type expressions and normal expression in the
grammar, thereby avoiding ambiguity between the < and > used for parameterized classes
and the less-than and greater-than operators.

The translation of G to C++ is accomplished in two stages. The first stage performs
type checking, translating polymorphic functions to monomorphic functions and models to
dictionaries. These tasks are combined in a single stage because they are interdependent.
The second stage lowers function expressions to function objects.

5.4 Summary

This chapter defined G by a translation to C++. The main technique is translating where

clauses to extra dictionary parameters that contains operations implementing the require-
ments of the concepts. The basic idea is similar to the standard compilation strategy for type
classes in Haskell, though here the target language is C++. As such, concepts are mapped to
abstract base classes and models are mapped to objects of derived classes.

The proof of the pudding is in the eating.

Miguel de Cervantes Saavedra, Don Quixote [16]

6
Case studies: generic libraries in G

This chapter evaluates the design of G with respect to two case studies: prototype imple-
mentations of the STL and the Boost Graph Library [169]. The STL case study was reported
in [173] and the BGL study is new. The STL and BGL are large generic libraries that exercise
a wide range of language features. Both libraries exhibit considerable internal reuse and
the BGL makes heavy use of the STL, so these prototypes stress the language features that
support the development and use of generic libraries. The approach taken with the STL
prototype was to copy the algorithm implementations from the GNU C++ Standard Library,
fixing the syntax here and there, and then to write the where clause for each algorithm
based on the specifications in the C++ Standard and in Generic Programming and the STL by
Austern [11]. The type system of G proved its worth during this process: several bugs were
found in the C++ Standard’s specification and in the GNU implementation of the STL. Model
definitions were a useful form of first test for data structure implementations. At a model
definition, the compiler checks that the implementation matches the expected interfaces.
Further, the experience of using the generic libraries was much improved compared to C++.
Error messages due to misuse of the library were shorter and more accurate and compile
times were shorter due to separate compilation. A couple of challenges were encountered
while implementing the STL in G. The first challenge concerned algorithm dispatching, and
we developed an idiom to accomplish this in G, but there is still room for improvement.
The second challenge concerned code reuse within the STL data structures. It seems that
a separate generative mechanism is needed to complement the generic features of G. As a
temporary solution, we used the m4 macro system to factor the common code.

134

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 135

Figure 6.1: Some STL Algorithms in G.

fun find<Iter> where { InputIterator<Iter> }

(Iter@ first, Iter last,

fun(InputIterator<Iter>.value)->bool@ pred) -> Iter@ {

while (first != last and not pred(*first)) ++first;

return first;

}

fun find<Iter> where { InputIterator<Iter>,

EqualityComparable<InputIterator<Iter>.value> }

(Iter@ first, Iter last, InputIterator<Iter>.value value) -> Iter@ {

while (first != last and not (*first == value)) ++first;

return first;

}

fun remove<Iter> where { MutableForwardIterator<Iter>,

EqualityComparable<InputIterator<Iter>.value> }

(Iter@ first, Iter last, InputIterator<Iter>.value value) -> Iter@ {

first = find(first, last, value);

let i = @Iter(first);

return first == last ? first : remove_copy(++i, last, first, value);

}

6.1 The Standard Template Library

In this section we analyze the interdependence of the language features of G and generic
library design in light of implementing the STL. A primary goal of generic programming is
to express algorithms with minimal assumptions about data abstractions, so we first look
at how the polymorphic functions of G can be used to accomplish this. Another goal of
generic programming is efficiency, so we investigate the use of function overloading in G
to accomplish automatic algorithm selection. We conclude this section with a brief look at
implementing generic containers and adaptors in G.

6.1.1 Algorithms

Figure 6.1 depicts a few simple STL algorithms implemented using polymorphic functions
in G. The STL provides two versions of most algorithms, such as the overloads for find

in Figure 6.1. The first version is higher-order, taking a predicate function as its third
parameter while the second version relies on operator==. The higher-order version is more
general but for many uses the second version is more convenient. Functions are first-class
in G, so the higher-order version is straightforward to express: a function type is used for
the third parameter. As is typical in the STL, there is a high-degree of internal reuse: remove
uses remove_copy and find.

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 136

At the time of finishing this thesis, we have not yet implemented all of the algo-
rithms in the STL, but we have implemented a significant portion, including several
of the more involved algorithms such as stable_sort. The following is the list of al-
gorithms implemented at this time: min, max, swap, iter_swap, copy, copy_backward,
advance, distance, for_each, find, search, find_end, adjacent_find, count, mismatch,
search_n, equal, max_element, min_element, fill, fill_n, swap_ranges, reverse,
rotate, replace_copy, remove, remove_copy, merge, merge_backward, lower_bound,
upper_bound, inplace_merge, inplace_stable_sort, stable_sort, and accumulate.

6.1.2 Iterators

Figure 6.2 shows the STL iterator hierarchy as represented in G. Required operations are
expressed in terms of function signatures, and associated types are expressed with a nested
type requirement. The refinement hierarchy is established with the refines clauses and
nested model requirements with require. In the previous example, the calls to find and
remove_copy inside remove type check because the MutableForwardIterator concept re-
fines InputIterator and OutputIterator. There are no examples of nested same-type
requirements in the iterator concepts, but the STL Container concept includes such con-
straints. Semantic invariants and complexity guarantees are not expressible in G: they are
beyond the scope of its type system.

6.1.3 Automatic algorithm selection

To realize the generic programming efficiency goals, G provides mechanisms for automatic
algorithm selection. The following code shows two overloads for copy. (We omit the third
overload to save space.) The first version is for input iterators and the second for random
access iterators. The second version uses an integer counter for the loop thereby allowing
some compilers to better optimize the loop. The two signatures are the same except for the
where clause.

fun copy<Iter1,Iter2> where { InputIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }

(Iter1@ first, Iter1 last, Iter2@ result) -> Iter2@ {

for (; first != last; ++first) result << *first;

return result;

}

fun copy<Iter1,Iter2> where { RandomAccessIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }

(Iter1@ first, Iter1 last, Iter2@ result) -> Iter2@ {

for (n = last - first; n > zero(); --n, ++first) result << *first;

return result;

}

The use of dispatching algorithms such as copy inside other generic algorithms is chal-
lenging because overload resolution is based on the proxy models in the where clause and

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 137

Figure 6.2: The STL Iterator Concepts in G (Iterator has been abbreviated to Iter).

concept InputIter<X> {

type value;

type difference;

refines EqualityComparable<X>;

refines Regular<X>;

require SignedIntegral<difference>;

fun operator*(X) -> value@;

fun operator++(X!) -> X!;

};

concept OutputIter<X,T> {

refines Regular<X>;

fun operator<<(X!, T) -> X!;

};

concept ForwardIter<X> {

refines DefaultConstructible<X>;

refines InputIter<X>;

fun operator*(X) -> value;

};

concept MutableForwardIter<X> {

refines ForwardIter<X>;

refines OutputIter<X,value>;

require Regular<value>;

fun operator*(X) -> value!;

};

concept BidirectionalIter<X> {

refines ForwardIter<X>;

fun operator--(X!) -> X!;

};

concept MutableBidirectionalIter<X> {

refines BidirectionalIter<X>;

refines MutableForwardIter<X>;

};

concept RandomAccessIter<X> {

refines BidirectionalIter<X>;

refines LessThanComparable<X>;

fun operator+(X, difference) -> X@;

fun operator-(X, difference) -> X@;

fun operator-(X, X) -> difference@;

};

concept MutableRandomAccessIter<X> {

refines RandomAccessIter<X>;

refines MutableBidirectionalIter<X>;

};

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 138

not on the models defined for the instantiating type arguments. (This rule is needed to en-
able separate type checking and compilation.) Thus, a call to an overloaded function such
as copy may resolve to a non-optimal overload. Consider the following implementation of
merge. The Iter1 and Iter2 types are required to model InputIterator and the body of
merge contains two calls to copy.

fun merge<Iter1,Iter2,Iter3>

where { InputIterator<Iter1>, InputIterator<Iter2>,

LessThanComparable<InputIterator<Iter1>.value>,

InputIterator<Iter1>.value == InputIterator<Iter2>.value,

OutputIterator<Iter3, InputIterator<Iter1>.value> }

(Iter1@ first1, Iter1 last1, Iter2@ first2, Iter2 last2, Iter3@ result)

-> Iter3@ {

...

return copy(first2, last2, copy(first1, last1, result));

}

The merge function always calls the slow version of copy, even though the actual iterators
may be random access. In C++, with tag dispatching, the fast version of copy is called
because the overload resolution occurs after template instantiation. However, C++ does not
provide separate type checking for templates.

To enable dispatching for copy the information available at the instantiation of merge
must be carried into the body of merge (suppose it is instantiated with a random access
iterator). This can be accomplished using a combination of concept and model declarations.
First, define a concept with a single operation that corresponds to the algorithm.

concept CopyRange<I1,I2> {

fun copy_range(I1,I1,I2) -> I2@;

};

Next, add a requirement for this concept to the type requirements of merge and replace the
calls to copy with the concept operation copy_range.

fun merge<Iter1,Iter2,Iter3>

where { ..., CopyRange<Iter2,Iter3>, CopyRange<Iter1,Iter3> }

(Iter1@ first1, Iter1 last1, Iter2@ first2, Iter2 last2, Iter3@ result)

-> Iter3@ { ...

return copy_range(first2, last2, copy_range(first1, last1, result));

}

The last part of the this idiom is to create parameterized model declarations for CopyRange.
The where clauses of the model definitions match the where clauses of the respective over-
loads for copy. In the body of each copy_range there is a call to copy which resolves to the
appropriate overload.

model <Iter1,Iter2> where { InputIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }

CopyRange<Iter1,Iter2> {

fun copy_range(Iter1 first, Iter1 last, Iter2 result) -> Iter2@

{ return copy(first, last, result); }

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 139

};

model <Iter1,Iter2> where { RandomAccessIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }

CopyRange<Iter1,Iter2> {

fun copy_range(Iter1 first, Iter1 last, Iter2 result) -> Iter2@

{ return copy(first, last, result); }

};

A call to merge with a random access iterator uses the second model to satisfy the re-
quirement for CopyRange. Thus, when copy_range is invoked inside merge, the fast version
of copy is called. A nice property of this idiom is that calls to generic algorithms need not
change. A disadvantage of this idiom is that the interface of the generic algorithms becomes
more complex.

6.1.4 Containers

The containers of the STL are implemented in G using polymorphic types. Figure 6.3 shows
an excerpt of the doubly-linked list container in G. As usual, a dummy sentinel node is
used in the implementation. With each STL container comes iterator types that translate
between the uniform iterator interface and data structure specific operations. Figure 6.3
shows the list_iterator which translates operator* to x.node->data and operator++ to
x.node = x.node->next.

Not shown in Figure 6.3 is the implementation of the mutable iterator for list (the
list_iterator provides read-only access). The definitions of the two iterator types are
nearly identical, the only difference is that operator* returns by read-only reference for the
constant iterator whereas it returns by read-write reference for the mutable iterator. The
code for these two iterators should be reused but G does not yet have a language mechanism
for this kind of reuse.

In C++ this kind of reuse can be expressed using the Curiously Recurring Template Pat-
tern (CRTP) and by parameterizing the base iterator class on the return type of operator*.
This approach can not be used in G because the parameter passing mode may not be pa-
rameterized. Further, the semantics of polymorphism in G does not match the intended use
here, we want to generate code for the two iterator types at library construction time. A
separate generative mechanism is needed to compliment the generic features of G. Similar
limitations in the ability to express reuse in terms of generics are discussed in [17], where
they suggest using the XVCL meta-programming system [202] to capture reuse. As a tem-
porary solution we used the m4 macro system to factor the common code from the iterators.
The following is an excerpt from the implementation of the iterator operators.

define(`forward_iter_ops',

`fun operator*<T> where { Regular<T>, DefaultConstructible<T> }

($1<T> x) -> T $2 { return x.node->data; } ...')

forward_iter_ops(list_iterator, &) /* read-only */

forward_iter_ops(mutable_list_iter, !) /* read-write */

At the time of finishing this thesis, the STL implementation in G includes the doubly-

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 140

Figure 6.3: Excerpt from a doubly-linked list container in G.

struct list_node<T> where { Regular<T>, DefaultConstructible<T> } {

list_node<T>* next; list_node<T>* prev; T data;

};

class list<T> where { Regular<T>, DefaultConstructible<T> } {

list() : n(new list_node<T>()) { n->next = n; n->prev = n; }

~list() { ... }

list_node<T>* n;

};

class list_iterator<T> where { Regular<T>, DefaultConstructible<T> } {

... list_node<T>* node;

};

fun operator*<T> where { Regular<T>, DefaultConstructible<T> }

(list_iterator<T> x) -> T { return x.node->data; }

fun operator++<T> where { Regular<T>, DefaultConstructible<T> }

(list_iterator<T>! x) -> list_iterator<T>!

{ x.node = x.node->next; return x; }

fun begin<T> where { Regular<T>, DefaultConstructible<T> }

(list<T> l) -> list_iterator<T>@

{ return @list_iterator<T>(l.n->next); }

fun end<T> where { Regular<T>, DefaultConstructible<T> }

(list<T> l) -> list_iterator<T>@ { return @list_iterator<T>(l.n); }

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 141

linked list class, a singly-linked slist class, and the vector class. The map, set, multimap,
and multiset containers have not yet been implemented, but look to be straightforward to
implement in G.

6.1.5 Adaptors.

The reverse_iterator class is a representative example of an STL adaptor.

class reverse_iterator<Iter>

where { Regular<Iter>, DefaultConstructible<Iter> } {

reverse_iterator(Iter base) : curr(base) { }

reverse_iterator(reverse_iterator<Iter> other) : curr(other.curr) { }

Iter curr;

};

The Regular requirement on the underlying iterator is needed for the copy construc-
tor and DefaultConstructible for the default constructor. This adaptor flips the di-
rection of traversal of the underlying iterator, which is accomplished with the following
operator* and operator++. There is a call to operator-- on the underlying Iter type so
BidirectionalIterator is required.

fun operator*<Iter> where { BidirectionalIterator<Iter> }

(reverse_iterator<Iter> r) -> BidirectionalIterator<Iter>.value

{ let tmp = @Iter(r.curr); return *--tmp; }

fun operator++<Iter> where { BidirectionalIterator<Iter> }

(reverse_iterator<Iter>! r) -> reverse_iterator<Iter>!

{ --r.curr; return r; }

Polymorphic model definitions are used to establish that reverse_iterator is a model
of the iterator concepts. The following says that reverse_iterator is a model of
InputIterator whenever the underlying iterator is a model of BidirectionalIterator.

model <Iter> where { BidirectionalIterator<Iter> }

InputIterator< reverse_iterator<Iter> > {

type value = BidirectionalIterator<Iter>.value;

type difference = BidirectionalIterator<Iter>.difference;

};

6.1.6 Function expressions

Most STL implementations implement two separate versions of find_subsequence, one
written in terms of operator== and the in terms of a function object. The version using
operator== could be written in terms of the one that takes a function object, but it is not
written that way. The original reason for this was to improve efficiency, but with with a
modern optimizing compiler there should be no difference in efficiency: all that is needed to
erase the difference is some simple inlining. The G implementation we write the operator==

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 142

version of find_subsequence in terms of the higher-order version. The following code
shows how this is done and is a bit more complicated than we would have liked.

fun find_subsequence<Iter1,Iter2>

where { ForwardIterator<Iter1>, ForwardIterator<Iter2>,

ForwardIterator<Iter1>.value == ForwardIterator<Iter2>.value,

EqualityComparable<ForwardIterator<Iter1>.value> }

(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2) -> Iter1@

{

type T = ForwardIterator<Iter1>.value;

let cmp = model EqualityComparable<T>.operator==;

return find_subsequence(first1, last1, first2, last2,

fun(T a,T b) c=cmp: c(a, b));

}

It would have been simpler to write the function expression as

fun(T a, T b): a == b

However, this is an error in G because the operator== from the EqualityComparable<..>

requirement is a local name, not a global one, and is therefore not in scope for the body
of the function expression. The workaround is to store the comparison function as a data
member of the function object. The expression

model EqualityComparable<T>.operator==

accesses the operator== member from the model of EqualityComparable for type T.
Examples such as these are a convincing argument that lexical scoping should be al-

lowed in function expressions, and the next generation of G will support this feature.

6.1.7 Improved error messages

In Section 2.2.1 we showed an example of a hard to understand error message that resulted
from a misuse of the STL stable_sort algorithm. The following code is the translation of
that example to G.

4 fun main() -> int@{

5 let v = @list<int>();

6 stable_sort(begin(v), end(v));

7 return 0;

8 }

The G compiler prints the following error message which is much shorter and easier to
understand.

test/stable_sort_error.g:6:

In application stable_sort(begin(v), end(v)),

Model MutableRandomAccessIterator<mutable_list_iter<int>>

needed to satisfy requirement, but it is not defined.

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 143

6.1.8 Improved error detection

Another problem that plagues generic C++ libraries is that type errors often go unnoticed
during library development. The errors go unnoticed because the type checking of template
definitions is delayed until instantiation. A related problem is that the documented type
requirements for a template may not be consistent with the implementation, which can
result in unexpected compiler errors for the user.

These problems are directly addressed in G: the implementation of a generic function
is type-checked with respect to its where clause. Verifying that there are no type errors in a
generic function and that the type requirements are consistent is trivial in G: the compiler
does not accept generic functions invoked with inconsistent types.

Interestingly, while implementing the STL in G, the type checker caught several errors
in the STL as defined in C++. One such error was in replace_copy. The implementation
below was translated directly from the GNU C++ Standard Library, with the where clause
matching the requirements for replace_copy in the C++ Standard [86].

