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Contributions 

1. TCF:  Tensor Clustering Framework 
 A new sublineage structure of MTBC strains using multiple biomarkers 

 Genomic data fusion via multiple-biomarker tensors 

 

2. Evolution model of spoligotypes 
 Evolutionary analysis of spoligotypes using multiple biomarkers 

 Genomic mutation mechanism fusion 

 

3. UBF: Unified Biclustering Framework 
 Host-pathogen association analysis of tuberculosis patients 

 Genome-phenome data fusion 
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Outline 

1. Introduction: TB and MTBC 

2. Background: Post-genomic data analysis 

3. TCF: Tensor Clustering Framework 

4. Evolution model for spoligotypes 

5. UBF: Unified Biclustering Framework 

6. Conclusion 
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TB: Tuberculosis 

 Infectious disease 

 Airborne infection or transmission 

 1/3 of the human population infected with TB 

 90% of  TB cases remain latent 

 

 

 1980-2009:  TB cases decrease 

 Exception: Early 1990s 

 > 2 million/year die from TB 

 
 

 

 

 

 

 

 

7/5/2012 Cagri Ozcaglar: Ph.D. Thesis Defense 4 

Ozcaglar et al., Epidemiological models of Mycobacterium 

tuberculosis complex infections, Mathematical Biosciences, 2012. 



MTBC: M. tuberculosis complex 

 MTBC bacteria: causative agent of  TB 

 Genotyped by multiple biomarkers: 
 Spoligotype 

 MIRU-VNTR 

 RFLP 

 SNPs 

 LSPs 
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Barnes et al., New England J. Medicine, 2003 



Motivation 

 Multiple sources of data from: 
 MTBC strains 

 TB patients 

 

 To solve the following problems: 
1. MTBC differentiation  

 Using multiple biomarkers 

2. Evolutionary analysis of an MTBC biomarker  

 Using an additional biomarker 

3. Host-pathogen association analysis  

 Incorporating distance and time 

 

 Algorithmic data fusion methods: 

1. TCF:  Tensor Clustering Framework 

2. SpolTopol: Spoligoforest Topology analysis 

3. UBF: Unified Biclustering Framework 
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Genomic data fusion 

Genome-phenome data fusion 

Genomic data fusion 



Outline 

1. Introduction: TB and MTBC 

2. Background: Post-genomic data analysis 

 Classification and Clustering 

 Biclustering 

 Multiway modeling 

 Phylogenetic analysis 

3. TCF: Tensor Clustering Framework 

4. Evolution model for spoligotypes 

5. UBF: Unified Biclustering Framework 

6. Conclusion 
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Classification and Clustering 

1. Classification 
 Predict classes of data points 

 Supervised learning: Classes known a priori 

 

 

2. Clustering 
 Grouping data points  

 Unsupervised learning: Classes unknown a priori 
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Classification and Clustering of MTBC 
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CBN  
Aminian et al., 2010 

TB-Lineage 
Shabbeer et al., 2012 

KBBN  
Aminian et al., 2011 

SPOTCLUST  
Vitol et al., 2006 

Affinity Propagation  
Borile et al., 2011 

MTBC strains 

East Asian   East-African Indian   Euro-American   Indo-Oceanic   M. africanum   M. bovis 

TCF 
Ozcaglar et al., 2011 

Decision tree 
Ferdinand et al., 2004 

 ?        ?         ?         ?        ?     ? 

Classification Clustering 



Biclustering 

 Biclustering: Clustering rows and columns simultaneously 

 Concept coined by Hartigan (1972) 

 Term used by Mirkin (1996) 

 Commonly used for microarray data analysis in 2000s  

 Find a submatrix within the data matrix 
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Rows 

Columns 
 Biclustering algorithms: 

 Cheng and Church: Row/column add/remove 

 CTWC: Coupled Two-Way Clustering 

 SAMBA: Statistical-Algorithmic Method for 

Bicluster Analysis 

 BiMax: Binary Inclusion-Maximal algorithm 

 OPSM: Order-Preserving Submatrix algorithm 

 

 

 



Multiway modeling: terminology 

 Tensor                          has N modes. 

