Info

• Quiz 4 Friday Oct. 30
 • Topics:
 Leader Election (Bully Algorithm, Ring Algorithm)
 Consensus (Two Generals, FLP Impossibility Result)
 • No Byzantine Generals or Paxos on Quiz

• Today
 • Equivalence of Consensus and Other Problems
 • Byzantine Generals
 • Intro to Paxos?
Quiz Grades

• Grades for quizzes 1, 2, and 3 are posted in LMS
• Please check to make sure they are correct.
Project 2 Schedule

- Project 2 will be assigned on Friday
- Due Sunday Dec 6.
- Demos the week of Dec. 6
- Last day of class – Friday Dec. 11
Consensus Requirements

• **Strong Consensus:**
 • **Agreement:** No two processes decide on different values.
 • **Validity:** The value that is decided was proposed by some process.
 • **Termination:** All non-faulty processes eventually decide.

• **FLP Consensus Result:** it is impossible to achieve consensus in an asynchronous system where at most one process may fail.

• FLP Result addresses a weaker form of consensus.
 • **Termination:** Some non-faulty process eventually decides.
The Key Theorem

- **Theorem**: No consensus protocol is totally correct in spite of one fault.

- **Proof by contradiction**:
 - Assume such a protocol P exists.
 - Show that there are circumstances under which this protocol remains forever indecisive.
Consequences of FLP Result

- FLP result implies impossibility of solving other problems in asynchronous system with 1 fault.
 - Atomic broadcast
 - Leader election
 - Terminating Reliable Broadcast

- To show it is impossible to solve problem P in asynchronous system with at most 1 fault, show that an algorithm that solves P can be used to solve the consensus problem.
Impossibility of Atomic Broadcast

• **Theorem:** Given a algorithm for atomic broadcast, there is a algorithm for consensus that does not involve any additional messages.

• **Proof sketch:**
 - To propose a value v, a server uses the atomic broadcast protocol and broadcasts v; then every server waits for the delivery of the first message v and decides v. The agreement and total order properties of atomic broadcast imply agreement of consensus.
THE BYZANTINE GENERALS PROBLEM

L. Lamport, R. Shostak, and M. Pease

ACM Transactions on Programming Languages and Systems, 1982
The Byzantine Generals

- N generals
- Each votes “attack” or “retreat” (v(i))
- Need all generals to reach same decision, based on votes.
- Communicate by sending synchronous messengers (who never get eaten).

- Some of the generals may be disloyal.
 - Try to prevent loyal generals from reaching agreement on correct plan.

- Need loyal generals to agree
 - Any two loyal generals use the same value for v(i), for each i
 - If the ith general is loyal, then the value he sends is used by every loyal general as v(i)
The Byzantine Generals Problem

• To solve the agreement problem, need to solve the problem of how a single general sends its value to others.

• The Byzantine Generals Problem:
 A commanding general must send an order to N-1 lieutenants such that:
 IC 1. All loyal lieutenants obey the same order.
 IC 2. If the commanding general is loyal, then every loyal lieutenant obeys the order he sends.
IMPOSSIBILITY RESULTS

- **Theorem**: Let there be t traitors among n generals, there is no solution to the Byzantine generals problem for $n < 3t + 1$.

- We need $n > 3t$ to be able to solve the Byzantine Generals problem.