196 fun replace_copy<Iter1,Iter2, T>

197 where { InputIterator<Iter1>, Regular<T>, EqualityComparable<T>,

198 OutputIterator<Iter2, InputIterator<Iter1>.value>,

199 OutputIterator<Iter2, T>,

200 EqualityComparable2<InputIterator<Iter1>.value,T> }

201 (Iter1@ first, Iter1 last, Iter2@ result, T old, T neu) -> Iter2@ {

202 for (; first != last; ++first)

203 result << *first == old ? neu : *first;

204 return result;

205 }

The G compiler gives the following error message:

stl/sequence_mutation.g:203:

The two branches of the conditional expression must have the

same type or one must be coercible to the other.

This is a subtle bug, which explains why it has gone unnoticed for so long. The type
requirements say that both the value type of the iterator and T must be writable to the
output iterator, but the requirements do not say that the value type and T are the same
type, or coercible to one another.

6.2 The Boost Graph Library

A group of us at the Open Systems Lab performed a comparative study of language support
for generic programming [69]. We evaluated a half dozen modern programming languages
by implementing a subset of the Boost Graph Library [169] in each language. We im-
plemented a family of algorithms associated with breadth-first search, including Dijkstra’s
single-source shortest paths [52] and Prim’s minimum spanning tree algorithms [153]. This
section extends the previous study to include G. We give a brief overview of the BGL, de-

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 144

Breadth-First Search
G

<uses>

Dijkstra Shortest Paths
G D W < +

<uses>

Johnson All-Pairs
G W < +

<uses>

<uses>

Prim Min Span Tree
G D W <

<uses>

Graph Search
G VisB

Incidence Graph

<models>

Vertex List Graph
<models>

Bellman-Ford Shortest Paths
G D W < +

Edge List Graph

<models>

Read-Map
Read/Write-Map

<models>
<models>

Read/Write-Map

<models>

Read-Map

<models>

C

Read/Write-Map
<models>Vertex List Graph

<models>
Vis

BFS Visitor

<models>

Visitor

<models>

Bag
<models>

C

Read/Write-Map

<models>

Figure 6.4: Graph algorithm parameterization and reuse within the Boost Graph Library.
Arrows for redundant models relationships are not shown. For example, the type parameter
G of breadth-first search must also model Incidence Graph because breadth-first search uses
graph search.

scribe the implementation of the BGL in G, and compare the results to those in our earlier
study [69].

6.2.1 An overview of the BGL graph search algorithms

Figure 6.4 depicts some graph search algorithms from the BGL, their relationships, and how
they are parameterized. Each large box represents an algorithm and the attached small
boxes represent type parameters. An arrow labeled <uses> from one algorithm to another
specifies that one algorithm is implemented using the other. An arrow labeled <models>

from a type parameter to an unboxed name specifies that the type parameter must model
that concept. For example, the breadth-first search algorithm has three type parameters:
G, C, and Vis. Each of these has requirements: G must model the Vertex List Graph and
Incidence Graph concepts, C must model the Read/Write Map concept, and Vis must model
the BFS Visitor concept. The breadth-first search algorithm is implemented using the graph
search algorithm.

The core algorithm of this library is graph search, which traverses a graph and performs
user-defined operations at certain points in the search. The order in which vertices are
visited is controlled by a type argument, B, that models the Bag concept. This concept
abstracts a data structure with insert and remove operations but no requirements on the
order in which items are removed. When B is bound to a FIFO queue, the traversal order is
breadth-first. When it is bound to a priority queue based on distance to a source vertex, the
order is closest-first, as in Dijkstra’s single-source shortest paths algorithm. Graph search
is also parameterized on actions to take at event points during the search, such as when a
vertex is first discovered. This parameter, Vis, must model the Visitor concept (which is not
to be confused with the Visitor design pattern). The graph search algorithm also takes a
type parameter C for mapping each vertex to a color and C must model the Read/Write Map

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 145

concept. The colors are used as markers to keep track of the progression of the algorithm
through the graph.

The Read Map and Read/Write Map concepts represent variants of an important abstrac-
tion in the graph library: the property map. In practice, graphs represent domain-specific
entities. For example, a graph might depict the layout of a communication network, its
vertices representing endpoints and its edges representing direct links. In addition to the
number of vertices and the edges between them, a graph may associate values to its ele-
ments. Each vertex of a communication network graph might have a name and each edge a
maximum transmission rate. Some algorithms require access to domain information associ-
ated with the graph representation. For example, Prim’s minimum spanning tree algorithm
requires “weight” information associated with each edge in a graph. Property maps pro-
vide a convenient implementation-agnostic means of expressing, to algorithms, relations
between graph elements and domain-specific data. Some graph data structures directly
contain associated values with each node; others use external associative data structures to
implement these relationships. Interfaces based on property maps work equally well with
both representations.

The graph algorithms are all parameterized on the graph type. Breadth-first search takes
a type parameter G, which must model two concepts, Incidence Graph and Vertex List Graph.
The Incidence Graph concept defines an interface for accessing out-edges of a vertex. Vertex
List Graph specifies an interface for accessing the vertices of a graph in an unspecified order.
The Bellman-Ford shortest paths algorithm [18] requires a model of the Edge List Graph
concept, which provides access to all the edges of a graph.

That graph capabilities are partitioned among three concepts illustrates generic pro-
gramming’s emphasis on minimal algorithm requirements. The Bellman-Ford shortest paths
algorithm requires of a graph only the operations described by the Edge List Graph concept.
Breadth-first search, in contrast, requires the functionality of two separate concepts. By
partitioning the functionality of graphs, each algorithm can be used with any data type that
meets its minimum requirements. If the three fine-grained graph concepts were replaced
with one monolithic concept, each algorithm would require more from its graph type pa-
rameter than necessary and would thus unnecessarily restrict the set of types with which it
could be used.

The graph library design is suitable for evaluating generic programming capabilities of
languages because its implementation involves a rich variety of generic programming tech-
niques. Most of the algorithms are implemented using other library algorithms: breadth-
first search and Dijkstra’s shortest paths use graph search, Prim’s minimum spanning tree
algorithm uses Dijkstra’s algorithm, and Johnson’s all-pairs shortest paths algorithm [94]
uses both Dijkstra’s and Bellman-Ford shortest paths. Furthermore, type parameters for
some algorithms, such as the G parameter to breadth-first search, must model multiple con-
cepts. In addition, the algorithms require certain relationships between type parameters.
For example, consider the graph search algorithm. The C type argument, as a model of
Read/Write Map, is required to have an associated key type. The G type argument is required
to have an associated vertex type. Graph search requires that these two types be the same.

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 146

As in our earlier study, we focus the evaluation on the interface of the breadth-first
search algorithm and the infrastructure surrounding it, including concept definitions and
an example use of the algorithm.

6.2.2 Implementation in G

So far we have implemented breadth-first search and Dijkstra’s single-source shortest paths
in G. This required defining several of the graph and property map concepts and an imple-
mentation of the adjacency_list class, a FIFO queue, and a priority queue.

The interface for the breadth-first search algorithm is straightforward to express in G. It
has three type parameters: the graph type G, the color map type C, and the visitor type Vis.
The requirements on the type parameters are expressed with a where clause, using con-
cepts that we describe below. In the interface of breadth_first_search, associated types
and same-type constraints play an important role in accurately tracking the relationships
between the graph type, its vertex descriptor type, and the color property map.

type Color = int;

let black = 0;

let gray = 1;

let white = 2;

fun breadth_first_search<G, C, Vis>

where { IncidenceGraph<G>, VertexListGraph<G>,

ReadWritePropertyMap<C>,

PropertyMap<C>.key == IncidenceGraph<G>.vertex_descriptor,

PropertyMap<C>.value == Color,

BFSVisitor<Vis,G> }

(G g, IncidenceGraph<G>.vertex_descriptor@ s, C c, Vis vis) { /* ... */ }

Figure 6.5 shows the definition of several graph concepts in G. The Graph concept
requires the associated types vertex_descriptor and edge_descriptor and some basic
functionality for those types such as copy construction and equality comparison. This con-
cept also includes the source and target functions. The Graph concept serves to factor
common requirements out of the IncidenceGraph and VertexListGraph concepts.

The IncidenceGraph concept introduces the capability to access out-edges of a vertex.
The access is provided by the out_edge_iterator associated type. The requirements for the
out-edge iterator are slightly more than the standard InputIterator concept and slightly
less than the ForwardIterator concept. The out-edge iterator must allow for multiple
passes but dereferencing an out-edge iterator need not return a reference (for example, it
may return by-value instead). Thus we define the following new concept to express these
requirements.

concept MultiPassIterator<Iter> {

refines DefaultConstructible<Iter>;

refines InputIterator<Iter>;

// semantic requirement: allow multiple passes through the range

};

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 147

In Figure 6.5, the IncidenceGraph concept uses same-type constraints to require that
the value type of the iterator to be the same type as the edge_descriptor. The
VertexListGraph concepts adds the capability of traversing all the vertices in the graph
using the associated vertex_iterator.

Figure 6.6 shows the implementation of a graph in terms of a vector of singly-linked
lists. Vertex descriptors are integers and edge descriptors are pairs of integers. The out-
edge iterator is implemented with the vg_out_edge_iter class whose implementation is
shown in Figure 6.7. The basic idea behind this iterator is to provide a different view of the
list of target vertices, making it appear as a list of source-target pairs.

The property map concepts are defined in Figure 6.8. The ReadWritePropertyMap is a
refinement of the ReadablePropertyMap concept, which requires the get function, and the
WritablePropertyMap concept, which requires the put function. Both of these concepts
refine the PropertyMap concept which includes the associated key and value types.

Figure 6.9 shows the definition of the BFSVisitor concept. This concept is naturally
expressed as a multi-parameter concept because the visitor and graph types are indepen-
dent: a particular visitor may be used with many different concrete graph types and vice
versa. The use of refines for Graph in BFSVisitor is somewhat odd, require would be
more natural, but the refinement provides direct (and convenient) access to the vertex and
edge descriptor types. An alternative would be use to require and some type aliases, but
type aliases have not yet been added to concept definitions.

Figure 6.10 presents an example use of the breadth_first_search function to out-
put vertices in breadth-first order. To do so, the test_vis visitor overrides the function
discover_vertex; empty implementations of the other visitor functions are provided by
default_bfs_visitor. A graph is constructed using the AdjacencyList class, and then
breadth_first_search is called.

6.3 Summary

This chapter evaluated the design of G with respect to implementing representative portions
of the STL and the BGL. The evaluation showed that implementing generic algorithms in G
is straightforward. The concept and where clause features of G enable the direct expression
of the ideas of generic programming. The use of generic libraries is made easier by the
improvement in error messages and the development of generic algorithms is aided by sep-
arate type checking. With respect to building generic containers, G provides some support
with its parameterized classes, but the kind of code reuse typical of inheritance or mixins is
not easily expressible in G, so such language features would make a good addition to G.

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 148

Figure 6.5: Graph concepts in G.

concept Graph<G> {

type vertex_descriptor;

require DefaultConstructible<vertex_descriptor>;

require Regular<vertex_descriptor>;

require EqualityComparable<vertex_descriptor>;

type edge_descriptor;

require DefaultConstructible<edge_descriptor>;

require Regular<edge_descriptor>;

require EqualityComparable<edge_descriptor>;

fun source(edge_descriptor, G) -> vertex_descriptor@;

fun target(edge_descriptor, G) -> vertex_descriptor@;

};

concept IncidenceGraph<G> {

refines Graph<G>;

type out_edge_iterator;

require MultiPassIterator<out_edge_iterator>;

edge_descriptor == InputIterator<out_edge_iterator>.value;

fun out_edges(vertex_descriptor, G)

-> pair<out_edge_iterator, out_edge_iterator>@;

fun out_degree(vertex_descriptor, G) -> int@;

};

concept VertexListGraph<G> {

refines Graph<G>;

type vertex_iterator;

require MultiPassIterator<vertex_iterator>;

vertex_descriptor == InputIterator<vertex_iterator>.value;

fun vertices(G) -> pair<vertex_iterator, vertex_iterator>@;

fun num_vertices(G) -> int@;

};

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 149

Figure 6.6: Implementation of a graph with a vector of lists.

fun source(pair<int,int> e, vector< slist<int> >) -> int@ { return e.first; }

fun target(pair<int,int> e, vector< slist<int> >) -> int@ { return e.second; }

model Graph< vector< slist<int> > > {

type vertex_descriptor = int;

type edge_descriptor = pair<int,int>;

};

fun out_edges(int src, vector< slist<int> > G)

-> pair<vg_out_edge_iter, vg_out_edge_iter>@ {

return make_pair(@vg_out_edge_iter(src, begin(G[src])),

@vg_out_edge_iter(src, end(G[src])));

}

fun out_degree(int src, vector< slist<int> > G) -> int@ { return size(G[src]); }

model IncidenceGraph< vector< slist<int> > > {

type out_edge_iterator = vg_out_edge_iter;

};

fun vertices(vector< slist<int> > G) -> pair<counting_iter,counting_iter>@

{ return make_pair(@counting_iter(0), @counting_iter(size(G))); }

fun num_vertices(vector< slist<int> > G) -> int@ { return size(G); }

model VertexListGraph< vector< slist<int> > > {

type vertices_size_type = int;

type vertex_iterator = counting_iter;

};

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 150

Figure 6.7: Out-edge iterator for the vector of lists.

class vg_out_edge_iter {

vg_out_edge_iter() { }

vg_out_edge_iter(int src, slist_iterator<int> iter) : src(src), iter(iter) { }

vg_out_edge_iter(vg_out_edge_iter x) : iter(x.iter), src(x.src) { }

slist_iterator<int> iter;

int src;

};

fun operator=(vg_out_edge_iter! me, vg_out_edge_iter other) -> vg_out_edge_iter!

{ me.iter = other.iter; me.src = other.src; return me; }

model DefaultConstructible<vg_out_edge_iter> { };

model Regular<vg_out_edge_iter> { };

fun operator==(vg_out_edge_iter x, vg_out_edge_iter y) -> bool@

{ return x.iter == y.iter; }

fun operator!=(vg_out_edge_iter x, vg_out_edge_iter y) -> bool@

{ return x.iter != y.iter; }

model EqualityComparable<vg_out_edge_iter> { };

fun operator*(vg_out_edge_iter x) -> pair<int,int>@

{ return make_pair(x.src, *x.iter); }

fun operator++(vg_out_edge_iter! x) -> vg_out_edge_iter!

{ ++x.iter; return x; }

model InputIterator<vg_out_edge_iter> {

type value = pair<int,int>;

type difference = ptrdiff_t;

};

model MultiPassIterator<vg_out_edge_iter> { };

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 151

Figure 6.8: Property map concepts in G.

concept PropertyMap<Map> {

type key;

type value;

};

concept ReadablePropertyMap<Map> {

refines PropertyMap<Map>;

fun get(Map, key) -> value;

};

concept WritablePropertyMap<Map> {

refines PropertyMap<Map>;

fun put(Map, key, value);

};

concept ReadWritePropertyMap<Map> {

refines ReadablePropertyMap<Map>;

refines WritablePropertyMap<Map>;

};

Figure 6.9: Breadth-first search visitor concept.

concept BFSVisitor<Vis, G> {

refines Regular<Vis>;

refines Graph<G>;

fun initialize_vertex(Vis v, vertex_descriptor d, G g) {}

fun discover_vertex(Vis v, vertex_descriptor d, G g) {}

fun examine_vertex(Vis v, vertex_descriptor d, G g) {}

fun examine_edge(Vis v, edge_descriptor d, G g) {}

fun tree_edge(Vis v, edge_descriptor d, G g) {}

fun non_tree_edge(Vis v, edge_descriptor d, G g) {}

fun gray_target(Vis v, edge_descriptor d, G g) {}

fun black_target(Vis v, edge_descriptor d, G g) {}

fun finish_vertex(Vis v, vertex_descriptor d, G g) {}

};

CHAPTER 6. CASE STUDIES: GENERIC LIBRARIES IN G 152

Figure 6.10: Example use of the BFS generic function.

struct test_vis { };

fun discover_vertex<G>(test_vis, int v, G g) { printf("%d ", v); }

model <G> where { Graph<G>, Graph<G>.vertex_descriptor == int }

BFSVisitor<test_vis, G> { };

fun main() -> int@ {

let n = 7;

let g = @vector< slist<int> >(n);

push_front(1, g[0]); push_front(4, g[0]);

push_front(2, g[1]); push_front(3, g[1]);

push_front(4, g[3]); push_front(6, g[3]);

push_front(5, g[4]);

let src = 0;

let color = new Color[n];

for (let i = 0; i != n; ++i)

color[i] = white;

breadth_first_search(g, src, color, @test_vis());

return 0;

}

This type system has been designed to facilitate program verification
on a modular basis. The general principle is that a module writer
should not have to look outside his module to verify its correctness.

James H. Morris, Jr. [131]

7
Type Safety of FG

Type safety does not hold for G because G inherits many type safety holes from C++. For
example, a dangling pointer is created when delete is invoked on a pointer and the type
system does not prevent such a pointer from being dereferenced. Another example is that
a stack allocated object may be returned by-reference from a function, thereby creating
a dangling reference. There has been considerable research related to type-safe manual
memory management. This research includes memory management via regions [81, 188,
197] and using type systems to track aliasing [26, 27, 44, 60]. Memory management is
not the focus of this dissertation, so we leave for future work the application of the above
research to define a type safe version of G.