 

 

 

 Matricization: Unfolding 
 Mode-n matricization of a tensor                                 : 

 

 

 

 Kronecker product 
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with 3 modes 

 Khatri-Rao product 



Multiway models and algorithms 
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PARAFAC 

 

 

 

 

 

Models Algorithms 

PARAFAC-ALS 

 

 

 

 

 
Tucker3 

 

 

 

 

 

Tucker3-ALS 

 

 

 

 

 



Phylogenetic analysis 

 Phylogeny: Reconstruction of evolutionary history of a group of 

organisms, taxa. 

 Phylogenetic tree: The graphical structure that represents inferred 

evolutionary history of taxa. 
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Spoligotype 

(taxon) 

Mutation 

event 

 Methods 

 Distance methods 

 Parsimony methods 

 Likelihood methods 

 Bayesian methods 

 

 



Outline 

1. Introduction: TB and MTBC 

2. Background: Post-genomic data analysis 

3. TCF: Tensor Clustering Framework 
 [Ozcaglar et al., IEEE BIBM, 2010] 

 [Ozcaglar et al., BMC Genomics, 2011] 

4. Evolution model for spoligotypes 

5. UBF: Unified Biclustering Framework 

6. Conclusion 
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Motivation: TCF 

 Why do we cluster? MTBC strains vary in: 

 Infectivity 

 Host-pathogen association (e.g. Mexico, Indo-Oceanic) 

 Transmissivity (e.g. W-Beijing) 

 Virulence  [Gagneux et al., PNAS 2006] 

 Drug resistance 

 Classification of MTBC strains into major lineages: 

 Characteristics of MTBC strains 

 Unusual traits of MTBC strains 

 Further subdivide MTBC major lineages  

 Find more specific groups of MTBC strains 

 Use multiple biomarkers 

 Spoligotypes 

 MIRU patterns 

 

 

 

 

 

 

7/5/2012 Cagri Ozcaglar: Ph.D. Thesis Defense 15 



Goal: TCF 

 Goal: Divide major lineages into sublineages  

 Using multiple biomarkers via genomic data fusion 

 

 

 

 

 

 

 Need: A method to cluster strains  

 Using multiple biomarkers simultaneously 

 Tool: The  Tensor Clustering Framework (TCF)  

 Using Multiple-Biomarker Tensors (MBT) 
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MTBC biomarkers 

 We used two biomarkers for MTBC genotyping 

 

 

 

 

 

 

 

 

 Need a kernel-based data fusion method to combine both 

biomarkers 
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0000000000000000000000000000000000111111111 

Spoligotype MIRU-VNTR 

 12-bit digit vector  43-bit binary vector 



TCF: Tensor Clustering Framework 
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Ozcaglar et al., Sublineage structure analysis of Mycobacterium tuberculosis 

complex strains using multiple-biomarker tensors, BMC Genomics, 2011. 



MBT: Multiple-Biomarker Tensor 

 Biomarker kernel matrix 

 Spoligotype deletion vector: 𝒔, binary vector. 

 MIRU pattern vector: 𝒎, digit vector. 

 Biomarker kernel matrix: 𝒔 ×  𝒎, outer product of 𝒔 and 𝒎. 

 MBT: Multiple-biomarker tensor 

 

 

 

 

                     : Coexistence of spoligotype deletions with MIRU loci  
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Clustering algorithm and validation 

 K-means is a commonly used clustering algorithm 

 Two improvements to weaknesses: 

1. Initial Centroids problem: Initial centroids are chosen randomly. 

 Careful seeding using kmeans++ [Arthur et al., SODA, 2007] 

2. Local Minima problem: The objective function can fall into local minima. 

 Repeat k-means multiple times,  retrieve the run with minimum objective. 
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 Cluster validation 
 Best-match stability 

 DD-weighted gap statistic 

 



The Dataset 

 6848 distinct MTBC strains  

 Spoligotype and 12-loci MIRU. 

