Maekawa 2.0 (Sanders Sec. 5)

Request are timestamped with Totally-Ordered Lamport Timestamps

Message types:
REQUEST, GRANT, RELEASE
FAIL, INQUIRE, YIELD *(process can now take back a GRANT if it has received YIELD)*

State:

- reqQ: priority queue, ordered by timestamps
- lockHolder: who \(p_i \) has sent GRANT to by not yet received RELEASE from
- lockTS: timestamp of lockHolder’s request
* also keep track of messages that have been received

Initially:

- reqQ is empty
- lockHolder = null
- lockTS = null

When \(p_i \) wants to request resource:

Send \(\text{REQUEST}(i, TS_i) \) to all processes in \(S_i \) *(self included)*
Wait for \(\text{GRANT} \) msgs from all in \(S_i \)
Access Resource

When \(p_i \) is done with resource:

Send \(\text{RELEASE} \) to all processes in \(S_i \) *(self included)*

When \(p_j \) receives \(\text{REQUEST}(i, TS_i) \) from \(p_i \):

- if lockHolder = null

 Send \(\text{GRANT} \) to \(p_i \)

 lockHolder = \(p_i \)

 lockTS = \(TS_i \)

- else

 Put \(\text{(REQUEST}_i, TS_i) \) in reqQ

 if lockTS < \(TS_i \)

 Send \(\text{FAIL} \) to \(p_i \) *(you don’t stand a chance of getting resource right now so you should YIELD – give up locks)*

 **else

 Send \(\text{INQUIRE} \) to lockHolder (see if it will give up the lock for \(p_i \))

 Send \(\text{FAIL} \) to all processes in reqQ with timestamps > \(TS_i \) ***(you are later in reqQ, so you should YIELD – give up locks)***
When \(p_i \) receives \textbf{INQUIRE} from \(p_j \): (should I release the lock I am holding for you?)

If \(p_i \) has received \textbf{FAIL} from any process

or if it has sent \textbf{YIELD} to any process and not yet received a new \textbf{GRANT},

send \textbf{YIELD} to \(p_j \) (I give up my lock)

\textbf{When \(p_j \) receives \textbf{YIELD} from \(p_i \):}

Add \((\text{lockHolder}, \text{lockTS})\) to \(\text{reqQ} \) (put locked process back in queue)

lockHolder = null
lockTS = null

if queue ≠ empty

\((\text{lockHolder}, \text{lockTS}) = \text{dequeue}(\text{reqQ})\)

send \textbf{GRANT} to \text{lockHolder}

\textbf{When \(p_j \) receives \textbf{RELEASE} from \(p_i \):}

lockHolder = null
lockTS = null

if reqQ ≠ empty

\((\text{lockHolder}, \text{lockTS}) = \text{dequeue}(\text{reqQ})\)

send \textbf{GRANT} to \text{lockHolder}

** Missing in Maekawa paper: may lead to deadlock**