Info

• Quiz 2 average was 21.36 / 30.
 • It will be returned at the end of class.

• Please check your grades in LMS regularly to make sure they are correct.

• Project will be handed out today.
Replicated Log Algorithm

• Initially:
 • $L_i = \emptyset$
 • $T_i(j,k) = 0$ for all j and k
Replicated Log Algorithm (2)

On local event e

- Advance C_i (local event counter)
- $T_i(i,i) = C_i$
- $L_i = L_i \cup \{e_R\}$

For send (m) to N_k

- $NP_i = \{ e_R \mid e_R \in L_i \text{ and } \neg \text{hasRec}(T_i, e_R, k) \}$
- Send NP_i and T_i to N_k
Replicated Log Algorithm (3)

On receive(m) from N_k

- m contains NP_k and T_k
- L_i = L_i U NP_k
The Dictionary Problem

• A dictionary is a set of entries (unordered)
 • Denoted by V
• We want to fully replicate the dictionary at all sites

• V_i denotes the copy of V at site i.
• Let e takes place at site i.
 Then $V(e)$ denotes the contents of V_i immediately after e takes place.

• Types of local events: insert (x), delete (x)
• Assumptions
 • 1. For each entry x, there is at most one insert(x), over all sites.
 • 2. delete(x) can only be invoked at site i if $x \in V_i$ at time of invocation.
The Dictionary Problem (2)

• The dictionary problem is to find an algorithm for maintaining the dictionary such that, given an execution \(<E, \rightarrow> \), for every event \(e \), \(x \in V(e) \) if and only if

 • \(\text{insert}(x) \rightarrow e \)

 AND

 • There is no \(\text{delete}(x) \) event \(g \) such that \(g \rightarrow e \)
GLOBAL SNAPSHOTs

Motivation

• In a long distributed computation, fault tolerance is achieved by having processes periodically save their state.

• After a failure, the failed process rolls back from one of its saved states.
 • Reduces the amount of lost computation.

• Each saved state is called a checkpoint.
Checkpoint-Based Recovery

- **Uncoordinated checkpointing**: Each process takes its checkpoints independently.

- **Coordinated checkpointing**: Processes coordinate their checkpoints to save a consistent system-wide state.
Uncoordinated Checkpointing

- Processes take checkpoint independently
- Domino Effect!

Figure 5. Rollback propagation, recovery line and the domino effect.
Coordinated Blocking

- Processes are coordinated to form a consistent global state, and …

* okay, channels flushed
Coordinated Blocking

• Advantage
 • Always consistent
 • No Domino Effect
 • Less storage overhead

• Disadvantage
 • Large latency to checkpoint
Coordinated Non-blocking

- Processes are coordinated, but …
- Do we really need to block …?