 CDC + MIRUVNTRplus 

 The strains are labeled by major lineages and SpolDB4 lineages. 
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Results: Tensor sublineages 

 Apply TCF on MBT of each major lineage 

 Number of components used in PARAFAC and Tucker3 on MBT 

 

 

 

 

 Number of tensor sublineages and validation measure values 
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Subdivision of M. bovis lineage 
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PCA plot 

Biomarker signature 

Confusion matrix 



Subdivision of East Asian lineage 
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PCA plot 

Biomarker signature 

Confusion matrix 



Outline 

1. Introduction: TB and MTBC 

2. Background: Post-genomic data analysis 

3. TCF: Tensor Clustering Framework 

4. Evolution model for spoligotypes 
 [Ozcaglar et al., IEEE BIBM 2011] 

 [Ozcaglar et al., IEEE  Trans. NanoBioscience, to appear, 2012] 

5. UBF: Unified Biclustering Framework 

6. Conclusion 
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Motivation: Evolution of spoligotypes 

 Motivation:  

 Putative mutation history of spoligotypes 

 Deletions in the DR region 

 Better understand the mutation mechanism of biomarkers 

 e.g. Rare convergent evolution in the DR region [Fenner et al, 2011] 

 Goal: Disambiguate the ancestor spoligotypes 

 

 

 

 

 Method: MakeSpoligoforest() algorithm  

 Uses an independent biomarker, MIRU-VNTR 

 Based on maximum parsimony 
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c 

p1 p2 p3 pk …… 



Mutation mechanism of biomarkers 
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Spoligotype MIRU-VNTR 

 Unidirectional 

 Spacers can be lost, but not gained 

 Camin-Sokal parsimony  

 1→0   

 0→1 

 Irreversible deletion 

 Contiguous deletion assumption (CDA) 

 

 

 Bidirectional 

 Tandem repeats can be lost or gained 

 Stepwise mutation model 

 

 

 



Most parsimonious forest generation 

 Assumptions 

 Contiguous deletion assumption 

 No convergent evolution 

 Distance measures for strain comparison 

 

 

1. Hamming distance between spoligotypes 

 

2. Hamming distance between MIRU patterns 

 

3. L1 distance between MIRU patterns 

 Validation of the model 

 Segregation accuracy: Percentage of within-lineage mutation events. 
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MakeSpoligoforest algorithm 
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c 

p1 p2 p3 p4 

p1 p2 p3 p4 

HM 
1 2 1 1 

HS 
3 2 5 3 

LM 
6 3 4 6 



The spoligoforest 

 CDC dataset, 2004-2008 

 9336 unique MTBC strains determined by spoligotypes and MIRU patterns 

 2841 nodes: Spoligotypes 

 2562 edges: Mutation events 

 

 

 

 

 

 

 

7/5/2012 Cagri Ozcaglar: Ph.D. Thesis Defense 30 



Comparison with existing mutation models 

 The difference between segregation accuracy of different 

mutation models is not statistically significant 

 

 

 

 

 

 

 MakeSpoligoforest() algorithm results in similar percentage of 

within-lineage mutation events 

 Alternative mutation models also perform as good 

 We use the spoligoforest generated using both biomarkers 
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Model 
Segregation 

accuracy 

# Isolated 

nodes 

# Mutation 

events 

Zipf model [Reyes et al. 2008] 0.9921 235 2562 

MakeSpoligoforest() (Spoligotype) 0.9906 230 2562 

MakeSpoligoforest() (MIRU) 0.9941 233 2562 

MakeSpoligoforest() (Spoligotype and MIRU) 0.9941 232 2562 



Result 1: Number of descendant spoligotypes 

 di: Number of descendant spoligotypes of node i 

 Number of descendant spoligotypes distribution  

 Power Law 
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p 

c1 c2 c3 

dp=3 

Clauset et al.,  

SIAM Review, 2009. 