However, we still want to know whether the design for generics presented in this thesis
creates holes in the type system, or whether it is sound with respect to type safety. To this
end we embed the design for generics in System F [71, 157] to create a calculus named FG .
System F is a small language that captures the essence of parametric polymorphism and is
a standard tool in programming language research. The semantics of FG is defined with
respect to System F. That is, we define a translation from FG to System F. This translation
parallels the translation of G to C++. The type safety of FG is proved by showing that well-
typed terms of FG translate to well-typed terms of System F. Therefore, because System F is
type safe, so is FG . The property of type safety is important because when a language is type
safe and a program passes type checking, any execution of that program will be guaranteed
to be free of type errors. Thus type checking is a useful form of lightweight validation.
The presentation of FG here includes the material from [172] and adds the proof that the
translation of FG with associated types to System F preserves typing.

153

CHAPTER 7. TYPE SAFETY OF FG 154

Figure 7.1: Types and Terms of System F

s, t ∈ Type Variables
x, y, d ∈ Term Variables
n ∈ N
τ ::= t | fun τ → τ | τ × · · · × τ | ∀t. τ

f ::= x | f(f) | λy : τ . f | Λt. f | f [τ]
| let x = f in f | (f, . . . , f) | nth f n

7.1 FG = System F + concepts, models, and constraints

System F, the polymorphic lambda calculus, is the prototypical tool for studying type pa-
rameterization. The syntax of System F is shown in Figure 7.1 and the type rules for System
F are in Figure 7.2. The variable f ranges over System F expressions; we reserve e for Sys-
tem FG expressions. We use an over-bar, such as τ , to denote repetition: τ1, . . . , τn. We use
mult-parameter functions and type abstractions in System F to ease the translation from FG

to F. We also include a let expression.
It is possible to write generic algorithms in System F, as is demonstrated in Figure 7.3,

which shows the implementation of a polymorphic sum function. The function is written
in higher-order style, passing the type-specific add and zero as parameters. However, this
approach does not scale: algorithms of any interest typically require dozens of type-specific
operations.

7.1.1 Adding concepts, models, and constraints

FG adds concepts, models, and where clauses to System F. These three features provide the
core support for generic programming in G. Figure 7.4 shows the abstract syntax of the
basic formulation of FG . Associated types and same-type constraints are added to FG in
Section 7.4. While the core features of G are present in FG , are are several aspects of the
generics of G that are left out for the sake of simplicity.

Function overloading is not present in FG . Formalizing function overloading is straight-
forward but complicated and the kind of static overload resolution present in G poses
no problems for type safety. For example, Java has static overload resolution and is
type safe.

Parameterized models are not present in FG . The presence of parameterized models in
G makes its type system undecidable because the model lookup algorithm becomes
much more powerful and is not guaranteed to terminate (see Section 4.6.2 for de-
tails). However, the type soundness property is unaffected: if a program type checks
(and all the right models are found) then execution is still guaranteed to be free of
type errors.

CHAPTER 7. TYPE SAFETY OF FG 155

Figure 7.2: Type rules and well-formed types for System F

Γ ` f : τ

(TABS)
distinct t t ∩ FTV(Γ) = ∅ Γ, t ` f : τ

Γ ` Λt. f : ∀t. τ
(TAPP)

Γ ` σ Γ ` f : ∀t. τ

Γ ` f [σ] : [t 7→σ]τ

(VAR)
x : τ ∈ Γ
Γ ` x : τ

(ABS)
Γ, x : σ ` f : τ Γ ` σ

Γ ` λx : σ. f : fun σ → τ

(APP)
Γ ` f1 : fun σ → τ Γ ` f2 : σ

Γ ` f1(f2) : τ
(LET)

Σ ` f1 : σ Σ, x : σ ` f2 : τ

Σ ` let x = f1 in f2 : τ

Γ ` τ

t ∈ Γ
Γ ` t

Γ ` τ Γ ` τ
Γ ` fun τ → τ

Γ ` τ1 · · · Γ ` τn

Γ ` τ1 × · · · × τn

distinct t Γ, t ` τ

Γ ` ∀t. τ

Figure 7.3: Higher Order Sum in System F

let sum =

(Λ t.

fix (λ sum : fun(list t, fun(t,t)→t, t)→t.

λ ls : list t, add : fun(t,t)→t, zero : t.

if null[t](ls) then zero

else add(car[t](ls), sum(cdr[t](ls), add, zero)))) in

let ls = cons[int](1, cons[int](2, nil[int])) in

sum[int](ls, iadd, 0)

CHAPTER 7. TYPE SAFETY OF FG 156

Figure 7.4: Types and Terms of FG

c ∈ Concept Names
s, t ∈ Type Variables
x, y, z ∈ Term Variables
ρ, σ, τ ::= t | fun (τ) → τ | ∀t where c<σ>. τ
e ::= x | e(e) | λy : τ. e

| Λt where c<σ>. e | e[τ]
| concept c<t>{refines c<σ>; x : τ ; } in e
| model c<τ> {x = e; } in e
| c<τ>.x

Implicit instantiation is not present in FG . G uses the same approach to implicit instan-
tiation as MLF [24], and that approach was already proved to be type sound and
decidable.

To illustrate the features of FG , we evolve the sum function defined above. To be generic,
the sum function should work for any element type that supports addition, so we capture
this requirement in a concept. As in Section 2.1 we define Semigroup and Monoid concepts
as follows.

concept Semigroup<t> {

binary_op : fun(t,t)→t;

} in

concept Monoid<t> {

refines Semigroup<t>;

identity_elt : t;

} in ...

As with System F, FG is an expression-oriented programming language. These concept

definitions are like let: they add to the lexical environment for the enclosed expression
(after the in).

The following code declares int to be a model of Semigroup and Monoid, using integer
addition for the binary operation and 0 for the identity element. The type system of FG

checks the body of the model against the concept definition to ensure all required operations
are provided and that there are model declarations in scope for each refinement.

model Semigroup<int> {

binary_op = iadd;

}

model Monoid<int> {

identity_elt = 0;

}

A model is found via the concept name and type, and members of the model are ex-

CHAPTER 7. TYPE SAFETY OF FG 157

tracted with the dot operator. For example, the following returns the iadd function.

Monoid<int>.binary_op

With the Monoid concept defined, we are ready to write a generic sum function. The
function is generalized to work with any type that has an associative binary operation with
an identity element (no longer necessarily addition), so a more appropriate name for this
function is accumulate. As in System F, type parameterization in FG is provided by the Λ
expression. FG adds a where clause to the Λ expression for listing requirements.

let accumulate = (Λ t where Monoid<t>. /*body*/)

The concepts, models, and where clauses collaborate to provide a mechanism for im-
plicitly passing operations into a generic function. As in System F, a generic function is
instantiated by providing type arguments for each type parameter.

accumulate[int]

In System F, instantiation substitutes int for t in the body of the Λ. In FG , instantiation also
involves the following steps:

1. int is substituted for t in the where clause.

2. For each requirement in the where clause, the lexical scope of the instantiation is
searched for a matching model declaration.

3. The models are implicitly passed into the generic function.

Consider the body of the accumulate function listed below. The model requirements
in the where clause serve as proxies for actual model declarations. Thus, the body of
accumulate is type-checked as if there were a model declaration model Monoid<t> in the
enclosing scope. The dot operator is used inside the body to access the binary operator and
identity element of the Monoid.

let accumulate =

(Λ t where Monoid<t>.

fix (λ accum : fun(list t)→ t.

λ ls : list t.

let binary_op = Monoid<t>.binary_op in

let identity_elt = Monoid<t>.identity_elt in

if null[t](ls) then identity_elt

else binary_op(car[t](ls), accum(cdr[t](ls)))))

It would be more convenient to write binary_op instead of the explicit member ac-
cess: Monoid<t>.binary_op. However, such a statement could be ambiguous without the
incorporation of overloading. For example, suppose that a generic function has two type
parameters, s and t, and requires each to be a Monoid. Then a call to binary_op might
refer to either Monoid<s>.binary_op or Monoid<t>.binary_op. While the convenience of
function overloading is important, we did not wish to complicate FG with this additional
feature. Function overloading is present in the full language G. Function overloading in
G is described in Section 4.7 and an algorithm for overload resolution is defined in Sec-
tion 5.2.3.

CHAPTER 7. TYPE SAFETY OF FG 158

Figure 7.5: Generic Accumulate

concept Semigroup<t> {

binary_op : fun(t,t)→t;

} in

concept Monoid<t> {

refines Semigroup<t>;

identity_elt : t;

} in

let accumulate =

(Λ t where Monoid<t>.

fix (λ accum : fun(list t)→ t.

λ ls : list t.

let binary_op = Monoid<t>.binary_op in

let identity_elt = Monoid<t>.identity_elt in

if null[t](ls) then identity_elt

else binary_op(car[t](ls), accum(cdr[t](ls))))) in

model Semigroup<int> {

binary_op = iadd;

} in

model Monoid<int> {

identity_elt = 0;

} in

let ls = cons[int](1, cons[int](2, nil[int])) in

accumulate[int](ls)

The complete program for this example is in Figure 7.5.

7.1.2 Lexically scoped models and model overlapping

The lexical scoping of models declarations is an important feature of FG , and one that
distinguishes it from Haskell. We illustrate this distinction with an example. There are
multiple ways for the set of integers to model Monoid besides addition with the zero identity
element. For example, in FG , the Monoid consisting of integers with multiplication for the
binary operation and 1 for the identity element would be declared as follows.

model Semigroup<int> {

binary_op = imult;

}

model Monoid<int> {

CHAPTER 7. TYPE SAFETY OF FG 159

Figure 7.6: Intentionally overlapping models.

let sum =

model Semigroup<int> {

binary_op = iadd;

} in

model Monoid<int> {

identity_elt = 0;

} in accumulate[int] in

let product =

model Semigroup<int> {

binary_op = imult;

} in

model Monoid<int> {

identity_elt = 1;

} in accumulate[int] in

let ls = cons[int](1, cons[int](2, nil[int])) in

(sum(ls), product(ls))

identity_elt = 1;

}

Borrowing from Haskell terminology, this creates overlapping model declarations, since
there are now two model declarations for the Semigroup<int> and Monoid<int> concepts.
Overlapping model declarations are problematic since they introduce ambiguity: when
accumulate is instantiated, which model (with its corresponding binary operation and iden-
tity element) should be used?

In FG , overlapping models declarations may co-exist if they appear in separate lexical
scopes. In Figure 7.6 we create sum and product functions by instantiating accumulate in
the presence of different model declarations. This example would not type check in Haskell,
even if the two instance declarations were to be placed in different modules, because in-
stance declarations implicitly leak out of a module when anything in the module is used by
another module.

7.2 Translation of FG to System F

We describe a translation from FG to System F similar to the type-directed translation of
Haskell type classes presented in [78]. The translation described here is intentionally sim-
ple; its purpose is to communicate the semantics of FG and to aid in the proof of type safety.
We show that the translation from FG to System F preserves typing, which together with the

CHAPTER 7. TYPE SAFETY OF FG 160

Semigroup<int>

Monoid<int>

0

iadd

Figure 7.7: Dictionaries for Semigroup<int> and Monoid<int>.

fact that System F is type safe [151], ensures the type safety of FG . The main idea behind the
translation is to represent models with dictionaries that map member names to values, and
to pass these dictionaries as extra arguments to generic functions. Here, we use tuples to
represent dictionaries. Thus, the model declarations for Semigroup<int> and Monoid<int>

translate to a pair of let expressions that bind freshly generated dictionary names to the
dictionaries (tuples) for the models. We show a diagram of the dictionary representation of
these models in Figure 7.7 and we show the translation to System F below.

model Semigroup<int> {

binary_op = iadd;

} in

model Monoid<int> {

identity_elt = 0;

} in /* rest */

==>

let Semigroup_61 = (iadd) in

let Monoid_67 = (Semigroup_61,0) in /* rest */

The accumulate function is translated by removing the where clause and wrapping the body
in a λ expression with a parameter for each model requirement in the where clause.

let accumulate = (Λ t where Monoid<t>. /*body*/)

==>

let accumulate =

(Λ t. (λ Monoid_18:(fn(t,t)→t)*t. /* body */)

The accumulate function is now curried, first taking a dictionary argument and then taking
the normal arguments.

accumulate[int](ls)

==>

((accumulate[int])(Monoid_67))(ls)

In the body of accumulate there are model member accesses. These are translated into
tuple member accesses.

let binary_op = Monoid<t>.binary_op in

let identity_elt = Monoid<t>.identity_elt in

==>

CHAPTER 7. TYPE SAFETY OF FG 161

let binary_op = (nth (nth Monoid_18 0) 0) in

let identity_elt = (nth Monoid_18 1) in

The formal translation rules are in Figure 7.9. We write [t 7→σ]τ for the capture avoiding
substitution of σ for t in τ . We write [t 7→ σ]τ for simultaneous substitution. The function
FTV returns the set of free type variables and CV returns the concept names occurring
in the where clauses within a type. We write distinct t to mean that each item in the list
appears at most once. We subscript a nested tuple type with a non-empty sequence of
natural numbers to mean the following:

(τ1 × . . .× τk)i = τi

(τ1 × . . .× τk)i,n = (τi)n

The environment Γ consists of four parts: 1) the usual type assignment for variables,
2) the set of type variables currently in scope, 3) information about concepts and their
corresponding dictionary types, and 4) information about models, including the identifier
and path to the corresponding dictionary in the translation.

The (MEM) rule uses the auxiliary function [(c, ρ, n, Γ) to obtain a set of concept mem-
bers together with their types and the paths (sequences of natural numbers) to the members
through the dictionary. A path instead of a single index is necessary because dictionaries
may be nested due to concept refinement.

[(c, ρ, n, Γ) =
M := ∅
for i = 0, . . . , |c′| − 1

M := M ∪ [(c′i, [t 7→ρ]ρ′i, (n, i),Γ)
for i = 0, . . . , |x| − 1

M := M ∪ {xi : ([t 7→ρ]σi, (n, |c′|+ i))}
return M

where concept c<t>{refines c′<ρ′>; x : σ; } 7→ δ ∈ Γ

The (TABS) rule uses the auxiliary function [w to collect proxy model definitions from
the where clause of a type abstraction and also computes the dictionary type for each re-
quirement. The function [m, defined below, is applied to each concept requirement.

[w([],Γ) = (Γ, [])
[w((c<ρ>, c′<ρ′>),Γ) =

generate fresh d
(Γ, δ) := [m(c, ρ, d, [],Γ)
(Γ, δ′) := [w(c′<[t 7→ρ]ρ′>,Γ)
return (Γ, (δ, δ′))

where concept c<t>{refines c′<ρ′>; x : σ; } 7→ δ ∈ Γ

CHAPTER 7. TYPE SAFETY OF FG 162

Figure 7.8: Well-formedness of FG types and translation to System F types.

Γ ` τ ; τ ′

(TYVAR)
t ∈ Γ

Γ ` t ; t

(TYABS) Γ ` σ ; σ′ Γ ` τ ; τ ′

Γ ` fun σ → τ ; fun σ′ → τ ′

(TYTABS)
(Γ′, δ) = [w(c<ρ>, (Γ, t)) Γ′ ` τ ; τ ′

Γ ` ∀t where c<ρ>. τ ; ∀t.fun δ → τ ′

The function [m(c, ρ, d, n, Γ) collects the model definitions and dictionary type for the
model c<ρ>. The model information inserted into the environment includes a dictionary
name d and a path n that gives the location inside d for the dictionary of c(τ).

[m(c, ρ, d, n, Γ) =
check Γ ` ρ ; −
τ := []
for i = 0, . . . , |c′| − 1

(Γ, δ′) := [m(c′i, [t 7→ρ]ρ′i, d, (n, i),Γ)
τ := τ , δ′

τ := τ@[t 7→ρ]σ
Γ := Γ, (model c<ρ> 7→ (d, n))
return (Γ, τ)

where concept c<t>{refines c′<ρ′>; x : σ; } 7→ δ ∈ Γ

Figure 7.8 defines the translation from FG types to System F types.
We now come to our main result for this section: translation produces well typed terms

of System F, or more precisely, if Γ ` e : τ ; f and Σ is a System F environment corre-
sponding to Γ, then there exists some type τ ′ such that Σ ` f : τ ′. Figure 7.10 defines what
we mean by correspondence between an FG environment and System F environment.

Several lemmas are used in the theorem. The proofs of these lemmas are omitted here
but appear in a technical report [171]. The technical report formalizes the lemmas and
theorem in the Isar proof language [143] and the Isabelle proof assistant [144] was used
to validate the proofs. We give an overview of that formalization in Section 7.3.

CHAPTER 7. TYPE SAFETY OF FG 163

Figure 7.9: Type Rules for FG and Translation to System F

Γ ` e : τ ; f

(CPT)

distinct t (Γ′,−) = [w(c′<ρ>, (Γ, t))
Γ′ ` τ ; τ ′ δ = ([t′ 7→ρ′]δ′)@τ ′

Γ, (concept c<t>{refines c′<ρ>; x : τ ; } 7→ δ) ` e : τ ; f c 6∈ CV(τ)

Γ ` concept c<t>{refines c′<ρ>; x : τ ; } in e : τ ; f

(MDL)

concept c<t>{refines c′<ρ′>; x : τ ; } 7→ δ ∈ Γ Γ ` ρ ; τ ′ Γ ` e : σ ; f

model c′<[t 7→ρ]ρ′> 7→ (d′, n) ∈ Γ x : [t 7→ρ]τ ⊆ y : σ d fresh
Γ, (model c<ρ> 7→ (d, [])) ` e : τ ; f d′′ = (nth . . . (nth d′ n1) . . . nk)

Γ ` model c<ρ> {y = e; } in e : τ ; let d = (d′′@[y 7→f]x) in f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, δ) = [w(c<ρ>, (Γ, t)) Γ′ ` e : τ ; f

Γ ` Λt where c<ρ>. e : ∀t where c<ρ>. τ ; Λt. λd : δ. f

(TAPP)
Γ ` σ ; σ′ Γ ` e : ∀t where c<ρ>. τ ; f model c<[t 7→σ]ρ> 7→ (d, n) ∈ Γ

Γ ` e[σ] : [t 7→σ]τ ; f [σ′](nth . . . (nth d n1) . . . nk)

(MEM)
Γ ` ρ ; ρ′ (model c<ρ> 7→ (d, n)) ∈ Γ (x : (τ, n′)) ∈ [(c, ρ, n, Γ)

Γ ` c<ρ>.x : τ ; (nth . . . (nth d n′
1) . . . n′

k)

(VAR)
x : τ ∈ Γ

Γ ` x : τ ; x
(ABS)

Γ, x : σ ` e : τ ; f Γ ` σ ; σ′

Γ ` λx : σ. e : fun σ → τ ; λx : σ′. f

(APP)
Γ ` e1 : fun σ → τ ; f1 Γ ` e2 : σ ; f2

Γ ` e1(e2) : τ ; f1(f2)

CHAPTER 7. TYPE SAFETY OF FG 164

Figure 7.10: Well-formed FG environment in correspondence with a System F environment.

