Question 2
Consider the Wuu-Bernstein algorithm for the Replicated Log Problem.
For each statement below, indicate whether the statement is TRUE or FALSE. If the statement is TRUE, provide a justification. If the statement is FALSE, provide a counter-example.

1. For any pair of processes \(p_i \) and \(p_j \), it always holds that \(T_i(j, i) \leq T_j(j, i) \).
2. For any pair of processes \(p_i \) and \(p_j \), \(i \neq j \), it always holds that \(T_i(i, i) \leq T_j(j, j) \).

Question 3
Dr. Science proposes to improve Lamport’s Mutual Exclusion algorithm by allowing a process to access the resource once it has received permission from a majority of processes. Assume there are \(N \) processes, where \(N \) is even. Dr. Science’s algorithm variation proceeds as follows

- \(p_i \) requests resource:
 - send \(\text{req}(i, C_i) \) to all processes, excluding itself.
 - put \(\text{req}(i, C_i) \) in own queue

- When \(p_j \) receives \(\text{req}(i, C_i) \):
 - put \((i, C_i) \) in its queue
 - send GRANT to \(p_i \)

- \(p_i \) can access resource when:
 - it has received GRANT from \(\frac{N}{2} \) processes and its request is at the head of its own queue
 (note that a process implicitly receives permission from itself when it adds its request to its own queue)

- When \(p_i \) finishes with resource:
 - send RELEASE to all processes from which it has received a GRANT message
 - remove \((i, C_i) \) from queue

- When \(p_j \) receives RELEASE from \(p_i \)
 - remove \((i, C_i) \) from queue

The system model is the same as defined for Lamport’s algorithm: reliable, FIFO, asynchronous communication, and no process crashes.

1. Does Dr. Science’s proposed algorithm variation guarantee safety? Answer YES or NO and give a justification.
2. Does Dr. Science’s proposed algorithm variation guarantee liveness? Answer YES or NO and give a justification.

Question 4
Consider an execution of Raymond’s algorithm in the tree network shown below. Site \(F \) has the token and is accessing the resource. Before it is finished, sites \(A \) and \(D \) both issue requests for the resource. Suppose that the ordering of the requests and messages results in the worst-case number of messages for getting the token to \(A \) and to \(D \) (not necessarily in that order). Assume that no other processes request the resource.

1. Explain the steps of Raymond’s algorithm that are executed after site \(F \) is finished with the resource to grant the two requests.
2. What is the total number of messages that are sent to grant the requests of \(A \) and \(D \)?
Question 5 Recall that Maekawa’s original mutual exclusion algorithm is prone to deadlock. Sanders proposed a revision of the algorithm that is deadlock free. In this revision, a process must relinquish its locks only if it receives both an INQUIRE message and a FAIL message. Give an example execution where a process receives an INQUIRE message (but no FAIL message), and there is no deadlock.