Result 2: Mutation length frequency 

 Mutation length: Number of spacers deleted in a mutation 

 lij: The length of mutation from node i to node j 

 Zipf model by Reyes et al. 
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p 

c 

lpc=2 HS=2 

 Why not power law? 
 Longest observed mutation length: 32 

 Maximum possible mutation length: 43 



Result 3: Number of mutations at each spacer 

 Number of mutation events in which each spacer is deleted 

 

 

 

 

 

 

 

 Spatially bimodal distribution. 
 Hotspots, sites of increased observed variability: Spacers 13 and 40. 

 Change point: Spacer 34. 
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“Hotspots” 

Change point 

Ozcaglar et al., Inferred spoligoforest topology unravels spatially bimodal distribution 

of mutations in the DR region, IEEE Trans. NanoBioscience, in press, 2012. 



Spatially bimodal distribution 

 Reason: Scarcity of sp33-sp36 

 Proofs: 

 Principal genetic groups PGG 2 and 

PGG 3 defined by Sreevatsan et al. lack 

spacers 33 to 36. 

 Euro-American lineage is characterized 

by the deletion of spacers 33-36. 

 1971 spoligotypes out of 2841, 

69.37% in the CDC dataset are 

labeled with Euro-American lineage. 

 94 out of 2841 spoligotypes, only 

3.31% of them, have spacer 34 present 

in the DR region. 
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Result 4: Alternative model - SPM 

 SPM: Starting Point Model 
 Condition on the starting point of mutation 

 

 

 

 

 SPM on mutation length frequency of CDC and IPDG datasets 
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CDC IPDG 

1 2 



Result 4: Alternative model - LBM 

 LBM: Longest Block Model 
 Condition on the length of longest block of spacers 

 

 

 

 

 

 LBM on mutation length frequency of CDC and IPDG datasets 
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CDC IPDG 



Outline 

1. Introduction: TB and MTBC 

2. Background: Post-genomic data analysis 

3. TCF: Tensor Clustering Framework 

4. Evolution model for spoligotypes 

5. UBF: Unified Biclustering Framework 

 [Ozcaglar et al., RPI  Technical Report, 2012] 

6. Conclusion 
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Motivation and Goal: UBF 

 Host-pathogen association analysis 
 Stable: [Hirsh et al., PNAS, 2004] 

 Variable: [Gagneux et.al., PNAS, 2006] 

 Phylogeographic lineages:  
 Genotype of MTBC and patient attributes are related 

 

 MTBC strains: spoligotypes  

 TB patients: country of birth 

 

 Incorporate more data into domain knowledge 
 Genetic distance between MTBC strains  

 Spatial distance between TB patients 

 Time of infection 

 Need: A framework to combine data from multiple sources 
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Genome-phenome data fusion 

Favor more likely mutation events 

Favor more likely transmission events 

Trace transmission routes 



Biclustering problem 

 Host-pathogen association analysis: a biclustering problem 

 MTBC strains: spoligotypes 

 TB patients: country of birth 

 Dataset 
 NYC dataset: 4301 patients 

 311 spoligotypes: KBBN, CBN 

 104 countries 

 7 years: 2001-2007 

 Distance matrices 
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 Spatial proximity matrix  Genetic proximity matrix 



Step 1: Data generation / fusion 
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S: Spoligotype 

C: Country 

T: Time 



UBF: Unified Biclustering Framework 
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Ozcaglar et al., Host-pathogen association analysis of tuberculosis 

patients via Unified Biclustering Framework, RPI  Tech. Report, 2012. 