Γ ; Σ

∅; ∅
Γ ; Σ Γ ` τ ; τ ′

Γ, x : τ ; Σ, x : τ ′
Γ ; Σ

Γ, t ; Σ, t

Γ ; Σ (−, δ) = [m(c, τ ,−,−,Γ)
Γ, (model c<τ> 7→ (d, [])) ; Σ, d : δ

Γ ; Σ 0 < |n| d : δ ∈ Σ (−, δn) = [m(c, τ ,−,−,Γ)
Γ, (model c<τ> 7→ (d, n)); Σ

Γ ; Σ (Γ′, δ′) = [w(c′<τ>, (Γ, t)) Γ′ ` σ ; σ′

Γ, (concept c<t>{refines c′<τ>; x : σ; } 7→ δ′@σ′); Σ

The first lemma relates the type of a model member returned by the [function to the
member type in the dictionary for the model given by the [m.

Lemma 1.

If (x : (τ, n′)) ∈ [(c, ρ, n, Γ) and (−, δn) = [m(c, ρ,−,−,Γ)
then Γ ` τ ; δn′

The next lemma states that the type of the dictionaries in the environment match the
concept’s dictionary type δ. The purpose of the sequence n is to map from the dictionary d
for a “derived” concept to the nested tuple for the “super” concept c.

Lemma 2.

If (model c<τ> 7→ (d, n)) ∈ Γ and Γ ; Σ and (−, δ) = [m(c, τ ,−,−,Γ)
then Σ ` (nth . . . (nth d n1) . . . nk) : δ

The following lemma states that extending the FG environment with proxy models from
a where clause, and extending the System F environment with d : δ, preserves the environ-
ment correspondence.

Lemma 3.
If Γ ; Σ and (Γ′, δ) = [w(c<ρ>,Γ) then Γ′ ; Σ, d :δ

CHAPTER 7. TYPE SAFETY OF FG 165

We now state and prove that the translation preserves well typing.

Theorem 1 (Translation preserves well typed programs).

If Γ ` e : τ ; f and Γ ; Σ then there exists τ ′ such that Σ ` f : τ ′ and Γ ` τ ; τ ′

Proof. (of Theorem 1) The proof is by induction on the derivation of Γ ` e : τ ; f .

Cpt Let Γ′ = Γ, concept c<t>{refines c′<ν>; x : τ ; }. By inversion we have:

concept c′<t′>{. . .} 7→ δ ∈ Γ (7.1)

Γ, t ` τ ; τ ′ (7.2)

Γ′ ` e : τ ; f (7.3)

c 6∈ CV(τ) (7.4)

From the assumption Γ ; Σ and from (7.1) and (7.2) we have Γ′ ; Σ. Then by (7.3)
and the induction hypothesis we have Σ ` f : τ ′ and Γ′ ` τ ; τ ′. Then from (7.4) we
have Γ ` τ ; τ ′.

Mdl Let Γ′ = Γ, (model c<ρ>) 7→ (d, []). We have the following by inversion:

Γ ` e : σ ; f (7.5)

model c′<[t 7→ρ]ρ′> 7→ (d′, n′) ⊆ Γ (7.6)

x : [t 7→ρ]τ ⊆ y : σ (7.7)

Γ′ ` e : τ ; f (7.8)

concept c<t>{refines c′<ρ′>; x : τ ; } 7→ δ ∈ Γ (7.9)

Let Σ such that Γ ; Σ. With (7.5) and the induction hypothesis there exists σ′ such
that Σ ` f : σ′ and Γ ` σ ; σ′. Next, let

r = (nth . . . (nth d′ n′
1) . . . n′

k)

From Γ ; Σ and (7.9) we have (−, δ′) = [w(c′<ρ′>,Γ). and therefore (−, [t 7→ρ]δ′) =
[w(c′<[t 7→ρ]ρ′>,Γ). Together with (7.6) and Lemma 2 we have Σ ` r : [t 7→ρ]δ′. With
(7.7) we have a well typed dictionary:

Σ ` (r@[y 7→f]x) : δ (7.10)

Let Σ′ be Σ, d :δ so Γ′ ; Σ′. Then with (7.8) and the induction hypothesis there exists
τ ′ such that Σ′ ` f : τ ′ and Γ′ ` τ ; τ ′. From (7.10) we show Σ ` let d = (r@[y 7→
f]x) in f : τ ′.

CHAPTER 7. TYPE SAFETY OF FG 166

TAbs By inversion we have:

(Γ′, δ) = [w(c<ρ>, (Γ, t)) (7.11)

Γ′, t, M ` e : τ ; f (7.12)

From the assumption Γ ; Σ we have Γ, t ; Σ, t. Then with (7.11) we apply Lemma
3 to get Γ′ ; Σ, t, d : δ. We then apply the induction hypothesis with (7.12), so there
exists τ ′ such that Σ, t, d : δ ` f : τ ′ and Γ′ ` τ ; τ ′. Hence we have Σ, t ` λd : δ. f :
fun δ → τ ′ and therefore Σ ` Λt. λd : δ. f : ∀t.fun δ → τ ′. Also, from Γ′ ` τ ; τ ′ we
have Γ, t ` τ ; τ ′. Then with (7.11) we have Γ ` ∀t where c<ρ>. τ ; ∀t.fun δ → τ ′.

TApp By inversion of the (TAPP) rule we have:

Γ ` σ ; σ′ (7.13)

Γ ` e : ∀t. where c<ρ>. τ ; f (7.14)

model c<[t 7→σ]ρ> 7→ (d, n) ∈ Γ (7.15)

From (7.14) and the induction hypothesis there exists τ ′ such that Σ ` f : τ ′ and
Γ ` ∀t where c<ρ>. τ ; τ ′. By inversion there exists δ, τ ′′, and Γ′ such that

τ ′ = ∀t. fun δ → τ ′′ (7.16)

(Γ′, δ) = [w(c<ρ>, (Γ, t)) (7.17)

Γ′ ` τ ; τ ′′ (7.18)

Using (7.16) we have

Σ ` f [σ′] : [t 7→σ′](fun δ → τ ′′) (7.19)

From (7.17) and (7.13) we have

(Γ′, [t 7→σ′]δ) = [w(c<[t 7→σ]ρ>,Γ)) (7.20)

Let d′ = (nth . . . (nth d n1) . . . nk). From the assumption Γ ; Σ, (7.15), and (7.20)
we apply Lemma 2 to get Σ ` d′ : [t 7→σ′]δ. Then with (7.19) we have Σ ` f [σ′](d′) :
[t 7→σ]τ ′′ and from (7.13) and (7.18) we have Γ ` [t 7→σ]τ ; [t 7→σ′]τ ′′.

Mem By inversion we have

(model c<τ> 7→ (d, n)) ∈ Γ (7.21)

x : (τ, n′) ∈ [(c, τ , n, Γ) (7.22)

From the assumption Γ ; Σ and (7.21), we have the following by inversion.

(d : δ) ∈ Σ (7.23)

(−, δn) = [m(c, τ ,−,−,Γ) (7.24)

From (7.23) we have Σ ` d : δ and with (7.22) we show

Σ ` (nth . . . (nth d n′
1) . . . n′

k) : δn′

From (7.22), (7.24), and Lemma 1 we have Γ ` τ ; δn′ .

CHAPTER 7. TYPE SAFETY OF FG 167

Var By inversion we have x : τ ∈ Γ. Then from Γ ; Σ there exists τ ′ such that Γ ` τ ; τ ′

and x : τ ′ ∈ Σ. Thus Σ ` x : τ ′.

Abs By inversion we have Γ, x : σ ` e : τ ; f and Γ ` σ ; σ′. With Γ ; Σ we have
Γ, x : σ ; Σ, x : σ′ and then from the induction hypothesis there exists τ ′ such that
Σ, x : σ′ ` f : τ ′ and Γ ` τ ; τ ′. So Σ ` λx : σ′. f : fun σ′ → τ ′ and Γ ` fun σ →
τ ; fun σ′ → τ ′.

App By inversion there exists σ such that Γ ` e1 : fun σ → τ ; f1 and Γ ` e2 : σ ; f2.
By the induction hypothesis there exists ρ1 such that Σ ` f1 : ρ1 and Γ ` fun σ →
τ ; ρ1. Then by inversion there exists σ′ and τ ′ such that ρ1 = fun σ′ → τ ′ and
Γ ` σ ; σ′ and Γ ` τ ; τ ′. Also by the induction hypothesis there exists ρ2 such that
Σ ` f2 : ρ2 and Γ ` σ ; ρ2. Then because type translation is a function, σ′ = ρ2 and
so Γ ` f2 : σ′. Thus Σ ` f1(f2) : τ ′.

7.3 Isabelle/Isar formalization

Isar [143] is a language for writing proofs and is the language we used to formalize the
translation of FG to System F and the proof of Theorem 1. Figure 7.11 is simple example
of a proof in Isar which shows that the length of the concatenation of two lists is equal
to the sum of the lengths of each list. The Isabelle proof assistant [144] can be used to
check proofs written in Isar, and the Proof General interface [8] is useful for incrementally
developing Isar proofs.

The main advantage of the Isabelle/Isar system is that allows for the straightforward
modification of large proofs. The majority of other theorem proving systems are tactic
based, which means that the proofs are not truly human readable, and even small changes
to a proof often require changes to all of the remaining steps in the proof. The development
of the proof for FG was fairly large, the technical report is 70 pages, so it was critical to be
able to make incremental changes to the proof.

Induction

The length_append proof is a typical example of performing induction on an inductively
defined data type. The first case of the induction handles when ls1 is the empty list and the
second case handles when ls1=x#xs for some x and xs. The induction hypothesis, which is
labeled IH, says that the proposition holds for xs, which we use in the equational reasoning
about the length of (x#xs) @ ls2. In the proof, the by keyword is followed by the rule
or tactic used to prove the preceding proposition. The simp tactic of Isabelle includes a
rewriting engine which among other things will unfold definitions. In this proof it is used
to unfold the definition of @ and length.

Isabelle also provides a mechanism for inductively defined sets. This facility is useful
for defining type systems. For example, the type judgment Γ ` e : τ for the simply-typed

CHAPTER 7. TYPE SAFETY OF FG 168

Figure 7.11: Example Isar proof.

lemma length_append: ∀ls2. length (ls1@ls2) = length ls1 + length ls2

proof (induct ls1)

show ∀ls2. length ([] @ ls2) = length [] + length ls2 by simp

next

fix x xs

assume IH: ∀ls2. length (xs @ ls2) = length xs + length ls2

show ∀ls2. length ((x#xs) @ ls2) = length (x#xs) + length ls2

proof clarify

fix ls2

have length ((x#xs) @ ls2) = length (x#(xs@ls2)) by simp

also have . . . = 1 + length (xs@ls2) by simp

also from IH have . . . = 1 + length xs + length ls2 by simp

ultimately have length ((x#xs) @ ls2) = 1 + length xs + length ls2 by simp

thus length ((x#xs) @ ls2) = length (x#xs) + length ls2 by simp

qed

qed

Figure 7.12: A type system as an inductively defined set.

consts well_typed :: ((nat ⇒ stlc_type) × stlc_term × stlc_type) set

inductive well_typed intros

stlc_var: (Γ, 'x, Γ x) ∈ well_typed

stlc_app: J (Γ, e1, τ→τ ′) ∈ well_typed; (Γ, e2, τ) ∈ well_typed K
=⇒ (Γ, e1 · e2, τ') ∈ well_typed

stlc_abs: (Γ(x:=τ), e, τ') ∈ well_typed =⇒ (Γ, λx. e, τ→τ') ∈ well_typed

lambda calculus is encoded as the inductively defined set well_typed as shown in Fig-
ure 7.12. As with datatypes, Isabelle provides proof by induction on these inductively
defined sets. Theorem 1 is an example of such an induction, as are many of the lemmas.

Variables and substitution

One of the necessary but annoying aspects of formalizing the type system and semantics
of a programming language is handling variables and substitution. De Bruijn indices are
a popular choice for representing variables in formal systems, and early on we used them
in the formalization of FG . While De Bruijn indices are manageable in the context of the
lambda calculus, we found that using them in a more complex language, with both type
variables and normal variable, to be quite burdensome, making the resulting proofs much

CHAPTER 7. TYPE SAFETY OF FG 169

more complex and difficult to reason about. We switched to using naive substitution in
combination with the Barendregt convention [14] made explicit. This approach made it
straightforward to reason about variables in proofs but it has a couple drawbacks:

• Type equality had to be explicitly formalized to allow for α-conversion, we could not
rely on Isabelle’s built-in equality. Defining type equality was straightforward but uses
of type equality in the proof was more cumbersome. For example, we could no longer
rely on Isabelle’s equational reasoning.

• To make the Barendregt convention explicit we had to add several extra premises
to most lemmas, and the proofs had to be augmented with steps that reason about
free variables and sometimes α-rename types or terms. Normally fresh variables are
used when renaming, that is, variables known to be globally unique. However, it is
difficult to track global properties in a proof, so instead we generate new variables
that are fresh with respect to the types or terms involved. This can be achieved by
computing the maximum natural number used as a variable in the types or terms, and
then choosing the next larger natural number. In several places in our Isabelle proofs
we skip the tedious renaming step and cheat by using Isabelle’s sorry command, but
it should be straightforward to dot all the i’s and cross all the t’s.

Despite these drawbacks we were satisfied with this approach to variables and substitution.

Evaluation of Isabelle/Isar

Isabelle/Isar is a big step forward in technology for formalizing programming languages
and validating proofs about languages. However, it seems that the difficulty of formalizing
proofs in Isabelle/Isar is still greater than it should be, mainly due to user-interface issues.
One of the problems is that Isar is built as a thin layer over Isabelle’s tactic system, and
the layer is transparent, not opaque. A user must understand both systems and be able to
switch back and forth between them. Another problem is that when a proof step fails, the
error message is rarely helpful in identifying the source of the problem.

7.4 Associated types and same-type constraints

The syntax of FG with associated types and same-type constraints is given in Figure 7.13
with the additions highlighted in gray. The syntax for concepts is extended to include
requirements for associated types and for type equalities. We add type assignments to
model declarations. In addition, where clauses are extended with type equalities.

We have also added an expression for creating type aliases. Type aliases were singled
out in [69] as an important feature and the semantics of type aliases is naturally expressed
using the type equality infrastructure for same-type constraints.

Type checking is complicated by the addition of same-type constraints because type
equality is no longer syntactic equality: it must take into account the same-type declara-

CHAPTER 7. TYPE SAFETY OF FG 170

Figure 7.13: FG with Associated Types and Same Type Constraints

c ∈ Concept Names
s, t ∈ Type Variables
x, y ∈ Term Variables
ρ, σ, τ ::= t | fun τ → τ | ∀t where c<σ>; σ = τ . τ

| c<τ>.t
e ::= x | e(e) | λy : τ . e

| Λt where c<σ>; σ = τ . e | e[τ]
| concept c<t> {

types s; refines c<σ>;
x : τ ; σ = τ ;

} in e
| model c<τ> {

types t = σ;
x = e;

} in e
| c<τ>.x

| type t = τ in e

CHAPTER 7. TYPE SAFETY OF FG 171

Figure 7.14: Type equality for FG .

(REFL)
Γ ` τ = τ

(SYMM) Γ ` σ = τ
Γ ` τ = σ

(TRANS)
Γ ` σ = ρ Γ ` ρ = τ

Γ ` σ = τ

(HYP)
σ = τ ∈ Γ
Γ ` σ = τ

(FNEQ) Γ ` σ = τ Γ ` σ = τ
Γ ` fun σ → σ = fun τ → τ

(ASCEQ) Γ ` σ = τ
Γ ` c<σ>.t = c<τ>.t

(ALLEQ)

Γ ` ρ1 = [t1/t2]ρ2 Γ ` σ1 = [t1/t2]σ2 Γ ` τ1 = [t1/t2]τ2

Γ, σ1 = τ1 ` τ3 = [t1/t2]τ4

Γ ` ∀t1 where c<ρ1>;σ1 = τ1. τ3 = ∀t2 where c<ρ2>;σ2 = τ2. τ4

tions. We extend environments to include type equalities, and introduce a new type equal-
ity relation Γ ` σ = τ which is defined in Figure 7.14. This relation is the congruence that
includes all the type equalities in Γ. Deciding type equality is equivalent to the quantifier
free theory of equality with uninterpreted function symbols, for which there is an O(n log n)
average time algorithm [142] (O(n2) time complexity in the worst case). We prefix opera-
tions on sets of types and type assignments with Γ ` because type equality now depends on
the environment Γ.

