Synod Algorithm (Lamport)

Execution of Synod Algorithm (1)

1. Choose new proposal number \(m \).
 Send \(\text{prepare}(m) \) to all acceptors.

2. If \(m > \text{maxPrepare} \)
 \(\text{maxPrepare} = m \),
 reply with \((\text{accNum}, \text{accVal})\).

3. If receive response from majority
 choose value \(v \),
 send \(\text{accept} \) to all acceptors.
 Else, start over.

 \(v = \text{value with largest \(\text{accNum} \) number.} \)
 Only if all \(\text{accVal} \) values are \(\text{null} \), choose own value.

Execution of Synod Algorithm (2)

5. Send \(\text{ack} \) after saving \(\text{accNum} \) and \(\text{accVal} \)

6. If receive \(\text{ack} \) from majority
 send \(\text{commit}(v) \)

4. Record \(v \) in log.
Byzantine Agreement Algorithm with Oral Messages (Lamport, Shostak, Pease: 1982)

Base Case: OM(0) \ (m = 0)

1. Commander sends value v to every lieutenant.
2. Each lieutenant j returns v or RETREAT if no value received.

OM(m) \ (m > 0)

1. Commander sends value v to every lieutenant.
2. For each lieutenant j
 \[v_j = \text{value Lieutenant j receives from Commander or RETREAT if no value received.} \]
 Lieutenant j acts as Commander to execute OM(m-1) \ (*to send v_j to n-2 other lieutenants*).
3. For all j, for all k \(\neq j \)
 \[v_k = \text{value Lieutenant j received from Lieutenant k for step 2 (using OM(m-1)) or RETREAT if no value received.} \]
 Return majority\((v_1,v_2,...,v_{n-1})\).