Step 2&3: Data factorization & FPSM generation 

 

 Matrix factorization 
 The matrix itself 

 Tensor factorization 
 PARAFAC 

 Tucker3 

 Coupled matrix-matrix  

factorization 
 CMMF_ALS 

 Coupled matrix-tensor  

factorization 
 CMTF_PARAFAC_ALS 

 CMTF_Tucker_ALS 
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 FPSM: Feature Pattern Similarity 

Matrix 

 Calculation 1: Cosine similarity 
 PARAFAC, CMTF_PARAFAC_ALS 

 CMMF_ALS 

 

 

 Calculation 2: Cosine similarity 
 Tucker3, CMTF_Tucker_ALS 

 

 

 

 

Data factorization FPSM generation 



CMTF_Tucker_ALS algorithm 

   

   
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   

  

 

 

 

 

 

 

 

 

 

 

 

1.   

 

 

 

 

 

 

 

 

 

 

2.   

 

 

 

 

 

 

 

 

 

 

3.   

 

 

 

 

 

 

 

 

 

 



Step 4: Density-invariant bicluster 

 Bicluster B = (U,V,E) as a bipartite graph G = (U,V,E) 

 

 

 

 

 Density and variance of a graph 

 

 

 Density-invariant bicluster 
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Rows 

Columns 

U V 

E 

Rows 

Columns 

Spoligotypes Countries 



Step 4&5: Density-invariant biclustering 

 Density-invariant biclustering algorithm (DIB) 
1. Discretize X with threshold th 

 

 

 

2. Find candidate biclusters using BiMax [Prelic et al, 2006] 

 

3. Find (α,β)-density-invariant biclusters among candidate biclusters 

 

 Statistically significant bicluster selection 
 For two biclusters B1=(G1,C1) and B2=(G2,C2) 

 

 

 Stable bicluster: Average best-match stability ≥ 0.95 
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Results – Biclusters based on KBBN sublineages 

 

 

 

 

 

 

 

 

 

1. Philippines: EAI2_Manila strain ST897 

2. East Asian Beijing strain ST1: three TB continents. Transmissive. 

3. Malaysia & Philippines: ST1 and ST38. Neighbour countries. 
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Results – Biclusters within each CBN lineage 
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Outline 

1. Introduction: TB and MTBC 

2. Background: Post-genomic data analysis 

3. TCF: Tensor Clustering Framework 

4. Evolution model for spoligotypes 

5. UBF: Unified Biclustering Framework 

6. Conclusion 
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Conclusion 

1. TCF:  Tensor Clustering Framework 
 Genomic data fusion via MBT: multiple-biomarker tensor 

 Simultaneous analysis of two biomarkers 

 A new sublineage structure of MTBC based on multiple biomarkers 

 Divided, merged, or validated existing sublineages 

2. Evolution of spoligotypes 
 Genomic mutation mechanism fusion via an additional biomarker 

 Number of desdendant spoligotypes follows power law 

 Number of mutations at each spacer follows a spatially bimodal distribution 

 Mutation length frequency does not follow power law. Alternatives: 

 SPM: Starting Point Model 

 LBM: Longest Block Model 

3. UBF: Unified Biclustering Framework 
 Genome-phenome data fusion 

 Incorporate genetic distance, spatial distance and time 

 Found existing and new host-pathogen associations 
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Future work 

 Non-deterministic tensor decomposition 
 Initial algorithm: Simulated Annealing with Adaptive stepsize (SAAS) 

 Tensors with varying size, rank, collinearity, noise level 

 Challenges: Global minima, overfactoring 

 Model selection framework for different types of noise 

 New constraints: sparsity, non-negativity 

 

 Host-pathogen association analysis 
 Additional MTBC biomarkers: MIRU-VNTR, RFLP 

 Additional patient attributes: age group, homelessness, HIV status 

 Immigration map instead of world map 

 Line-search for ALS-based coupled factorization algorithms 

 Faster convergence to more accurate solutions 
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