Figure 7.17 gives the typing rules for FG with associated types and same-type constraints
and the translation to System F. The (MDL) rule must check that all required associated
types are given type assignments and that the same-type requirements of the concept are
satisfied. Also, when comparing the model’s operations to the operations in the concept,
in addition to substituting ρ for the concept parameters t, occurrences of associated types
must be replaced with their type assignments from the body of the model and from models
of the concepts c refines. The (TABS) and (TAPP) rules are changed to introduce same-
type constraints into the environment and to check same-type constraints respectively. The
(APP) rule has been changed from requiring syntactic equality between the parameter and
argument types to requiring type equality based on the congruence of the type equalities in
the environment. The new rule (ALS) for type aliasing checks the body in an environment
extended with a type equality that expresses the aliasing.

The main idea of the translation is to turn associated types into extra type parameters on
type abstractions, an approach we first outlined in [89] and which is also used in [38]. The
following code shows an example of this translation. The copy function requires a model of
Iterator, which has an associated type elt.

let copy = (Λ Iter, OutIter where Iterator<Iter>,

OutputIterator<OutIter, Iterator<Iter>.elt>. /* body */)

An extra type parameter for the associated type is added to the translated version of copy.

CHAPTER 7. TYPE SAFETY OF FG 172

let copy =

(Λ Iter, OutIter, elt.

(λ Iterator_21:(fun(Iter)→Iter)*(fun(Iter)→elt)*(fun(Iter)→bool),

OutputIterator_23:(fun(OutIter,elt)→OutIter).

/* body */)

However, there are two complications here that are not present in [38]: same-type
constraints and concept refinement. Due to the same-type constraints, all type expressions
in the same equivalence class must be translated to the same System F type. Fortunately, the
congruence closure algorithm for type equality [142] is based on a union-find data structure
that maintains a representative for each type class. Therefore the translation outputs the
representative for each type expression. The translation of the merge function shows an
example of this. There are two type parameters elt1 and elt2 for each of the two Iterator
constraints. Note that in the types for the three dictionaries, only elt1 is used, since it was
chosen as the representative.

let merge =

(Λ In1, In2, Out, elt1, elt2.

(λ Iterator_78:(fun(In1)→In1)*(fun(In1)→elt1)*(fun(In1)→bool),

Iterator_80:(fun(In2)→In2)*(fun(In2)→elt1)*(fun(In2)→bool),

OutputIterator_84:(fun(Out,elt1)→Out),

LessThanComparable_88:(fun(elt1,elt1)→bool). /* body */))

The second complication is the presence of concept refinement. As mentioned in [38],
extra type parameters are needed not just for the associated types of a concept c mentioned
in the where clause, but also for every associated type in concepts that c refines. Further-
more, there may be diamonds in the refinement diagram. To preclude duplicate associated
types we keep track of which concepts (with particular type arguments) have already been
processed.

Figure 7.17 presents the translation from FG with associated types and same-type con-
straints to System F. We omit the (Mem), (Var), and (Abs) rules since they do not change.
The functions [and [m need to be changed to take into account associated types that may
appear in the type of a concept member or refinement. For example, in the body of function
below, the expression <B(r)>.bar(x) has type <B(r)>.z, not just z. Also, the refinement
for A<z> in B translates to B<r>.z modeling A.

concept A<u> { foo : fun(u)→u; } in

concept B<t> {

types z;

refines A<z>;

bar : fun(t)→z;

} in

(Λ r where B<r>.

λ x:r. A<B<r>.z>.foo(B<r>.bar(x)))

We define a function [a to collect all the associated types from a concept c and from the
concepts refined by c and map them to their concept-qualified names.

CHAPTER 7. TYPE SAFETY OF FG 173

[a(c, τ) =
S := s : c<τ>.s

for i = 0, . . . , |c′| − 1
S := S, [a(c′i, S(τ ′

i))
return S

where
concept c<t>{types s ; refines c′<τ ′>; x : σ; ρ = ρ′} ∈ Γ

Here is the new definition of [.

[(c, τ , n, Γ) =
S := [a(c, τ), t : τ
M := ∅
for i = 0, . . . , |c′| − 1

M := M ∪ [(c′i, S(τ ′
i), (n, i),Γ)

for i = 0, . . . , |x| − 1
M := M ∪ {xi : (S(σi), (n, |c′|+ i))}

return M
where

concept c<t>{types s ; refines c′<τ ′>; x : σ; ρ = ρ′} ∈ Γ

We used [m in Section 7.2 to collect the the models from a concept c and the concepts
that c refines. We change [m to also collect the same-type constraints from the concepts. In
addition, for every associated type s in c we generate a fresh type variable s′ and add the
same-type constraint s′ = c<τ>.s. The function [m also returns the type variables generated
for the associated types.

[m(c, ρ, d, n, Γ) =
check Γ ` ρ ; − and generate fresh variables s′

Γ := Γ, s′ = c<ρ>.s
A := [a(c, ρ), t : ρ

s′′ := []; τ := []
for i = 0, . . . , |c′| − 1

(Γ, a, δ′) := [m(c′i, A(ρ′i), d, (n, i),Γ)
s′′ := s′′, a; τ := τ , δ′

τ := τ@A(σ)
Γ := Γ, A(η) = A(η′)
Γ := Γ, model c<ρ> 7→ (d, n, [a(c, ρ))
return (Γ, (s′′, s′), τ)

where
concept c<t>{types s ; refines c′<ρ′>; x : σ; η = η′} ∈ Γ

The where clause of a type abstraction is processed sequentially so that later require-
ments in the where clause may refer to requirements (e.g., their associated types) that
appear earlier in the list.

CHAPTER 7. TYPE SAFETY OF FG 174

Figure 7.15: Well-formed FG types (with associated types) and translation to System F.

Γ ` τ ; τ ′

(TYVAR)
t ∈ Γ

Γ ` t ; [t]Γ

(TYABS) Γ ` σ ; σ′ Γ ` τ ; τ ′

Γ ` fun σ → τ ; fun σ′ → τ ′

(TYTABS)
(Γ′, s, δ) = [w(c<ρ>, (Γ, t)) Γ′, η = η′ ` τ ; τ ′

Γ ` ∀t where c<ρ>, η = η′ . τ ; ∀t, s .fun δ → τ ′

(TYASC)
Γ ` ρ ; ρ′ Γ ` model c<ρ> . . . ∈ Γ

Γ ` c<ρ>.x; [c<ρ>.x]Γ

[w([],Γ) = (Γ, [])
[w((c<ρ>, c′<ρ′>),Γ) =

generate fresh d
(Γ, s, δ) := [m(c, ρ, d, [],Γ)
(Γ, s′, δ′) := [w(c′<[t 7→ρ]ρ′>,Γ)
return (Γ, (s, s′), (δ, δ′))

where
concept c<t>{types s ; refines c′<ρ′>; x : σ; η = η′} ∈ Γ

Figure 7.15 shows the changes to the translation of FG types to System F types. Type
variables and member access types are mapped to their representative, written as [−]Γ.

The proof that the translation to System F preserves well typing can be modified to take
into account the changes we have made for associated types and same-type constraints. The
proof relies on the following lemma which establishes the correspondence between type
equality judgments and type translation. Whenever two FG types are equal they translate
to the same System F type.

Lemma 4 (Correspondence of type equality and translation).

If Γ ` σ = τ and Γ ` σ ; ρ then Γ ` τ ; ρ.

CHAPTER 7. TYPE SAFETY OF FG 175

Figure 7.16: Well-formed FG environment in correspondence with a System F environment.

Γ ; Σ

∅; ∅
Γ ; Σ Γ ` τ ; τ ′

Γ, x : τ ; Σ, x : τ ′
Γ ; Σ

Γ, t ; Σ, t

Γ ; Σ (−,−, δ) = [m(c, τ ,−,−,Γ)
Γ, (model c<τ> 7→ (d, [], s : σ)); Σ, d : δ

Γ ; Σ 0 < |n| d : δ ∈ Σ (−,−, δn) = [m(c, τ ,−,−,Γ)
Γ, (model c<τ> 7→ (d, n, s : σ)); Σ

Γ ; Σ (Γ′,−, δ′) = [w(c′<τ>, (Γ, t)) Γ′ ` σ ; σ′ Γ′ ` ρ ; ν Γ′ ` ρ′ ; ν ′

Γ, (concept c<t>{types s ; refines c′<τ>; x : σ; ρ = ρ′} 7→ δ′@σ′); Σ

The FG environment now contains information about associated types and same-type
constraints, so the correspondence with System F environments is updated in Figure 7.16.

Theorem 2 (Translation preserves well typing).

If Γ ` e : τ ; f and Γ ; Σ then there exists τ ′ such that Σ ` f : τ ′ and Γ ` τ ; τ ′.

Proof. Like the proof of Theorem 1, this proof is by induction on the derivation of Γ ` e :
τ ; f . The cases for (MDL), (TAPP), and (APP) rules differ because they rely on the type
equality judgment.

Mdl Let Γ′ = Γ, (model c<ρ> 7→ (d, [], (∪A′, s′ : [s 7→ν]s′))). We have the following by inver-
sion:

Γ ` e : σ ; f (7.25)

model c′<S(ρ′)> 7→ (d′, n′, A′) ⊆ Γ (7.26)

x ⊆ y (7.27)

Γ ` [y 7→σ]x = S′(τ) (7.28)

Γ ` S′(η) = S′(η′) (7.29)

Γ′ ` e : τ ; f (7.30)

concept c<t>{types s′ ; refines c′<ρ′>; x : τ ; η = η′} 7→ δ ∈ Γ (7.31)

CHAPTER 7. TYPE SAFETY OF FG 176

From Γ ; Σ, (7.25), and the induction hypothesis there exists σ′ such that Σ ` f : σ′

and Γ ` σ ; σ′. Next, let r = (nth . . . (nth d′ n′
1) . . . n′

k). From Γ ; Σ and (7.31)

we have (−, s, δ′) = [w(c′<ρ′>,Γ). and therefore (−, s, [t 7→ρ]δ′) = [w(c′<[t 7→ρ]ρ′>,Γ).
Together with (7.26) and Lemma 2 we have Σ ` r : [t 7→ρ]δ′. With (7.27), (7.28), and
(7.29), we have a well typed dictionary:

Σ ` (r@[y 7→f]x) : δ (7.32)

Let Σ′ be Σ, d : δ so Γ′ ; Σ′. Then with (7.30) and the induction hypothesis there
exists τ ′ such that Σ′ ` f : τ ′ and Γ′ ` τ ; τ ′. From (7.32) we show Σ ` let d =
(r@[y 7→f]x) in f : τ ′.

TApp By inversion of the (TAPP) rule we have:

Γ ` σ ; σ′ (7.33)

Γ ` e : ∀t. where c<ρ>, η = η′. τ ; f (7.34)

model c<[t 7→σ]ρ> 7→ (d, n, s : ν) ∈ Γ (7.35)

Γ ` [t 7→σ]η = [t 7→σ]η′ (7.36)

From (7.34) and the induction hypothesis there exists τ ′ such that Σ ` f : τ ′ and
Γ ` ∀t where c<ρ>, η = η′. τ ; τ ′. By inversion there exists δ, τ ′′, and Γ′ such that

τ ′ = ∀t, s′. fun δ → τ ′′ (7.37)

(Γ′,−, δ) = [w(c<ρ>, (Γ, t)) (7.38)

Γ′, η = η′ ` τ ; τ ′′ (7.39)

Using (7.37) we have

Σ ` f [σ′, ν] : [t 7→σ′][s′ 7→ν](fun δ → τ ′′) (7.40)

From (7.38) and (7.33) we have

(Γ′,−, [t 7→σ′][s′ 7→ν]δ) = [w(c<[t 7→σ]ρ>, (Γ, t))) (7.41)

Let d′ = (nth . . . (nth d n1) . . . nk). From the assumption Γ ; Σ, (7.35), and (7.41)
we apply Lemma 2 to get Σ ` d′ : [t 7→ σ′][s′ 7→ ν]δ. Then with (7.40) we have
Σ ` f [σ′, ν](d′) : [t 7→σ′][s′ 7→ν]τ ′′ and from (7.33) and (7.39) we have Γ ` [t 7→σ]τ ;
[t 7→σ′][s′ 7→ν]τ ′′.

App By inversion there exists σ1 and σ2 such that Γ ` e1 : fun σ1 → τ ; f1 and Γ `
e2 : σ2 ; f2 and Γ ` σ1 = σ2. By the induction hypothesis there exists ρ1 such
that Σ ` f1 : ρ1 and Γ ` fun σ1 → τ ; ρ1. Then by inversion there exists σ′

1 and
τ ′ such that ρ1 = fun σ′

1 → τ ′ and Γ ` σ1 ; σ′
1 and Γ ` τ ; τ ′. Also by the

induction hypothesis there exists ρ2 such that Σ ` f2 : ρ2 and Γ ` σ2 ; ρ2. Then with
Γ ` σ1 = σ2 and Lemma 4 we have σ′

1 = ρ2 and so Γ ` f2 : σ′
1. Thus Σ ` f1(f2) : τ ′.

CHAPTER 7. TYPE SAFETY OF FG 177

Figure 7.17: Type rules for FG with associated types and translation to System F.

Γ ` e : τ ; f

(CPT)

distinct t distinct s concept c′<t′>{. . .} 7→ δ′ ∈ Γ Γ, t, s ` ρ ; ρ′

Γ, t, s ` τ ; τ ′ Γ, t, s ` σ ; ν Γ, t, s ` σ′ ; ν ′

δ = ([t′ 7→ρ′]δ′)@τ ′

Γ, (concept c<t>{types s ; refines c′<ρ>; x : τ ; σ = σ′} 7→ δ) ` e : τ ; f

Γ ` concept c<t>{types s ; refines c′<ρ>; x : τ ; σ = σ′} in e : τ ; f

(MDL)

concept c<t>{types s′ ; refines c′<ρ′>; x : τ ; η = η′} 7→ δ ∈ Γ Γ ` ρ ; τ ′

Γ ` ν ; ν ′ Γ ` e : σ ; f s′ ⊆ s

S = t : ρ, s′ : [s 7→ν]s′ Γ ` model c′<S(ρ′)> 7→ (d′, n, A′) ∈ Γ

S′ = S,∪A′ x ⊆ y Γ ` [y 7→σ]x = S′(τ) Γ ` S′(η) = S′(η′)

d fresh Γ, (model c<ρ> 7→ (d, [], (∪A′, s′ : [s 7→ν ′]s′))) ` e : τ ; f

d′′ = (nth . . . (nth d′ n1) . . . nk)

Γ ` model c<ρ> { types s = ν; y = e} in e : τ ; let d = (d′′@[y 7→f]x) in f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, s , δ) = [w(c<ρ>, (Γ, t)) Γ′, τ = τ ′ ` e : τ ; f

Γ ` Λt where c<ρ>, τ = τ ′ . e : ∀t where c<ρ>, τ = τ ′ . τ ; Λt, s . λd : δ. f

(TAPP)

Γ ` σ ; σ′ Γ ` e : ∀t where c<ρ>, η = η′ . τ ; f

Γ ` model c<[t 7→σ]ρ> 7→ (d, n, s : ν) ∈ Γ Γ ` [t 7→σ]η = [t 7→σ]η′

Γ ` e[σ] : [t 7→σ]τ ; f [σ′, ν](nth . . . (nth d n1) . . . nk)

(ALS)
t /∈ FTV(Γ) Γ, t = τ ` e : τ ; f

Γ ` type t = τ in e : τ ; f

(APP)
Γ ` e1 : fun σ → τ ; f1 Γ ` e2 : σ′ ; f2 Γ ` σ = σ′

Γ ` e1 e2 : τ ; f1(f2)

CHAPTER 7. TYPE SAFETY OF FG 178

7.5 Summary

This chapter showed that the design for generics presented in this thesis is type safe. The
language G is not type safe, due to the aspects of the language unrelated to generics: the
presence of pointer, manual memory allocation, and also stack allocation. To show type
safety of the design for generics, we embed the design in System F, a type safe language,
creating the language FG . The language FG is defined by translation to System F, and we
show that if an FG program is well typed, the translation will result in a well typed term
of System F, thereby ensuring that execution of the System F term will not result in a type
error.

8
Conclusion

This thesis presents and evaluates a design for language support for generic programming,
embodied in the programming language G. The design formalizes the current practice
of generic programming in C++, replacing the semi-formal specification language used to
document C++ libraries with a formal interface description language integrated with the
type system of a full programming language. The advantage is that an automated tool (the
G type system) checks uses of generic components against their interfaces, and on the other
side, checks implementations of generic components against their interfaces.

Of course, many languages provide this kind of modularity, but what is unique about
G is that 1) its interface description language is expressive enough to describe the rich
interfaces of generic libraries such as the Standard Template Library and the Boost Graph
Library, and 2) using generic components in G is convenient, even when dealing with large
and complex abstractions. Both of these points were demonstrated in Chapter 6. The central
features of G, concept’s, model’s, and where clauses, cooperate to provide a mechanism for
implicitly passing type-specific operations to generic functions, thereby relieving users of
this task. Implicit mechanisms are often dangerous, so in G the connection between the
implementations of type-specific operations and the concepts they fulfill is established by
explicit model definitions. model definitions are lexically scoped, so it is always possible for
a programmer to determine which model will be used by examining the program text of
just the module under construction and the public interface of any imported modules.

Chapter 5 described a compiler for G that can separately compile generic functions.
This is a critical point concerning the scalability of reuse-oriented software construction.
Separate compilation allows the compile time of a component to be a function of the size
of just that component and not a function of everything used by the component. Of course,
there is an inherent performance penalty associated with separate compilation (which is not
particular to G). The design of G allows for optimizations such as function specialization

179

CHAPTER 8. CONCLUSION 180

and inlining to be applied in situations where the programmer does not want separate
compilation, but instead desires the greatest possible performance. Implementing these
optimizations in the compiler for G is planned for future work.

In conclusion, the design of G successfully satisfies the goals set down in Chapter 1:
it supports the modular construction of software, it makes generic components easier to
use and to build, it provides support for implementing and dispatching between efficient
algorithms, and it allows for efficient compilation.

There are several directions for future work on the language G: 1) further refinements
in the support for generic programming, 2) support for generative programming and 3)
improved compilation.

Support for Generic Programming Chapter 6 presented an idiom for dispatching be-
tween specialized versions of an algorithm. While this idiom incurs little burden on users
of generic algorithms, it does expose unnecessary details in the interface of the generic al-
gorithms and can lead to large where clauses. One solution that we have envisioned for this
is to add support for optional requirements in a where clause. The rules for concept-based
overload resolution would then take this into account and allow for run-time or link-time
dispatching based on whether the optional requirements were satisfied at a particular call
site. There are some technical challenges and open questions concerning the compilation
of optional requirements that will be the focus of future work.

Another area where there is room for improvement is in implicit instantiation. As dis-
cussed in Section 4.6.1 it would be nice to allow coercions on function types (use the
(ARROW) subtyping rule). I have done some research into creating a semi-decision proce-
dure for this subtyping problem, but it remains to prove that the procedure is sound and to
demonstrate whether it is effective and efficient in practice.

An important aspect of concepts are their semantic requirements. The language G does
not yet provide mechanisms for expressing semantics, but this in an extremely interesting
area for future research. Semantic requirements could be an aid for program correctness
and for optimization. If G were outfitted with a program logic one could prove correctness of
generic algorithms based on the assumptions (semantic guarantees) provided by concepts.
Similarly, models of concepts could be proved correct by showing that the implementation
functions meet the requirements of the concept. Semantic requirements can also be used
in the context of compiler optimization. Many optimizations that are currently applied only
to scalar values could also be applied to user-defined types, such as constant folding and
constant propagation, if model definitions can assert that the necessary semantic properties
hold for the user-defined types.

Generative Programming While the design of generics for G provides language support
for the implementation and use of generic algorithms, it does not provide language sup-
port for generative programming, which is often used in generic libraries to allow for code
reuse in the implementation of data structures. We will be investigating the addition of
metaprogramming features to G to provide support for generative programming. There is

CHAPTER 8. CONCLUSION 181

considerable challenge with respect to integrating metaprogramming facilities and para-
metric polymorphism. Metaprogramming typically relies on information from the context
in which a library is used, whereas parametric polymorphism blocks out information from
the context. Thus, at a fundamental level metaprogramming and parametric polymorphism
are at odds with each other, so finding a way to bring them together will be challenging.

Improved Compilation The compiler for G does not yet include an optimization pass.
Many traditional optimizations would increase the efficiency of G programs, but the most
critical optimizations are those that fall under the heading of partial evaluation. Those
include function specialization, function inlining, constant folding, and constant propaga-
tion. One other critical optimization for G programs is the scalar replacement of aggre-
gates [132].

The compiler for G currently translates to C++. This translation took advantage of many
features of C++ to reduce the amount of work done by the compiler. However, it would be
useful to compile all the way to C, thereby gaining more portability. In particular, replacing
the use of the any class with void* would likely speed up compilation of the resulting C/C++

code. Similarly, compiling to Java byte code or to .Net would allow for better interoperabil-
ity with other languages and component frameworks.

A
Grammar of G

This appendix defines the syntax for G. We start with some preliminaries concerning the
lexical structure of identifiers and literals and then describe the grammars for type expres-
sions, declarations, statements, and expressions.

There are several kinds of identifiers that appear in G programs but they all share the
same lexical structure as given by the following regular expression:

['A'-'Z' 'a'-'z' '_'] ['A'-'Z' 'a'-'z' '_' '0'-'9' '\'']*

The grammar variable id stands for value variables, tyvar for type variables, clid for class,
struct, and union names, cid for concept names, and mid for module names.

The integer literals intlit are sequences of digits

['0'-'9']+

and the floating point literals floatlit are sequences of digits followed by a period and an
optional second sequence of digits.

['0'-'9']+ '.' ['0'-'9']*

A.1 Type expressions

The type expressions of G differ from those of C++ in several respects. Instead of function
pointers G has first-class functions, so G has function types, not function pointer types. Also,
G has type expressions for referring to associated types of a model using the dot notation.
Two other minor differences are that there are no reference types and const is not a general
type qualifier.

182

APPENDIX A. GRAMMAR OF G 183

type ::= tyvar type variable
fun polyhdr (type mode, . . .)[-> type mode] function
clid [<type, . . . >] class, struct, or union
scope.tyvar scope-qualified type
type [const] * pointer
(type) parenthesized type
btype basic type

mode ::= mut [&] pass by reference
@@ pass by value

mut ::= [const] constant
! mutable

polyhdr ::= [<tyvar , . . . >][where {constraint, . . . }] polymorphic header
constraint ::= cid<type, . . . > model constraint

type == type same-type constraint
funsig function constraint

scope ::= scopeid
scope.scopeid scope member

scopeid ::= mid module identifier
cid<type, . . . > model identifier

btype ::= [signed] intty | unsigned intty
float | double | long double

char | string | bool | void

intty ::= int | short | long | long long

A.2 Declarations

The main declarations of interest in G are concepts, models, and where clauses, which can
appear in function, model, class, struct, and union definitions. For now, classes in G are
basic, consisting only of constructors, a destructor, and data members. A struct in G consists
only of data members.

APPENDIX A. GRAMMAR OF G 184

decl ::= concept cid<tyvar , . . . > { cmem . . . }; concept
model polyhdr <type, . . . > { decl . . . }; model
class clid polyhdr {clmem . . . }; class
struct clid polyhdr {type id; . . . }; struct
union clid polyhdr {type id; . . . }; union
fundef
funsig
let id = expr; global variable binding
type tyvar = type; type alias
module mid { decl . . . } module
scope id = scope; scope alias
import scope.c<τ>; import model
public: decl . . . public region
private: decl . . . private region

fundef ::= fun id polyhdr (type mode [id], . . .) Function definition
-> type mode { stmt . . . }

funsig ::= fun id polyhdr (type mode [id], . . .) Function signature
-> type mode;

cmem ::= funsig Function requirement
fundef " with default impl.
type tyvar; Associated type
type == type; Same-type requirement
refines cid<type, . . . >; Refinement
require cid<type, . . . >; Nested requirement

clmem ::= type id; data member
polyhdr clid(type mode [id], . . .){stmt . . . } constructor
�clid(){stmt . . . } destructor

A.3 Statements and expressions

Local variables are introduced with the let statement, with the type of the variable deduced
from the right-hand side expression. The switch statement is quite different from that of
C++, for it provides type-safe decomposition of unions. There is an expression for initializing
a struct object by field, and there is the dot notation for accessing members of a model. The
syntax for explicit instantiation includes extra bars as a concession to ease parsing with
Yacc [95]. Without the bars, the syntax is ambiguous with the less-than operator.

APPENDIX A. GRAMMAR OF G 185

stmt ::= let id = expr; local variable binding
type tyvar = type; type alias
expr; expression
return [expr]; return from function
if (expr) stmt [else stmt] conditional
while (expr) stmt loop
{ stmt . . . } compound
; empty
switch (expr){ case . . . } switch on union

case ::= case id: stmt . . . case
default: stmt . . . default case

expr ::= id variable
expr(expr, . . .) function application
fun polyhdr (type mode [id], . . .) function expression

id=expr, . . . ({stmt . . .}|:expr)
scope.id scope member
expr.id object member
expr<|type, . . .|> explicit instantiation
expr, . . . sequence
expr ? expr : expr conditional
(expr) parenthesized expression
alloc clid(expr, . . .) class instance
alloc clid{id=expr, . . . } struct or union instance
alloc type [expr] array allocation
delete expr invoke destructor and release memory
destroy expr invoke destructor
literal literals

alloc ::= @@ stack allocation
new manual heap allocation
new GC garbage collected heap allocation
new (expr) construct in place

literal ::= true | false Boolean constants
intlit integer constant
floatlit floating point constant
'char' character constant
"char . . ." string literal

APPENDIX A. GRAMMAR OF G 186

A.4 Derived forms

for (s1 e1; e2) s2 =⇒ { s1 while (e1) { s2 e2; } }

do s while (e) =⇒ { s while (e) s }

e1 = e2 =⇒ __assign(e1,e2)

*e =⇒ __star(e)
e→x =⇒ __star(e).x
e1[e2] =⇒ __arrayelt(e1,e2)

e1 + e2 =⇒ __add(e1,e2)

e1 - e2 =⇒ __sub(e1,e2)

- e =⇒ __sub(e)

++e =⇒ __increment(e)
--e =⇒ __decrement(e)

e1 * e2 =⇒ __star(e1,e2)

e1 / e2 =⇒ __div(e1,e2)

e1 % e2 =⇒ __mod(e1,e2)

e1 == e2 =⇒ __equal(e1,e2)

e1 != e2 =⇒ __not_equal(e1,e2)

e1 < e2 =⇒ __less_than(e1,e2)

e1 <= e2 =⇒ __less_equal(e1,e2)

e1 > e2 =⇒ __greater_than(e1,e2)

e1 >= e2 =⇒ __greater_equal(e1,e2)

e1 and e2 =⇒ __and(e1,e2)

e1 or e2 =⇒ __or(e1,e2)

not e =⇒ __not(e)

e1 << e2 =⇒ __output(e1,e2)

e1 >> e2 =⇒ __input(e1,e2)

B
Definition of FG

The syntax of FG is defined below. The language FG is an extension of System F (refer
to Section 7.1 for the definition of System F) that captures the core features for generic
programming: concepts with associated types, models, and generic functions with where

clauses.

c ∈ Concept Names
s, t ∈ Type Variables
x, y ∈ Term Variables
ρ, σ, τ ::= t | fun τ → τ | ∀t where c<σ>;σ = τ . τ

| c<τ>.t
e ::= x | e(e) | λy : τ . e

| Λt where c<σ>;σ = τ . e | e[τ]
| concept c<t> {

types s; refines c<σ>;
x : τ ; σ = τ ;

} in e
| model c<τ> {

types t = σ;
x = e;

} in e
| c<τ>.x
| type t = τ in e

Figure B.1 defines the type system for FG and defines the semantics of FG in terms of
System F. Several auxiliary functions are used in Figure B.1 and they are defined as follows.

187

APPENDIX B. DEFINITION OF FG 188

Figure B.1: Semantics of FG defined by translation to System F.

Γ ` e : τ ; f

(CPT)

distinct t distinct s concept c′<t′>{. . .} 7→ δ′ ∈ Γ Γ, t, s ` ρ ; ρ′

Γ, t, s ` τ ; τ ′ Γ, t, s ` σ ; ν Γ, t, s ` σ′ ; ν ′

δ = ([t′ 7→ρ′]δ′)@τ ′

Γ, (concept c<t>{types s ; refines c′<ρ>; x : τ ; σ = σ′} 7→ δ) ` e : τ ; f

Γ ` concept c<t>{types s ; refines c′<ρ>; x : τ ; σ = σ′} in e : τ ; f

(MDL)

concept c<t>{types s′ ; refines c′<ρ′>; x : τ ; η = η′} 7→ δ ∈ Γ Γ ` ρ ; τ ′

Γ ` ν ; ν ′ Γ ` e : σ ; f s′ ⊆ s

S = t : ρ, s′ : [s 7→ν]s′ Γ ` model c′<S(ρ′)> 7→ (d′, n, A′) ∈ Γ
S′ = S,∪A′ x ⊆ y Γ ` [y 7→σ]x = S′(τ) Γ ` S′(η) = S′(η′)
d fresh Γ, (model c<ρ> 7→ (d, [], (∪A′, s′ : [s 7→ν ′]s′))) ` e : τ ; f

d′′ = (nth . . . (nth d′ n1) . . . nk)

Γ ` model c<ρ> { types s = ν; y = e} in e : τ ; let d = (d′′@[y 7→f]x) in f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, s, δ) = [w(c<ρ>, (Γ, t)) Γ′, τ = τ ′ ` e : τ ; f

Γ ` Λt where c<ρ>, τ = τ ′. e : ∀t where c<ρ>, τ = τ ′. τ ; Λt, s. λd : δ. f

(TAPP)

Γ ` σ ; σ′ Γ ` e : ∀t where c<ρ>, η = η′. τ ; f

Γ ` model c<[t 7→σ]ρ> 7→ (d, n, s : ν) ∈ Γ Γ ` [t 7→σ]η = [t 7→σ]η′

Γ ` e[σ] : [t 7→σ]τ ; f [σ′, ν](nth . . . (nth d n1) . . . nk)

(ALS)
t /∈ FTV(Γ) Γ, t = τ ` e : τ ; f

Γ ` type t = τ in e : τ ; f

(APP)
Γ ` e1 : fun σ → τ ; f1 Γ ` e2 : σ′ ; f2 Γ ` σ = σ′

Γ ` e1 e2 : τ ; f1(f2)

APPENDIX B. DEFINITION OF FG 189

[a(c, τ) =
S := s : c<τ>.s

for i = 0, . . . , |c′| − 1
S := S, [a(c′i, S(τ ′

i))
return S

where
concept c<t>{types s ; refines c′<τ ′>; x : σ; ρ = ρ′} ∈ Γ

[(c, τ , n, Γ) =
S := [a(c, τ), t : τ
M := ∅
for i = 0, . . . , |c′| − 1

M := M ∪ [(c′i, S(τ ′
i), (n, i),Γ)

for i = 0, . . . , |x| − 1
M := M ∪ {xi : (S(σi), (n, |c′|+ i))}

return M
where

concept c<t>{types s ; refines c′<τ ′>; x : σ; ρ = ρ′} ∈ Γ

[m(c, ρ, d, n, Γ) =
check Γ ` ρ ; − and generate fresh variables s′

Γ := Γ, s′ = c<ρ>.s
A := [a(c, ρ), t : ρ

s′′ := []; τ := []
for i = 0, . . . , |c′| − 1

(Γ, a, δ′) := [m(c′i, A(ρ′i), d, (n, i),Γ)
s′′ := s′′, a; τ := τ , δ′

τ := τ@A(σ)
Γ := Γ, A(η) = A(η′)
Γ := Γ, model c<ρ> 7→ (d, n, [a(c, ρ))
return (Γ, (s′′, s′), τ)

where
concept c<t>{types s ; refines c′<ρ′>; x : σ; η = η′} ∈ Γ

[w([],Γ) = (Γ, [])
[w((c<ρ>, c′<ρ′>),Γ) =

generate fresh d

APPENDIX B. DEFINITION OF FG 190

Figure B.2: Type equality for FG .

(REFL)
Γ ` τ = τ

(SYMM) Γ ` σ = τ
Γ ` τ = σ

(TRANS)
Γ ` σ = ρ Γ ` ρ = τ

Γ ` σ = τ

(HYP)
σ = τ ∈ Γ
Γ ` σ = τ

(FNEQ) Γ ` σ = τ Γ ` σ = τ
Γ ` fun σ → σ = fun τ → τ

(ASCEQ) Γ ` σ = τ
Γ ` c<σ>.t = c<τ>.t

(ALLEQ)

Γ ` ρ1 = [t1/t2]ρ2 Γ ` σ1 = [t1/t2]σ2 Γ ` τ1 = [t1/t2]τ2

Γ, σ1 = τ1 ` τ3 = [t1/t2]τ4

Γ ` ∀t1 where c<ρ1>;σ1 = τ1. τ3 = ∀t2 where c<ρ2>;σ2 = τ2. τ4

(Γ, s, δ) := [m(c, ρ, d, [],Γ)
(Γ, s′, δ′) := [w(c′<[t 7→ρ]ρ′>,Γ)
return (Γ, (s, s′), (δ, δ′))

where
concept c<t>{types s ; refines c′<ρ′>; x : σ; η = η′} ∈ Γ

Type equality in FG is defined in Figure B.2.

Bibliography

[1] Ada 95 Reference Manual, 1997.

[2] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing
in a statically typed language. ACM Transactions on Programming Languages and
Systems, 13(2):237–268, April 1991.

[3] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams Iv, D. P. Friedman,
E. Kohlbecker, Jr. G. L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman,
G. Brooks, C. Hanson, K. M. Pitman, and M. Wand. Revised report on the algorithmic
language scheme. Higher-Order and Symbolic Computation, 11(1):7–105, 1998.

[4] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpreta-
tion of Computer Programs. MIT Press, 1985.

[5] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley, 2004.

[6] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, 2001.

[7] Konstantine Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.

[8] David Aspinall. Proof general: A generic tool for proof development. In (TACAS
2000) Tools and Algorithms for the Construction and Analysis of Systems, number
1785 in LNCS, 2000.

[9] Matt Austern. (draft) technical report on standard library extensions. Technical
Report N1711=04-0151, ISO/IEC JTC 1, Information Technology, Subcommittee SC
22, Programming Language C++, 2004.

[10] Matt Austern. Proposed draft technical report on C++ library extensions. Technical
Report PDTR 19768, n1745 05-0005, ISO/IEC, January 2005.

[11] Matthew H. Austern. Generic Programming and the STL. Professional computing
series. Addison-Wesley, 1999.

[12] Bruno Bachelet, Antoine Mahul, and Loïc Yon. Designing Generic Algorithms for
Operations Research. Software: Practice and Experience, 2005. submitted.

191

BIBLIOGRAPHY 192

[13] John Backus. Can programming be liberated from the von neumann style?: a func-
tional style and its algebra of programs. Commun. ACM, 21(8):613–641, 1978.

[14] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic. Elsevier, 1984.

[15] Bruce H. Barnes and Terry B. Bollinger. Making reuse cost-effective. IEEE Software,
8(1):13–24, 1991.

[16] John Bartlett. Familiar Quotations. Little Brown, 1919.

[17] Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek. Beyond templates: a
study of clones in the STL and some general implications. In ICSE ’05: Proceedings of
the 27th international conference on Software engineering, pages 451–459, New York,
NY, USA, 2005. ACM Press.

[18] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–
90, 1958.

[19] K. L. Bernstein and E. W. Stark. Debugging type errors. Technical report, State
University of New York at Stony Brook, 1995.

[20] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and
Marco Zagha. Implementation of a portable nested data-parallel language. Technical
report, Pittsburgh, PA, USA, 1993.

[21] Jean-Daniel Boissonnat, Frederic Cazals, Frank Da, Olivier Devillers, Sylvain Pion,
Francois Rebufat, Monique Teillaud, and Mariette Yvinec. Programming with CGAL:
the example of triangulations. In Proceedings of the fifteenth annual symposium on
Computational geometry, pages 421–422. ACM Press, 1999.

[22] Boost. Boost C++ Libraries. http://www.boost.org/.

[23] Richard Bornat. Proving pointer programs in hoare logic. In MPC ’00: Proceedings
of the 5th International Conference on Mathematics of Program Construction, pages
102–126, London, UK, 2000. Springer-Verlag.

[24] Didier Le Botlan and Didier Remy. MLF: raising ML to the power of system F. In ICFP
’03: Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, pages 27–38, New York, NY, USA, 2003. ACM Press.

[25] Nicolas Bourbaki. Elements of Mathematics. Theory of Sets. Springer, 1968.

[26] Chandrasekhar Boyapati, Alexandru Salcianu, Jr. William Beebee, and Martin Ri-
nard. Ownership types for safe region-based memory management in real-time java.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming lan-
guage design and implementation, pages 324–337, New York, NY, USA, 2003. ACM
Press.

http://www.boost.org/

BIBLIOGRAPHY 193

[27] John Tang Boyland and William Retert. Connecting effects and uniqueness with
adoption. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 283–295, New York, NY, USA, 2005.
ACM Press.

[28] Kim B. Bruce. Typing in object-oriented languages: Achieving expressibility and
safety. Technical report, Williams College, 1996.

[29] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F. Smith,
Valery Trifonov, Gary T. Leavens, and Benjamin C. Pierce. On binary methods. Theory
and Practice of Object Systems, 1(3):221–242, 1995.

[30] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good “match” for
object-oriented languages. In ECOOP ’97, volume 1241 of Lecture Notes in Computer
Science, pages 104–127. Springer-Verlag, 1997.

[31] R. Burstall and B. Lampson. A kernel language for abstract data types and modules.
In Proceedings of the international symposium on Semantics of data types, pages 1–50,
New York, NY, USA, 1984. Springer-Verlag New York, Inc.

[32] Rod M. Burstall and Joseph A. Goguen. Putting theories together to make specifica-
tions. In IJCAI, pages 1045–1058, 1977.

[33] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. F-
bounded polymorphism for object-oriented programming. In FPCA ’89: Proceedings
of the fourth international conference on Functional programming languages and com-
puter architecture, pages 273–280, New York, NY, USA, 1989. ACM Press.

[34] Luca Cardelli. Typeful programming. Technical Report 45, DEC Systems Research
Center, 1989.

[35] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471–522, 1985.

[36] Robert Cartwright and Mike Fagan. Soft typing. In PLDI, June 1991.

[37] Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure con-
version for typed languages. In ESOP ’00: Proceedings of the 9th European Symposium
on Programming Languages and Systems, pages 56–71, London, UK, 2000. Springer-
Verlag.

[38] Manuel M. T. Chakravarty, Gabrielle Keller, Simon Peyton Jones, and Simon Marlow.
Associated types with class. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1–13, New York,
NY, USA, 2005. ACM Press.

BIBLIOGRAPHY 194

[39] C. Chambers and D. Ungar. Customization: optimizing compiler technology for SELF,
a dynamically-typed object-oriented programming language. In PLDI ’89: Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming language design and im-
plementation, pages 146–160, New York, NY, USA, 1989. ACM Press.

[40] Craig Chambers and the Cecil Group. The Cecil Language: Specification and Rationale,
Version 3.1. University of Washington, Computer Science and Engineering, December
2002. http://www.cs.washington.edu/research/projects/cecil/.

[41] Craig Chambers and David Ungar. Interative type analysis and extended message
splitting; optimizing dynamically-typed object-oriented programs. In PLDI ’90: Pro-
ceedings of the ACM SIGPLAN 1990 conference on Programming language design and
implementation, pages 150–164, New York, NY, USA, 1990. ACM Press.

[42] Chung chieh Shan. Sexy types in action. SIGPLAN Notices, 39(5):15–22, 2004.

[43] Olaf Chitil, Frank Huch, and Axel Simon. Typeview: A tool for understanding type
errors. In 12th International Workshop on Implementation of Functional Languages,
2000.

[44] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible
alias protection. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 48–64,
New York, NY, USA, 1998. ACM Press.

[45] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet,
José Meseguer, and Carolyn Talcott. The maude 2.0 system. In Robert Nieuwenhuis,
editor, Rewriting Techniques and Applications (RTA 2003), number 2706 in Lecture
Notes in Computer Science, pages 76–87. Springer-Verlag, June 2003.

[46] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison Wesley, Reading, MA, 2002.

[47] CoFI Language Design Task Group. CASL—the CoFI algebraic specification
language—summary, 2001. http://www.brics.dk/Projects/CoFI/Documents/

CASL/Summary/.

[48] William R. Cook. A proposal for making Eiffel type-safe. The Computer Journal,
32(4):304–311, 1989.

[49] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-
Hill, 1990.

[50] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques and
Applications. Addison-Wesley, 2000.

http://www.cs.washington.edu/research/projects/cecil/
http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/
http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/

BIBLIOGRAPHY 195

[51] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[52] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269–271, 1959.

[53] Glen Jeffrey Ditchfield. Overview of Cforall. University of Waterloo, August 1996.

[54] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common
subexpression problem. Journal of the ACM (JACM), 27(4):758–771, 1980.

[55] Pavol Droba. Boost string algorithms library, July 2004. http://www.boost.org/

doc/html/string_algo.html.

[56] R. Kent Dybvig. The Scheme Programming Language: ANSI Scheme. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1996.

[57] H. Eichelberger and J. Wolff v. Gudenberg. UML description of the STL. In First
Workshop on C++ Template Programming, Erfurt, Germany, October 10 2000.

[58] Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagat-
ing, Dynamic Inheritance. PhD thesis, Department of Computer Science, University
of Aarhus, Århus, Denmark, 1999.

[59] Erik Ernst. Family polymorphism. In ECOOP ’01, volume 2072 of Lecture Notes in
Computer Science, pages 303–326. Springer, June 2001.

[60] Manuel Fahndrich and Robert DeLine. Adoption and focus: practical linear types
for imperative programming. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation, pages 13–24, New
York, NY, USA, 2002. ACM Press.

[61] A.D. Falkoff and D.L. Orth. Development of an apl standard. Technical Report RC
7542, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, February 1979.

[62] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, pages 48–59, New York, NY, USA, 2002. ACM Press.

[63] Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. Behavioral con-
tracts and behavioral subtyping. In ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 229–236, New York, NY, USA,
2001. ACM Press.

[64] Jr. Frederick P. Brooks. The Mythical Man-Month: Essays on Softw. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1978.

http://www.boost.org/doc/html/string_algo.html
http://www.boost.org/doc/html/string_algo.html

BIBLIOGRAPHY 196

[65] Daniel P. Friedman and Matthias Felleisen. The Little Schemer. MIT Press, fourth
edition, 1996.

[66] B. A. Galler and A. J. Perlis. A proposal for definitions in ALGOL. Communications of
the ACM, 9(7):481–482, 1966.

[67] B. A. Galler and A. J. Perlis. A View of Programming Languages. Computer science
and information processing. Addison-Wesley, 1970.

[68] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley, 1995.

[69] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Will-
cock. A comparative study of language support for generic programming. In OOPSLA
’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented pro-
graming, systems, languages, and applications, pages 115–134, New York, NY, USA,
2003. ACM Press.

[70] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Will-
cock. An extended comparative study of language support for generic programming.
Journal of Functional Programming, 2005. submitted.

[71] Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des Coupures de l’Arith-
métique d’Ordre Supérieur. Thèse de doctorat d’état, Université Paris VII, Paris,
France, 1972.

[72] J. A. Goguen. Parameterized programming and software architecture. In ICSR ’96:
Proceedings of the 4th International Conference on Software Reuse, page 2, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[73] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications of Algebraic
Specification using OBJ. Cambridge, 1993.

[74] Joseph A. Goguen. Parameterized programming. IEEE Transactions on Software En-
gineering, SE-IO, No(5):528–543, September 1984.

[75] Miguel Guerrero, Edward Pizzi, Robert Rosenbaum, Kedar Swadi, and Walid Taha.
Implementing DSLs in metaOCaml. In OOPSLA ’04: Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 41–42, New York, NY, USA, 2004. ACM Press.

[76] John V. Guttag and James J. Horning. Larch: languages and tools for formal specifi-
cation. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

BIBLIOGRAPHY 197

[77] John V. Guttag, Ellis Horowitz, and David R. Musser. The design of data type spec-
ifications. In ICSE ’76: Proceedings of the 2nd international conference on Software
engineering, pages 414–420, Los Alamitos, CA, USA, 1976. IEEE Computer Society
Press.

[78] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996.

[79] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type
analysis. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 130–141, New York, NY, USA, 1995.
ACM Press.

[80] Bastiaan Heeren, Johan Jeuring, Doaitse Swierstra, and Pablo Azero Alcocer. Improv-
ing type-error messages in functional languages. Technical report, Utrecht Univesity,
February 2002.

[81] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with
safe manual memory-management in cyclone. In ISMM ’04: Proceedings of the 4th
international symposium on Memory management, pages 73–84, New York, NY, USA,
2004. ACM Press.

[82] Ralf Hinze. A simple implementation technique for priority search queues. In ICFP
’01: Proceedings of the sixth ACM SIGPLAN international conference on Functional
programming, pages 110–121, New York, NY, USA, 2001. ACM Press.

[83] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM, 4(7):321,
1961.

[84] Alfred Horn. On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic, 16:14–21, 1951.

[85] Mark Howard, Eric Bezault, Bertrand Meyer, Dominique Colnet, Emmanuel Stapf,
Karine Arnout, and Markus Keller. Type-safe covariance: competent compilers can
catch all catcalls. http://www.inf.ethz.ch/~meyer/, April 2003.

[86] International Organization for Standardization. ISO/IEC 14882:1998: Programming
languages — C++. Geneva, Switzerland, September 1998.

[87] Kenneth E. Iverson. Operators. ACM Trans. Program. Lang. Syst., 1(2):161–176,
1979.

[88] Suresh Jagannathan and Andrew Wright. Flow-directed inlining. In PLDI ’96: Pro-
ceedings of the ACM SIGPLAN 1996 conference on Programming language design and
implementation, pages 193–205, New York, NY, USA, 1996. ACM Press.

http://www.inf.ethz.ch/~meyer/

BIBLIOGRAPHY 198

[89] Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock. An analy-
sis of constrained polymorphism for generic programming. In Kei Davis and Jörg
Striegnitz, editors, Multiparadigm Programming in Object-Oriented Languages Work-
shop (MPOOL) at OOPSLA, Anaheim, CA, October 2003.

[90] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Algorithm specialization
and concept constrained genericity. In Concepts: a Linguistic Foundation of Generic
Programming. Adobe Systems, April 2004.

[91] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Associated types and con-
straint propagation for mainstream object-oriented generics. In OOPSLA ’05: Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, 2005. To appear.

[92] Mehdi Jazayeri, Rüdiger Loos, David Musser, and Alexander Stepanov. Generic
Programming. In Report of the Dagstuhl Seminar on Generic Programming, Schloss
Dagstuhl, Germany, April 1998.

[93] Richard D. Jenks and Barry M. Trager. A language for computational algebra. In
SYMSAC ’81: Proceedings of the fourth ACM symposium on Symbolic and algebraic
computation, pages 6–13, New York, NY, USA, 1981. ACM Press.

[94] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Jour-
nal of the ACM, 24(1):1–13, 1977.

[95] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY,
USA, 1979.

[96] Mark P. Jones. Qualified Types: Theory and Practice. Distinguished Dissertations in
Computer Science. Cambridge University Press, 1994.

[97] Mark P. Jones. First-class polymorphism with type inference. In POPL ’97: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 483–496, New York, NY, USA, 1997. ACM Press.

[98] M.P. Jones. Dictionary-free overloading by partial evaluation. In Partial Evaluation
and Semantics-Based Program Manipulation, Orlando, Florida, June 1994 (Technical
Report 94/9, Department of Computer Science, University of Melbourne), pages 107–
117, 1994.

[99] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

[100] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank
types. submitted to the Journal of Functional Programming, April 2004.

BIBLIOGRAPHY 199

[101] D. Kapur and D. Musser. Tecton: a framework for specifying and verifying generic
system components. Technical Report RPI–92–20, Department of Computer Science,
Rensselaer Polytechnic Institute, Troy, New York 12180, July 1992.

[102] D. Kapur, D. R. Musser, and X. Nie. An overview of the tecton proof system. Theoret-
ical Computer Science, 133:307–339, October 1994.

[103] D. Kapur, D. R. Musser, and A. A. Stepanov. Tecton: A language for manipulat-
ing generic objects. In J. Staunstrup, editor, Proceedings of a Workshop on Program
Specification, volume 134 of LNCS, pages 402–414, Aarhus, Denmark, August 1981.
Springer.

[104] Deepak Kapur, David R. Musser, and Alexander Stepanov. Operators and algebraic
structures. In Proc. of the Conference on Functional Programming Languages and Com-
puter Architecture, Portsmouth, New Hampshire. ACM, 1981.

[105] A. Kershenbaum, D. Musser, and A. Stepanov. Higher order imperative programming.
Technical Report 88-10, Rensselaer Polytechnic Institute, 1988.

[106] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William
Griswold. Getting started with ASPECTJ. Communications of the ACM, 44(10):59–
65, 2001.

[107] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heteroge-
neous collections. In Haskell ’04: Proceedings of the ACM SIGPLAN workshop on
Haskell, pages 96–107, New York, NY, USA, 2004. ACM Press.

[108] Ullrich Köthe. Handbook on Computer Vision and Applications, volume 3, chapter
Reusable Software in Computer Vision. Acadamic Press, 1999.

[109] Bernd Krieg-Brückner and David C. Luckham. ANNA: towards a language for anno-
tating ada programs. In SIGPLAN ’80: Proceeding of the ACM-SIGPLAN symposium on
Ada programming language, pages 128–138, New York, NY, USA, 1980. ACM Press.

[110] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. Abstraction mechanisms in the BETA programming language. In
POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 285–298, New York, NY, USA, 1983. ACM Press.

[111] K. Läufer. Type classes with existential types. Journal of Functional Programming,
6(3):485–517, May 1996.

[112] Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract data
types. ACM Transactions on Programming Languages and Systems, 16(5):1411–1430,
1994.

BIBLIOGRAPHY 200

[113] Lie-Quan Lee, Jeremy G. Siek, and Andrew Lumsdaine. The Generic Graph Compo-
nent Library. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 399–414,
New York, NY, USA, 1999. ACM Press.

[114] Xavier Leroy. Unboxed objects and polymorphic typing. In POPL ’92: Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 177–188, New York, NY, USA, 1992. ACM Press.

[115] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jerome Vouillon.
The Objective Caml Documentation and User’s Manual, September 2003.

[116] Wayne C. Lim. Effects of reuse on quality, productivity, and economics. IEEE Softw.,
11(5):23–30, 1994.

[117] Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob Schei-
fler, and Alan Snyder. CLU reference manual. Technical Report LCS-TR-225, Cam-
bridge, MA, USA, October 1979.

[118] B.H. Liskov and S. N. Zilles. Specification techniques for data abstractions. IEEE
Transactions on Software Engineering, SE-1(1):7–18, March 1975.

[119] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On the combi-
nation of aop with generative programming in aspectc++. In G. Karsai and E. Visser,
editors, Generative Programming and Component Engineering, number 3286 in LNCS,
pages 55–74, Heidelberg, 2004. Springer-Verlag.

[120] Andrew Lumsdaine and Brian C. McCandless. The matrix template library. BLAIS
Working Note #2, University of Notre Dame, 1996.

[121] Andrew Lumsdaine and Brian C. McCandless. The role of abstraction in high per-
formance computing. In Proceedings, 1997 Internantional Conference on Scientific
Computing in Object-Oriented Parallel Computing, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1997.

[122] John Maddock. A proposal to add regular expressions to the standard library.
Technical Report J16/03-0011= WG21/N1429, ISO/IEC JTC 1, Information Tech-
nology, Subcommittee SC 22, Programming Language C++, March 2003. http:

//www.open-std.org/jtc1/sc22/wg21.

[123] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mechanism in
object-oriented programming. In OOPSLA ’89: Conference proceedings on Object-
oriented programming systems, languages and applications, pages 397–406, New York,
NY, USA, 1989. ACM Press.

[124] Boris Magnusson. Code reuse considered harmful. Journal of Object-Oriented Pro-
gramming, 4(3), November 1991.

http://www.open-std.org/jtc1/sc22/wg21
http://www.open-std.org/jtc1/sc22/wg21

BIBLIOGRAPHY 201

[125] Johan Margono and Thomas E. Rhoads. Software reuse economics: cost-benefit
analysis on a large-scale ada project. In ICSE ’92: Proceedings of the 14th international
conference on Software engineering, pages 338–348, New York, NY, USA, 1992. ACM
Press.

[126] M. Douglas McIlroy. Mass-produced software components. In J. M. Buxton, P. Naur,
and B. Randell, editors, Proceedings of Software Engineering Concepts and Techniques,
1968 NATO Conference on Software Engineering, pages 138–155, January 1969.
http://www.cs.dartmouth.edu/~doug/components.txt.

[127] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, Upper Saddle
River, NJ, 2nd edition, 1997.

[128] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

[129] John C. Mitchell. Polymorphic type inference and containment. Information and
Computation, 76(2-3):211–249, 1988.

[130] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Trans. Program. Lang. Syst., 10(3):470–502, 1988.

[131] James H. Morris, Jr. Types are not sets. In Conference Record of ACM Symposium on
Principles of Programming Languages, pages 120–124, New York, 1973. ACM.

[132] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[133] David R. Musser. Introspective sorting and selection algorithms. Software Practice
and Experience, 27(8):983–993, 1997.

[134] David R. Musser. Formal methods for generic libraries or toward semantic
concept checking. In Workshop on Software Libraries: Design and Evaluation,
Dagstuhl, Germany, March 2005. http://www.cs.chalmers.se/~tveldhui/tmp/

lwg/proceedings/DavidMusser.pdf.

[135] David R. Musser. Generic programming and formal methods. In Workshop on The
Verification Grand Challenge, Menlo Park, CA, February 2005. http://www.csl.sri.
com/users/shankar/VGC05/.

[136] David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference Guide.
Addison-Wesley, 2nd edition, 2001.

[137] David R. Musser and Alex Stepanov. Generic programming. In ISSAC: Proceedings of
the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation,
1988.

http://www.cs.dartmouth.edu/~doug/components.txt
http://www.cs.chalmers.se/~tveldhui/tmp/lwg/proceedings/DavidMusser.pdf
http://www.cs.chalmers.se/~tveldhui/tmp/lwg/proceedings/DavidMusser.pdf
http://www.csl.sri.com/users/shankar/VGC05/
http://www.csl.sri.com/users/shankar/VGC05/

BIBLIOGRAPHY 202

[138] David R. Musser and Alexander A. Stepanov. A library of generic algorithms in Ada.
In Using Ada (1987 International Ada Conference), pages 216–225, New York, NY,
December 1987. ACM SIGAda.

[139] David R. Musser and Alexander A. Stepanov. Generic programming. In P. (Patrizia)
Gianni, editor, Symbolic and algebraic computation: ISSAC ’88, Rome, Italy, July 4–8,
1988: Proceedings, volume 358 of Lecture Notes in Computer Science, pages 13–25,
Berlin, 1989. Springer Verlag.

[140] Nathan C. Myers. Traits: a new and useful template technique. C++ Report, June
1995.

[141] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall Series in
Innovative Technology. Prentice Hall, 1991.

[142] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. J. ACM, 27(2):356–364, 1980.

[143] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors,
Types for Proofs and Programs (TYPES 2002), volume 2646, pages 259–278, 2003.

[144] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[145] Object Management Group. OMG Unified Modeling Language Specification, 1.5 edi-
tion, March 2003.

[146] Martin Odersky and al. An overview of the scala programming language. Technical
Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[147] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal
theory of objects with dependent types. In Proc. ECOOP’03, Springer LNCS, 2003.

[148] Martin Odersky and Konstantin Läufer. Putting type annotations to work. In POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 54–67, New York, NY, USA, 1996. ACM Press.

[149] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of
the design space. In Haskell Workshop, June 1997.

[150] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank
types. Journal of Functional Programming, 2004. submitted.

[151] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[152] W. R. Pitt, M. A. Williams, M. Steven, B. Sweeney, A. J. Bleasby, and D. S. Moss. The
bioinformatics template library: generic components for biocomputing. Bioinformat-
ics, 17(8):729–737, 2001.

BIBLIOGRAPHY 203

[153] R.C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957.

[154] B. Randell. Software engineering in 1968. In ICSE ’79: Proceedings of the 4th inter-
national conference on Software engineering, pages 1–10, Piscataway, NJ, USA, 1979.
IEEE Press.

[155] Didier Remy. Exploring partial type inference for predicative fragments of system-
F. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN international conference on
Functional programming, New York, NY, USA, September 2005. ACM Press.

[156] Nicolas Remy. GsTL: The geostatistical template library in C++. Master’s thesis,
Stanford University, March 2001. http://pangea.stanford.edu/~nremy/GTL/.

[157] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Program-
ming Symposium, volume 19 of LNCS, pages 408–425, Berlin, 1974. Springer-Verlag.

[158] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

[159] David S. Rosenblum. A practical approach to programming with assertions. IEEE
Trans. Softw. Eng., 21(1):19–31, 1995.

[160] Graziano Lo Russo. An interview with a. stepanov. http://www.stlport.org/

resources/StepanovUSA.html.

[161] Owre Sam and Shankar Natarajan. Theory interpretations in PVS. Technical report,
2001.

[162] Sriram Sankar, David Rosenblum, and Randall Neff. An implementation of anna. In
SIGAda ’85: Proceedings of the 1985 annual ACM SIGAda international conference on
Ada, pages 285–296, New York, NY, USA, 1985. Cambridge University Press.

[163] Sibylle Schupp, Douglas Gregor, David R. Musser, and Shin-Ming Liu. User-extensible
simplification: Type-based optimizer generators. In CC ’01: Proceedings of the 10th
International Conference on Compiler Construction, pages 86–101, London, UK, 2001.
Springer-Verlag.

[164] Christoph Schwarzweller. Towards formal support for generic programming.
http://www.math.univ.gda.pl/~schwarzw, 2003. Habilitation thesis, Wilhelm-
Schickard-Institute for Computer Science, University of Tübingen.

[165] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. In
Haskell ’02: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 1–16, New
York, NY, USA, 2002. ACM Press.

http://pangea.stanford.edu/~nremy/GTL/
http://www.stlport.org/resources/StepanovUSA.html
http://www.stlport.org/resources/StepanovUSA.html
http://www.math.univ.gda.pl/~schwarzw

BIBLIOGRAPHY 204

[166] Jeremy Siek. A modern framework for portable high performance numerical linear
algebra. Master’s thesis, University of Notre Dame, 1999.

[167] Jeremy Siek. Boost Concept Check Library. Boost, 2000. http://www.boost.org/

libs/concept_check/.

[168] Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakko Järvi, and
Andrew Lumsdaine. Concepts for C++0x. Technical Report N1758=05-0018,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, January 2005.

[169] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley, 2002.

[170] Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric poly-
morphism in C++. In First Workshop on C++ Template Programming, October 2000.

[171] Jeremy Siek and Andrew Lumsdaine. Essential language support for generic pro-
gramming: Formalization part 1. Technical Report 605, Indiana University, Decem-
ber 2004.

[172] Jeremy Siek and Andrew Lumsdaine. Essential language support for generic pro-
gramming. In PLDI ’05: Proceedings of the ACM SIGPLAN 2005 conference on Pro-
gramming language design and implementation, pages 73–84, New York, NY, USA,
June 2005. ACM Press.

[173] Jeremy Siek and Andrew Lumsdaine. Language requirements for large-scale generic
libraries. In GPCE ’05: Proceedings of the fourth international conference on Generative
Programming and Component Engineering, September 2005. accepted for publica-
tion.

[174] Jeremy G. Siek and Andrew Lumsdaine. Advances in Software Tools for Scientific
Computing, chapter A Modern Framework for Portable High Performance Numerical
Linear Algebra. Springer, 2000.

[175] Raul Silaghi and Alfred Strohmeier. Better generative programming with generic as-
pects. Technical report, Swiss Federal Institute of Technology in Lausanne, December
2003. http://icwww.epfl.ch/publications/abstract.php?ID=200380.

[176] Silicon Graphics, Inc. SGI Implementation of the Standard Template Library, 2004.
http://www.sgi.com/tech/stl/.

[177] Richard Soley and the OMG Staff Strategy Group. Model driven architecture. Tech-
nical report, Object Management Group, November 2000. http://www.omg.org/

~soley/mda.html.

http://www.boost.org/libs/concept_check/
http://www.boost.org/libs/concept_check/
http://icwww.epfl.ch/publications/abstract.php?ID=200380
http://www.sgi.com/tech/stl/
http://www.omg.org/~soley/mda.html
http://www.omg.org/~soley/mda.html

BIBLIOGRAPHY 205

[178] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science, 2nd edition, 1992.

[179] Alexander Stepanov. gclib. http://www.stepanovpapers.com, 1987.

[180] Alexander A. Stepanov, Aaron Kershenbaum, and David R. Musser. Higher order pro-
gramming. http://www.stepanovpapers.com/Higher%20Order%20Programming.

pdf, March 1987.

[181] Alexander A. Stepanov and Meng Lee. The Standard Template Library. Technical
Report X3J16/94-0095, WG21/N0482, ISO Programming Language C++ Project,
May 1994.

[182] Christopher Strachey. Fundamental concepts in programming languages, August
1967.

[183] Walid Taha and Tim Sheard. Metaml and multi-stage programming with explicit
annotations. Technical report, 1999.

[184] Robert Endre Tarjan. Data structures and network algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1983.

[185] J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification: Parameteri-
zation and the power of specification techniques. ACM Trans. Program. Lang. Syst.,
4(4):711–732, 1982.

[186] Kresten Krab Thorup. Genericity in Java with virtual types. In ECOOP ’97, volume
1241 of Lecture Notes in Computer Science, pages 444–471, 1997.

[187] Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is
undecidable. Information and Computation, 179(1):1–18, 2002.

[188] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[189] Mads Torgersen. Virtual types are statically safe. In FOOL 5: The Fifth International
Workshop on Foundations of Object-Oriented Languages, January 1998.

[190] Matthias Troyer, Synge Todo, Simon Trebst, and Alet Fabien and. ALPS: Algorithms
and Libraries for Physics Simulations. http://alps.comp-phys.org/.

[191] Franklyn Turbak, Allyn Dimock, Robert Muller, and J. B. Wells. Compiling with
polymorphic and polyvariant flow types.

[192] B. L. van der Waerden. Algebra. Frederick Ungar Publishing, 1970.

[193] Todd L. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd International Scien-
tific Computing in Object-Oriented Parallel Environments (ISCOPE’98), volume 1505
of Lecture Notes in Computer Science. Springer-Verlag, 1998.

http://www.stepanovpapers.com
http://www.stepanovpapers.com/Higher%20Order%20Programming.pdf
http://www.stepanovpapers.com/Higher%20Order%20Programming.pdf
http://alps.comp-phys.org/

BIBLIOGRAPHY 206

[194] Friedrich W. von Henke, David Luckham, Bernd Krieg-Brueckner, and Olaf Owe.
Semantic specification of ada packages. In SIGAda ’85: Proceedings of the 1985
annual ACM SIGAda international conference on Ada, pages 185–196, New York, NY,
USA, 1985. Cambridge University Press.

[195] Oscar Waddell and R. Kent Dybvig. Fast and effective procedure inlining. In Proceed-
ings of the Fourth International Symposium on Static Analysis (SAS ’97), volume 1302
of Lecture Notes in Computer Science, pages 35–52. Springer-Verlag, September 1997.

[196] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
Symposium on Principles of Programming Languages, pages 60–76. ACM, January
1989.

[197] David Walker, Karl Crary, and Greg Morrisett. Typed memory management via static
capabilities. ACM Transactions on Programming Languages and Systems, 22(4):701–
771, 2000.

[198] Joerg Walter and Mathias Koch. uBLAS. Boost. http://www.boost.org/libs/

numeric/ublas/doc/index.htm.

[199] M. Wenzel. Using axiomatic type classes in Isabelle (manual), 1995. www.cl.cam.

ac.uk/Research/HVG/Isabelle/docs.html.

[200] Jeremiah Willcock, Jaakko Järvi, Andrew Lumsdaine, and David Musser. A formal-
ization of concepts for generic programming. In Concepts: a Linguistic Foundation of
Generic Programming at Adobe Tech Summit. Adobe Systems, April 2004.

[201] J. Yang, J. Wells, P. Trinder, and G. Michaelson. Improved type error reporting, 2000.

[202] Hongyu Zhang and Stan Jarzabek. XVCL: a mechanism for handling variants in
software product lines. Science of Computer Programming, 53(3):381–407, 2004.

[203] S.N. Zilles. Algebraic specification of data types. Technical Report Project MAC
Progress Report 11, Mass. Inst. Technology, 1975.

http://www.boost.org/libs/numeric/ublas/doc/index.htm
http://www.boost.org/libs/numeric/ublas/doc/index.htm
www.cl.cam.ac.uk/Research/HVG/Isabelle/docs.html
www.cl.cam.ac.uk/Research/HVG/Isabelle/docs.html

Index

LOOM, 64
MLF, 83
find_end, 38
iterator_traits, 21
replace_copy, 28
reverse_iterator, 35
where clause, 74
Bidirectional Iterator, 23
Binary Function, 32
Forward Iterator, 23
Input Iterator, 14, 22
Output Iterator, 23
Random Access Iterator, 23
accumulate, 29
advance, 31
merge, 27
min, 18
stable_sort, 24
unique, 24
count, 20
deque, 31
map, 33
multimap, 33
multiset, 33
priority_queue, 39
queue, 39
set, 33
stack, 39
vector, 31
count, 20
list, 33

abstract base class, 101
abstract data type, 89
accidental conformance, 67
Ada, 69

alias, 153
annotated type, 108
anonymous function, 91
any, 97
archetype classes, 27
argument dependent lookup, 19
associated types, 14, 75, 79

backward chaining, 85
BETA, 51
binary method problem, 49

callable from, 88
Cforall, 67
class, 89
CLU, 67, 97
compilation, 95
complexity guarantees, 14
concept, 76, 101
concept-based overloading, 88, 136
concepts, 12
conditional model, 38, 78
congruence relation, 80
conversion requirements, 31

declaration, 183

environment, 108
equivalence relation, 80
evidence, 96
expression, 184

first-class polymorphism, 92
function

anonymous, 99
expressions, 99
generic, 97
parameters, 99

207

INDEX 208

pure virtual, 101
types, 99
virtual, 101

function expression, 91
function object, 6, 30
function overloading, 88
function specialization, 56
functor, 69

gbeta, 51, 64
generic function, 73
generics, 6, 45
grammar, 182

higher-order functions, 6
Horn clause, 85

implicit instantiation, 5, 81, 100
implicit model passing, 84
instantiated, 19
intensional type analysis, 57, 100
interface, 67

macro-like parameterization, 52
matching, 64
Maude, 69
ML, 69
model, 77, 102
model head, 85
model lookup, 84
model passing, 69
models, 14
monomorphization 56
more specific model, 85
more specific overload, 88
multi-parameter concept, 28

nominal conformance, 67

OBJ, 69
object types, 67
Objective Caml, 67, 69

parameteric polymorphism, 52
parameterized model, 78

partial evaluation, 56
partial template specialization, 23
Pebble, 69
pointers, 100
predecessor, 109
Prolog, 85
property map, 145

refinement, 21
regions, 153
requirements on associated types, 24

same-type constraints, 28, 74, 79, 147
Scala, 51, 64
scalar replacement of aggregates, 181
separate type checking, 5
separately compiled, 6
signature, 67, 69
statement, 184
struct, 89
structural conformance, 67
structure, 69
subsumption principle, 48, 82
syntax, 182

tag dispatching idiom, 31
template specialization, 21
theory, 43
traits class, 21
type, 182
type class, 67
type sets, 67
type argument deduction, 82
type equality, 79
type expression, 182
type sharing, 66

unification, 85, 117
unify, 117
union, 89

valid expressions, 18
value semantics, 34
virtual classes, 51

INDEX 209

virtual patterns, 51
virtual types, 51

	Acknowledgements
	Abstract
	Introduction
	Lowering the cost of developing generic components
	Lowering the cost of reusing generic components
	G: a language for generic programming
	Related work in programming language research
	Claims and evaluation
	Road map

	Generic programming and the STL
	An example of generic programming
	Survey of generic programming in the STL
	Generic algorithms and STL concepts
	Generic containers
	Adaptors and container concepts
	Summary of language requirements

	Relation to other methodologies
	Summary

	The language design space for generics
	Preliminary design choices
	Subtyping versus type parameterization
	The binary method problem
	Associated types
	Virtual types
	Evaluation

	Parametric versus macro-like type parameterization
	Separate type checking
	Compilation and run-time efficiency
	Evaluation

	Concepts: organizing type requirements
	Parameteric versus object-oriented interfaces
	Type parameters versus abstract types
	Same-type constraints

	Nominal versus structural conformance
	Constrained polymorphism
	Granularity
	Explicit versus implicit model passing

	Summary

	The design of G
	Generic functions
	Concepts
	Models
	Modules
	Type equality
	Function application and implicit instantiation
	Type argument deduction
	Model lookup (constraint satisfaction)

	Function overloading and concept-based overloading
	Generic user-defined types
	Function expressions
	Summary

	The definition and compilation of G
	Overview of the translation to C++
	Generic functions
	Concepts and models
	Generic functions with constraints
	Concept refinement
	Parameterized models
	Model member access
	Generic classes

	A definitional compiler for G
	Types and type equality
	Environment
	Auxiliary functions
	Declarations
	Statements
	Expressions

	Compiler implementation details
	Summary

	Case studies: generic libraries in G
	The Standard Template Library
	Algorithms
	Iterators
	Automatic algorithm selection
	Containers
	Adaptors.
	Function expressions
	Improved error messages
	Improved error detection

	The Boost Graph Library
	An overview of the BGL graph search algorithms
	Implementation in G

	Summary

	Type Safety of FG
	FG = System F + concepts, models, and constraints
	Adding concepts, models, and constraints
	Lexically scoped models and model overlapping

	Translation of FG to System F
	Isabelle/Isar formalization
	Associated types and same-type constraints
	Summary

	Conclusion
	Grammar of G
	Type expressions
	Declarations
	Statements and expressions
	Derived forms

	Definition of FG

